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Joint models of tumour size and lymph
node spread for incident breast cancer
cases in the presence of screening
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Abstract

Continuous growth models show great potential for analysing cancer screening data. We recently described such a

model for studying breast cancer tumour growth based on modelling tumour size at diagnosis, as a function of screening

history, detection mode, and relevant patient characteristics. In this article, we describe how the approach can be

extended to jointly model tumour size and number of lymph node metastases at diagnosis. We propose a new class

of lymph node spread models which are biologically motivated and describe how they can be extended to incorporate

random effects to allow for heterogeneity in underlying rates of spread. Our final model provides a dramatically better fit

to empirical data on 1860 incident breast cancer cases than models in current use. We validate our lymph node spread

model on an independent data set consisting of 3961 women diagnosed with invasive breast cancer.
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1 Introduction

Since its popularisation in medical statistics, the multi-state Markov model has been the primary tool to model
breast cancer progression using epidemiological or breast cancer screening data.1–5 In recent years, however,
several research groups have developed alternatives based on continuous processes. Bartoszynski et al.6

estimated tumour growth with an exponential growth function, explaining individual variation in growth rates
with gamma distributed random effects. Plevritis et al.7 described some extensions of the model. Both of these early
models based inference on tumour sizes of breast cancer cases in non-screened populations. Weedon-Fekjaer
et al.5,8 fitted a continuous tumour growth model to data collected from a screened population. They presented
a parsimonious model, containing only four parameters, that described both tumour growth and screening
sensitivity as continuous functions, enabling them to condition on screening history and mode of detection. An
alternative approach that also uses screening data was described by Abrahamsson and Humphreys.9 The approach
is based on specifying three underlying processes: tumour growth, screening sensitivity, and symptomatic
detection. The authors essentially extended the model of Bartoszynski et al.6 and derived probability
distributions for tumour sizes, conditioned on screening history and mode of detection. Isheden and
Humphreys10 derived a number of mathematical results that simplified and reduced the computational
complexity of the model.

The Markov model requires many parameters when the number of disease states is large. As a consequence, the
model is not well suited for quantifying the role of individual risk factors on breast cancer progression. Continuous
growth models, on the other hand, have few parameters, and can easily be modified to estimate tumour
progression at an individual level. For example, Abrahamsson et al.11 modelled tumour growth rate as a
function of BMI and time to symptomatic detection as a function of breast size, and Abrahamsson and
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Humphreys9 and Isheden and Humphreys10 have estimated screening sensitivity as a continuous function of
tumour and mammographic image-based covariates. For data collected in the absence of screening, Plevritis
et al.7 extended the exponential growth model of Bartoszynski et al.6 with two disease states, representing
regional lymph node spread and metastatic spread. In the presence of screening, no model that we know of has
modelled both tumour growth and tumour spread as continuous time processes. The aim of this article is to
develop such a joint process, based on the literature on lymph spread modelling and lymph spread simulation.

In 2000, the U.S National Cancer Institute established a consortium,12 consisting of six research groups from
Georgetown University, University of Texas MDACC, Dana-Farber Cancer Institute, Erasmus MC, Stanford
University, and University of Wisconsin, to develop simulation-based modelling approaches for investigating the
impact of breast cancer interventions, with a focus on prevention, screening, and treatment. Each group models
the natural history of breast cancer as part of their investigation, and the last three groups model breast cancer
tumour growth as a continuous time growth process. All groups model localised tumour stages, regionally spread
stages, and distant metastatic stages, but only the University of Wisconsin group models breast tumour spread as a
continuous time process.

To model breast tumour spread, the Wisconsin group uses a model proposed by Shwartz,13 which assumes that
tumour volume V grows exponentially with an individually assigned growth rate, and that the instantaneous rate
of additional lymph node spread at time t is equal to �ðtÞ ¼ b1 þ b2VðtÞ þ b3V

0ðtÞ, where V(t) is tumour volume at
time t, V0ðtÞ represents growth rate at time t, and b1, b2 and b3 are constants. The group has modified the growth
component slightly. They assume an exponential Gompertz function with decelerating doubling time. In fitting the
model to observed breast cancer incidence data, the group found the overall model fit to be inadequate. When
simulating lymph node progression and calibrating against U.S. breast cancer surveillance data, they found that
the Shwartz model produced too much lymph node spread for large tumours. The model also generated too little
lymph node spread for small tumours. Consequently, in order to improve fit, they made two ad-hoc adjustments to
the model. First, they adjusted lymph node spread for large tumours by simulating spread based on tumour
diameters 25% smaller than predicted by the growth model. Second, they assumed that 1% of all invasive
tumours had four lymph nodes involved at tumour onset and that 2% had five or more lymph nodes involved.

Related tumour spread models have been proposed by Hanin and Yakovlev14 and, as mentioned, by Plevritis
et al.7 Hanin and Yakovlev based their model on the model of Shwartz13 and assumed that tumours grow
exponentially and that the rate of additional lymph node spread is proportional only to tumour volume. They
introduced a number of additional assumptions and provided a detailed mathematical description of the model.
Plevritis et al.7 described a simpler model. They assumed that the hazard of a localised tumour spreading to the
lymph nodes is proportional to the volume of the tumour. They also relied on exponential tumour growth.

From the observations that: a) the CISNET University of Wisconsin group had to introduce additional
assumptions to fit the Shwartz model to data and b) that the Shwartz model represents a generalisation of the
models of Hanin and Yakovlev and Plevritis et al., we conclude that existing models can be improved upon. In this
article, we back this claim by showing that the Shwartz model has two inherent weaknesses. The first weakness is
that the model implies that slow growing tumours have a higher degree of lymph node spread, compared to fast
growing tumours, and the second weakness is that the model implies either an unrealistically high degree of lymph
node spread for large tumours or an unrealistically low degree of spread for small tumours. Based on these
observations, there is a need for new statistical models of regional lymph node spread.

This article is structured in the following way. We present the models of Shwartz13 and Hanin and Yakovlev,14

and describe these weaknesses in detail. We then propose several models of regional lymph node spread. The first
one is based on Shwartz13 but does not suffer the first weakness. The second one is a new model that addresses
both of the weaknesses mentioned above. The new model assumes that the instantaneous rate of additional lymph
node spread at time t, �ðtÞ, is proportional to the number of times the tumour cells have divided at time t, D(t), and
the rate of cell division in the tumour at time t, D0ðtÞ,

�ðtÞ ¼ �DðtÞD0ðtÞ

Based on this, we propose a class of models in which every model avoids the weaknesses mentioned earlier, and
show how our models can be modified to incorporate random effects to allow for heterogeneity in underlying rates
of spread. We then describe a joint likelihood for tumour size and number of lymph nodes affected, given a
patient’s screening history and mode of detection. We use this likelihood to jointly estimate the tumour growth
and lymph spread parameters from data on 1860 incident cases of breast cancer, collected from a population in
which screening is offered. We show that our new models have superior model fit compared to the Shwarz-based
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model. In addition to showing that our new approaches provide better models of the mean, we show that
incorporating random effects in the lymph node spread models further improves fit (dramatically so). We
validate the lymph spread model on an independent data set consisting of 3961 women diagnosed with invasive
breast cancer between January 2001 and December 2008 in the Stockholm-Gotland healthcare region in Sweden.
We conclude with discussions of implications, strengths and weaknesses of the new models.

2 Traditional models of regional lymph node spread

Shwartz13 described a joint process for tumour growth and regional lymph node spread. Given an inverse growth
rate r (assumed to vary across individuals), he assumed that tumour volume grows exponentially from time t¼ 0

Vðt, rÞ ¼ V0e
t=r, t � 0 ð1Þ

starting at an initial volume V0, corresponding to a sphere of diameter d0 ¼ 0:5 mm, and that the additional
number of affected lymph nodes at time t follows an inhomogeneous Poisson process with intensity function

�ðt, rÞ ¼ b1 þ b2Vðt, rÞ þ b3V
0ðt, rÞ

The model included additional assumptions. In what follows, we show that the first two assumptions alone imply
that a tumour at volume V, with an inverse growth rate r, has higher expected lymph node spread than a faster
growing tumour of the same size.

Based on the Poisson process proposed by Shwartz,13 it follows that the intensity measure is given by

�ðt, rÞ ¼

Z t

u¼0

�ðu, rÞdu ¼ b1tþ rb2 Vðt, rÞ � V0ð Þ þ b3 Vðt, rÞ � V0ð Þ

Given r and the tumour growth model (1), the time t is determined by t ¼ r logVðt, rÞ � logV0ð Þ. Substituting this
into the first term of the above expression gives

�ðt, rÞ ¼ rb1 logVðt, rÞ � logV0ð Þ þ rb2 Vðt, rÞ � V0ð Þ þ b3 Vðt, rÞ � V0ð Þ

For the inhomogeneous Poisson process, the intensity measure is the same as the expected value. Therefore, the
expected number of affected lymph nodes at time t, given r, is

E½NjR ¼ r,T ¼ t� ¼ �ðt, rÞ

Writing V¼ v, the expected number of lymph nodes affected, given R¼ r and V¼ v, is

E ½NjR ¼ r,V ¼ v� ¼ �ðtðvÞ, rÞ ¼ rb1 logðvÞ � logV0ð Þ þ rb2 v� V0ð Þ þ b3 v� V0ð Þ

From this expression, we can identify the first weakness: namely, for a given tumour volume, it follows that if r is
large (slow growing) the expected number of affected lymph nodes is large, and when r is small (fast growing) the
expected number of lymph nodes is small. This property is not supported by empirical evidence. If slow growing
tumours would have a comparatively higher degree of lymph node spread, then screen detected cancers would
have more lymph node involvement compared to interval cancers, due to length biased sampling. Empirical data
show that this is not true (see end of Section 5).

Hanin and Yakovlev14 used the same tumour growth function, but assumed that the intensity function was
given by �ðt, rÞ ¼ �Vðt, rÞ. Following the steps in the above argument for their model, the expected number of
lymph nodes affected, given tumour volume and growth rate, is

E½NjR ¼ r,V ¼ v� ¼ r� v� V0ð Þ ð2Þ

It follows that also their model is affected by the first weakness.
Both models, but especially the model of Hanin and Yakovlev, exhibit a second weakness. Namely, that the rate

of additional lymph node spread increases enormously with increasing tumour volumes. We illustrate this by
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comparing the expected number of lymph nodes for tumours of diameters 5mm and 30mm. Plugging these
diameters into equation (2), for fixed values of r and �, we find that the expectation is more than 200 times
larger for the bigger tumour. Such an extreme difference is not supported by clinical data. In our data the mean
number of lymph nodes for 30mm tumours (2.15) is less than nine times that for 5mm tumours (0.25).

Shwartz13 found that when simulating cohorts of symptomatic cancers based on his model, he produced too few
affected lymph nodes in tumours with diameters smaller than 1mm. The CISNET University of Wisconsin group
also saw this when using their modified approach. They also found that the model generated too many lymph
nodes in large tumours. Even though the second weakness, strictly speaking, does not have to apply to the Shwartz
model, it clearly does, as the findings of the two groups show. Together, these weaknesses mean that new models of
lymph node spread are needed.

3 Joint processes of tumour growth and lymph node spread

In this section, we present joint processes of tumour growth, time to symptomatic detection, and lymph node
spread. The joint processes share the same models for tumour growth, variation in tumour growth, and time to
symptomatic detection, but differ in their models of lymph node spread. All models are, however, based on the
same general framework: an inhomogeneous Poisson process with intensity function dependent on tumour
volume. The first, called model A, is a variation of Shwartz,13 where we assume that the intensity function is
proportional to the first derivative of tumour growth, V0. Model B is biologically inspired, and assumes that the
intensity function is proportional to the number of times the tumour cells have divided and the rate of cell division
in the tumour. Lastly, we present a larger class of models based on model B. In what follows, we describe the
shared models, the shared modelling assumptions, and give detailed descriptions of the proposed lymph spread
models.

3.1 Shared processes and assumptions

We use the original tumour growth process that Schwartz15 described in 1961, and adopt the other shared models
from Bartoszynski et al.,6 Hanin and Yakovlev,14 Plevritis et al.,7 Abrahamsson and Humphreys,9 and Isheden
and Humphreys.10

We assume that the tumour is monoclonal and originates from a spherical cell of diameter dCell ¼ 10 mm, with
corresponding volume VCell. The tumour grows exponentially at a constant cell reproductive rate, here represented
by the inverse growth rate r; the volume of the tumour t years after its onset is specified by

Vðt, rÞ ¼ VCelle
t=r, t � 0 ð3Þ

We explain individual variation in growth rate with a gamma distribution of shape s1 and rate s2

fRðrÞ ¼
��12

�ð�1Þ
r�1�1e��2r, r � 0 ð4Þ

Lastly, we assume that the tumour can be detected with non-zero probability, either symptomatically or via
screening, from size V0, corresponding to a spherical tumour of diameter d0 ¼ 0:5 mm, and that the rate of
symptomatic detection at time Tdet ¼ t is proportional to the size of the tumour

PðTdet 2 ½t, tþ dtÞjTdet � t,R ¼ rÞ ¼ �Vðt, rÞdtþOðdtÞ, Vðt, rÞ � V0 ð5Þ

These processes are assumed to be independent of lymph node spread, i.e. the tumour does not grow faster or
slower as it spreads and symptomatic detection is not triggered by lymph node metastases.

We begin with the two models of spread which we call A and B. We then work in a stepwise fashion, developing
model B to a class of models and then showing how these can be extended to incorporate random effects.

In all models, we assume that spread occurs one cell at a time and that secondary tumours (in the lymph nodes)
have the same cell reproductive rate as the primary tumour. We only model spread that eventually becomes
clinically detectable, i.e. lymph node spread that is detectable by the physician once the primary tumour has
been detected. Secondary tumours need to grow to size V0 to be clinically detectable (we could in theory use
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a volume different to V0 here). This means that between the time of tumour spread and the time at which the
secondary tumour becomes a clinically detectable lymph node metastasis, there is a time lag of size t0. For a fixed
inverse growth rate r, the time lag is defined by

V0 ¼ VCelle
t0=r ð6Þ

Given that secondary tumours are detectable first at size V0, a lymph node metastasis that is clinically detectable at
time tmust have occurred between times zero and t� t0, so that it has a volume greater than or equal to V0 at time
t. Thus, if the intensity measure is �ðt, rÞ, the number of clinically detectable lymph nodes at time t is Poisson
distributed with intensity measure �ðt� t0, rÞ.

3.2 Model A

The first lymph node spread model is an inhomogeneous Poisson process with intensity function

�ðt, rÞ ¼ ��AV
0ðt, rÞ ¼ ��A

d ðVðt, rÞÞ

dt
¼ ��A

Vðt, rÞ

r

The intensity measure at time t� t0 is

�ðt� t0, rÞ ¼

Z t�t0

u¼0

�ðu, rÞdu ¼

Z t�t0

u¼0

��A
VCelle

u=r

r
du

¼ ��A

�
VCelle

t�t0
r � VCell

�
¼ ��Ae

�t0
r

�
VCelle

t
r � VCelle

t0
r

�

Using equations (3) and (6) and introducing �A ¼ �
�
A

VCell

V0
, the number of clinically detectable lymph nodes

metastases at time T¼ t, given R¼ r, follows

PðN ¼ njR ¼ r,T ¼ tÞ ¼ e��AðVðt, rÞ�V0Þ
ð�AðVðt, rÞ � V0ÞÞ

n

n!

Given R¼ r and the tumour growth function (3), the time T¼ t is uniquely determined by the volume of the
tumour. Writing V¼ v, the probability for N¼ n clinically detectable lymph nodes, given R¼ r and V¼ v, is

PðN ¼ njR ¼ r,V ¼ vÞ ¼ e��Aðv�V0Þ
ð�Aðv� V0ÞÞ

n

n!
ð7Þ

The right hand side of equation (7) is independent of r. For model A, the probability for N¼ n clinically detectable
lymph nodes, given volume V¼ v, is therefore

PðN ¼ njV ¼ vÞ ¼ e��Aðv�V0Þ
ð�Aðv� V0ÞÞ

n

n!
ð8Þ

Note that in the case of the two lymph spread models described in Section 2, given v, N is not conditionally
independent of r.

3.3 Model B

We now focus on deriving a biologically inspired model for lymph node spread. We base our model on two
observations: A) lymphatic fluid is hostile to tumour cells; it contains little oxygen and nutrients, and tumour cells
in the lymphatic system are under constant attack by the immune system. In order to survive, tumour cells entering
the lymph system need to be highly mutated. B) Cell migration and cell proliferation share some common growth
factors, such as the Hepatocyte Growth Factor/scatter factor.16 Thus, the rate of cancer spread may be related to
the rate of cell division.

Based on A) and B), we assume that the rate of lymph node spread is proportional to the average number of
mutations in the cancer cells and the rate of cancer cell division. The first of these quantities is not observable, but
assuming a constant rate of mutation during cell division, the average number of mutations in the cancer cells is
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proportional to the number of times the cells in the tumour has divided. In summary, the second spread model is
an inhomogeneous Poisson process with intensity function

�ðt, rÞ ¼ ��BDðt, rÞD
0ðt, rÞ

where D(t, r) is the number of times the cells in the tumour has divided and D0ðt, rÞ is the rate of cell division in the
tumour – both at time t, assuming an inverse growth rate r.

Assuming that cancer cells form a spherical and densely packed tumour, and that cancer cells resist cell death,
the number of times the cells in the tumour has divided is calculated by describing tumour volume as a doubling
process. We get the number of cell divisions from the following relation

VCell � 2
Dðt,rÞ ¼ Vðt, rÞ , Dðt, rÞ ¼

log Vðt, rÞ
VCell

� �
logð2Þ

ð9Þ

Using equations (3), (6), and (9), we derive the intensity measure at time t� t0 as follows

�ðt� t0, rÞ ¼

Z t�t0

u¼0

��BDðu, rÞD
0ðu, rÞdu ¼

��BDðt� t0, rÞ
2

2

¼
��B

2ðlogð2ÞÞ2
log

Vðt� t0, rÞ

VCell

� �� �2

¼
��B

2ðlogð2ÞÞ2
t

r
�
t0
r

� �2

¼
��B

2ðlogð2ÞÞ2
log

Vðt, rÞ

VCell

� �
� log

V0

VCell

� �� �2

¼
��B

2ðlogð2ÞÞ2
log

Vðt, rÞ

V0

� �� �2

Introducing �B ¼
��B

2ðlogð2ÞÞ2
, the number of clinically detectable lymph nodes metastases at time T¼ t, given R¼ r,

follows

PðN ¼ njR ¼ r,T ¼ tÞ ¼ e
��Bðlog

Vðt, rÞ
V0
Þ
2

�
�Bðlog

Vðt, rÞ
V0
Þ
2
�n

n!

Given R¼ r and the tumour growth function (3), the time T¼ t is uniquely determined by the volume of the
tumour. Writing V¼ v, the probability for N¼ n clinically detectable lymph nodes, given R¼ r and V¼ v, is

PðN ¼ njR ¼ r,V ¼ vÞ ¼ e
��Bðlog

v
V0
Þ
2

�
�Bðlog

v
V0
Þ
2
�n

n!
ð10Þ

As in model A, the right hand side of equation (10) is independent of r. Therefore, for model B, the probability for
N¼ n clinically detectable lymph nodes, given volume V¼ v, is

PðN ¼ njV ¼ vÞ ¼ e
��Bðlog

v
V0
Þ
2

�
�Bðlog

v
V0
Þ
2
�n

n!
ð11Þ

3.4 A new class of models for lymph node spread

Based on model B, we here define a class of mathematically tractable models for lymph node spread. We show that
if the intensity function is assumed to be proportional to the kth power of the number of cell divisions in the
tumour and the rate of cell division in the tumour, and if we make the same assumptions as in model B, we can
derive closed forms for PðN ¼ njR ¼ r,V ¼ vÞ and PðN ¼ njV ¼ vÞ. These functional forms are harder to motivate.
However, we note that if model fit would be better for a higher power of k, it could imply that lymph node spread
depends on higher powers of tumour mutation or that breast cancer tumours mutate at an accelerating rate
(referred to as genomic instability17.

We define the new model class, similarly to model B, by assuming that lymph node spread follows an
inhomogeneous Poisson process with intensity function

�ðt, rÞ ¼ ��CDðt, rÞ
kD0ðt, rÞ
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where k is a number greater than minus one, t is time, r is the inverse growth rate of the tumour, D(t, r) is the
number of times the cells in the tumour has divided, and D0ðt, rÞ is the rate of cell division in the tumour. It follows
that the intensity measure at time t� t0 is

�ðt� t0, rÞ ¼ �C log
Vðt, rÞ

V0

� �� �kþ1

where �C ¼
��
C

ðkþ1Þðlogð2ÞÞkþ1
. Similar to earlier, the probability for N¼ n clinically detectable lymph nodes, given R¼ r

and V¼ v, is

PðN ¼ njR ¼ r,V ¼ vÞ ¼ e
��Cðlog

v
V0
Þ
kþ1

�
�Cðlog

v
V0
Þ
kþ1
�n

n!
ð12Þ

and the probability for N¼ n clinically detectable lymph nodes, given volume V¼ v, is

PðN ¼ njV ¼ vÞ ¼ e
��Cðlog

v
V0
Þ
kþ1

�
�Cðlog

v
V0
Þ
kþ1
�n

n!
ð13Þ

3.5 Random effects modelling of lymph node spread

So far we have concentrated on developing new models of the mean numbers of affected lymph nodes. Breast
cancer is, however, a heterogeneous disease; just as tumours grow at different speeds for different women, it would
seem reasonable that breast cancer lymph node spread will occur at different rates for different women. We derive
here a Poisson process where the constant factor s is gamma distributed. As before, we assume that

�ðt, r, s�Þ ¼ s�Dðt, rÞkD0ðt, rÞ

It follows that the intensity measure at time t� t0 is

�ðt� t0, r, sÞ ¼ s log
Vðt, rÞ

V0

� �� �kþ1

where s ¼ s�

ðkþ1Þðlogð2ÞÞkþ1
. Now, the probability for N¼ n clinically detectable lymph nodes, given S¼ s, R¼ r and

V¼ v, is

PðN ¼ njS ¼ s,R ¼ r,V ¼ vÞ ¼ e
�sðlog v

V0
Þ
kþ1

�
sðlog v

V0
Þ
kþ1
�n

n!

If we assume that s is gamma distributed with shape �1 and inverse scale �2

fSðsÞ ¼
��12

�ð�1Þ
s�1�1e��2s, s � 0 ð14Þ

then it follows that the probability for N¼ n clinically detectable lymph nodes, R¼ r and V¼ v, is

PðN ¼ njR ¼ r,V ¼ vÞ ¼

Z 1
s¼0

e
�sðlog v

V0
Þ
kþ1

�
sðlog v

V0
Þ
kþ1
�n

n!

��12
�ð�1Þ

s�1�1e��2sds

¼
�ð�1 þ nÞ

�ð�1Þn!

��12

�
ðlog v

V0
Þ
kþ1
�n

�
ðlog v

V0
Þ
kþ1
þ �2

��1þn �
Z 1
s¼0

�
ðlog v

V0
Þ
kþ1
þ �2

��1þn
�ð�1 þ nÞ

s�1þn�1e
�sððlog v

V0
Þ
kþ1
þ�2Þds

¼
�ð�1 þ nÞ

�ð�1Þn!

��12

�
ðlog v

V0
Þ
kþ1
�n

�
ðlog v

V0
Þ
kþ1
þ �2

��1þn

ð15Þ
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As before, PðN ¼ njR ¼ r,V ¼ vÞ does not involve r, and therefore the probability for N¼ n clinically detectable
lymph nodes, given S¼ s and V¼ v, is

PðN ¼ njV ¼ vÞ ¼
�ð�1 þ nÞ

�ð�1Þn!

��12

�
ðlog v

V0
Þ
kþ1
�n

�
ðlog v

V0
Þ
kþ1
þ �2

��1þn ð16Þ

This probability follows a negative binomial distribution NBðr, pÞ with r ¼ �1 and p ¼
ðlog v

V0
Þ
kþ1

ðlog v
V0
Þ
kþ1
þ�2

4 Likelihood for incident cases in the presence of screening

To jointly estimate the parameters of the processes, we derive a likelihood function for incident breast cancer cases,
collected in the presence of screening. This approach requires a model for mammography screening test sensitivity.

A screening test depends primarily on two factors: tumour size and mammographic density. Mammographic
density reflects the different tissues in the breast. Fatty tissue appears dark on a mammogram, whereas
fibroglandular tissue is bright. Since tumours also appear bright, they can be concealed in fibroglandular
regions. A widely used measure of mammographic density is percentage density, which is measured as the
fraction of pixels within the breast region on the mammogram that have an intensity above a particular
threshold. For screening sensitivity, we adopt a model from Abrahamsson and Humphreys.9 We assume that
the probability for a positive screening test, given a tumour in the breast, is equal to

Sðd,mÞ ¼
expð�1 þ �2dþ �3mÞ

1þ expð�1 þ �2dþ �3mÞ
, d � 0:5 mm, 0 � m � 1 ð17Þ

where d is the diameter of the tumour and m is percentage density of the breast. Implicitly, we assume that
screening test sensitivity is independent of lymph node spread.

We can use the model for screening sensitivity, along with the other models, to write the joint likelihood of
tumour size and number of lymph nodes affected, conditioning on screening history and mode of detection. Under
stable disease assumptions14,10 and assuming that tumour growth rate is independent of screening attendance, it
has been shown that optimising this likelihood, using incident cases only, yields unbiased parameter estimation.10

The stable disease assumptions are

. The rate of births in the population is constant across calendar time,

. The distribution of age at tumour onset is constant across calendar time, and

. The distribution of time to symptomatic detection is constant across calendar time.

These assumptions manifest in a constant incidence of breast cancer in the population. We discuss these
assumptions in the light of our analysis in section 7.

Pathologists tend to round small tumour diameters to the nearest mm, and larger tumour diameters to the
closest 5 or 10mm. Therefore, we divide tumour sizes into 24 different millimetre size intervals, ½0:5, 1:5Þ, ½1:5, 2:5Þ,
½2:5, 7:5Þ, ½7:5, 12:5Þ, . . . , ½67:5, 72:5Þ, ½72:5, 85Þ, ½85, 95Þ, . . . , ½145, 155Þ, and express the likelihood of those
discrete size categories. Each likelihood is schematically written as

pi,j ¼ P Size category i, j nodes affectedjmedical historyð Þ

where we use medical history to denote the time of tumour detection, the mode of detection, the number and time
points of previous screening visits, and percentage mammographic density (conceptually, any type of medical
history, such as previous use of hormone replacement therapy, could be included). In the following sections, we
express the likelihood mathematically, using the following notation:

A – There is a tumour in the woman’s breast at time t.
B0 – A tumour is screen detected at time t.
Bc ¼ Bc

1 \ B
c
2 \ . . . \ Bc

n – No tumour is detected at screenings 1 through n previous to detection (at t1, . . . , tn years
prior to time t).

Ci – The tumour is in size interval i at time t.
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Cl,� – The tumour is in size interval l at s years previous to time t.
D – The tumour is symptomatically detected at time t.
Nj – The number of lymph nodes affected at time t is j.

The likelihood is treated somewhat differently for screen detected and symptomatically detected cancers. For the
sake of clarity, we omit mammographic density from the likelihood calculations.

4.1 Likelihood for screen detected cases

Given that a tumour is screen detected, the probability of the tumour being in size interval i with j lymph nodes
affected is

pi,j ¼ PðCi \NjjA \ B0 \ B
cÞ ð18Þ

We rewrite the probability algebraically, and use independence of screening test and lymph node status to get

pi,j

/ PðB0jCi \Nj \ AÞPðCi \NjjAÞ
X
q�i

PðBcjCq,t1 \ Ci \Nj \ AÞPðCq,t1 jCi \Nj \ AÞ

 !

¼ PðB0jCiÞPðCijAÞPðNjjCiÞ
X
q�i

PðBcjCq,t1 \ CiÞPðCq,t1 jCi \NjÞ

 !

where i ¼ 1, . . . , 24, j ¼ 1, 2, . . ., and q ¼ 0, . . . , i. The value q¼ 0 represents a tumour that is too small to be
clinically detectable, i.e. tumour diameter less than 0.5mm. When there is no screen previous to detection, we omit
the last summation from the product.

4.2 Likelihood for symptomatic cases

Given that a tumour is symptomatically detected, the probability of the tumour being in size interval i with j
affected lymph nodes is

pi,j ¼ PðCi \NjjA \D \ B
cÞ ð19Þ

Similarly as for screen detected cases, we rewrite the probability algebraically. Here, however, we also use
independence of nodal involvement and symptomatic detection. We get

pi,j

/ PðCi \NjjDÞ
X
q�i

PðBcjCq,t1 \ Ci \Nj \DÞPðCq,t1 jCi \Nj \DÞ

 !

¼ PðCijDÞPðNjjCiÞ
X
q�i

PðBcjCq,t1 \ CiÞPðCq,t1 jCi \Nj \DÞ

 !

As before, when there is no screen previous to detection, we omit the last summation from the product.

4.3 Calculating the likelihood

The likelihoods described in equations (18) and (19) are the joint probabilities of tumours belonging to size interval
i and having j affected lymph nodes, conditioned on mode of detection, numbers and times of previous negative
screens, and mammographic density (the latter is omitted from the likelihood expressions for simplicity, but is
included in our calculations for the analyses presented in the next section). There are seven different quantities in
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the likelihood, which we express in terms of models (3) to (5), the screening sensitivity (17), and lymph node
models (7) and (8), (10) and (11), (12) and (13), or (15) and (16).

The first quantity is PðB0jCiÞ, the probability for a positive screen, given the size of the tumour. This is the
screening sensitivity, which we model using equation (17). This quantity helps adjust the tumour size distribution
of screened tumours, which is different from the tumour size distribution of symptomatic tumours.

The second quantity is PðCijDÞ, the probability of being in size interval i, given symptomatic detection, which is
equal to PðCi,DÞ

PðDÞ . Without further information, P(D) is constant, and thus the PðCijDÞ is equal to the probability of
having a symptomatic detection at size interval i. Based on equations (1), (4), and (5), Plevritis et al.7 showed that
the volume at symptomatic detection Vdet is given by

fVdet
ðvÞ ¼ ��1

��12
ð�2 þ �ðv� V0ÞÞ

�1þ1
, v � V0 ð20Þ

The proof is based on integrating (5) from V0 to infinity. Since our value of V0 is the same as in Plevritis, and the
tumour starts growing before this value, we can use equation (20) to calculate PðCijDÞ. It should be noted that this
factor only conditions on the tumour being symptomatic. In other words, this factor does not take into
consideration that there have been previous negative screens. This is instead accounted for by quantities five
and seven.

The third quantity is PðCijAÞ, the probability that the tumour is in size interval i, given that there is a clinically
detectable tumour in the breast. Isheden and Humphreys10 showed that this quantity satisfies

PðCijAÞ / log
cu
cl

� �
fVdet
ðcaÞ

�

where cu=cl is the upper/lower bound of tumour size interval i, and ca is some average value between cu and cl. We
calculate this quantity with ca being the geometric mean of cu and cl. As with quantity two, this quantity does not
take into consideration previous negative screens or the current positive screen. Those factors are instead adjusted
for by quantities one, five, and six.

The fourth quantity is PðNjjCiÞ, the probability of having j lymph nodes affected when the tumour is in size
interval i. To calculate this probability we use equation (8) in model A, we use equation (11) in model B, we use
equation (13), for the class of lymph spread models, and we use equation (16) for the random effects model. These
equations are conditioning on a single value of the volume. For approximating the probability when conditioning
on a tumour size interval, our conditioning value is the geometric mean of the upper and lower bounds of size
interval i. This factor describes only the number of lymph nodes conditional on tumour size interval. The screening
history is adjusted for by quantities one, five, six, and seven.

The fifth quantity is PðBcjCq,t1 \ CiÞ, the probability of n negative previous screens, given the size of the tumour
at the first previous negative screen and the size at detection. This probability is calculated as

PðBcjCq,t1 \ CiÞ ¼ PðBc
1Þ � PðB

c
2Þ � . . . � PðBc

nÞ

where PðBc
mÞ is the probability of a negative screening at the mth screen prior to detection, calculated from

equation (17). The sizes of the tumour at the previous screens are calculated by projecting backwards from the
trajectory intersecting the midpoints of intervals q and i. This is one of four quantities that adjust for the screening
history in the likelihood.

The sixth quantity is PðCq,t1 jCi \NjÞ, the probability to be in size interval q at time point t1, given that the
tumour is found in size interval i with j lymph nodes affected. It is calculated by marginalising the probability over
growth rate, using

PðCq,t1 jCi \NjÞ ¼

Z 1
r¼0

PðCq,t1 jCi \Nj \ ðR ¼ rÞÞfRjCi\Nj
ðrÞdr

We approximate PðCq,t1 jCi \Nj \ ðR ¼ rÞÞ by 1 if a tumour in size interval i, growing with an inverse growth rate r,
passes the q:th size interval t1 years previous to detection, and 0 otherwise. For models A and B and for the class of
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lymph spread models, it holds that

fRjCi\Nj
ðrÞ � fRjVdet¼vðrÞ ¼

ð�2 þ �ðv� VCellÞÞ

�ð�1 þ 1Þ
rð�2 þ �ðv� VCellÞÞð Þ

ð�1þ1Þ�1expð�rð�2 þ �ðv� VCellÞÞÞ, r � 0

where v is the geometric mean of the upper and lower bounds of size interval i. In all three cases, this follows from
the fact that

fRjCi\Nj
ðrÞ

fRjCi
ðrÞ
¼

PðN ¼ j jR ¼ r \ CiÞ

PðN ¼ j jCiÞ
¼ 1) fRjCi\Nj

ðrÞ ¼ fRjCi
ðrÞ

and from Theorem 3 in Isheden and Humphreys,10 which states that

fRjCi
ðrÞ � fRjVdet¼vðrÞ

¼
ð�2 þ �ðv� VCellÞÞ

�ð�1 þ 1Þ
rð�2 þ �ðv� VCellÞÞð Þ

ð�1þ1Þ�1expð�rð�2 þ �ðv� VCellÞÞÞ, r � 0

This quantity accounts for the tumour growth rate when adjusting for the screening history in the likelihood for
screen detected tumours.

The seventh quantity is PðCq,t1 jCi \Nj \DÞ, the probability to be in size interval q at time point t1, given that
the tumour is symptomatically detected in size interval i with j lymph nodes affected. This quantity is calculated in
the same way as the sixth quantity. This quantity accounts for the tumour growth rate when adjusting for the
screening history in the likelihood for symptomatic tumours.

For the four lymph node spread models described here, the likelihood is separable; we can separate into a size
component and a nodes component. This can be seen, for example for the likelihood for screening cases, by writing

PðCi \NjjA \ B0 \ B
cÞ ¼ pi,j

/ PðNjjCiÞPðB0jCiÞPðCijAÞ
X
q�i

PðBcjCq,t1 \ CiÞPðCq,t1 jCi \NjÞ

 !

¼ PðNjjCiÞPðB0jCiÞPðCijAÞ
X
q�i

PðBcjCq,t1 \ CiÞPðCq,t1 jCiÞ

 !

/ PðNjjCiÞPðCijA \ B0 \ B
cÞ

The same goes for the likelihood for symptomatic cases.
For the models of Hanin and Yakovlev14 and Shwartz,13 the likelihood calculation is not as straightforward.

The quantity PðCq,t1 jCi \NjÞ has to be calculated by marginalising over growth rate using FRjV¼v,Nj¼nðrÞ. In both
cases, FRjV¼v,Nj¼nðrÞ 6¼ FRjV¼vðrÞ, which means that the likelihood does not separate into two components which
can be optimised independently. For example, for Hanin and Yakovlev’s lymph node spread model, i.e. with
�ðtÞ ¼ �VðtÞ, it can be shown that

FRjV¼v,Nj¼nðrÞ ¼
�ð�1 þ 1þ n, rð�2 þ �ðv� v0Þ þ �ðv� v0ÞÞÞ

�ð�1 þ 1þ nÞ

For their lymph node spread model PðNjjCiÞ is calculated using

PðNj ¼ njVdet ¼ vÞ ¼
�ðnþ �1 þ 1Þ

�ð�1 þ 1Þn!

ð�ðv� v0ÞÞ
n
ð�0 þ �ðv� v0ÞÞ

�1þ1

ð�ðv� v0Þ þ �2 þ �ðv� v0ÞÞ
nþ�1þ1

The likelihood that we describe in this section is complex. It relies on several approximations that are needed
mainly to account for discretisation in the estimation procedure. To verify that we implemented the methods
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correctly, we performed a simulation study. The aim of the study was to show that we can accurately retrieve
parameter estimates from the likelihood. The results are shown in Appendix 1.

5 Joint modelling of tumour size and lymph node spread – a study of incident invasive
breast cancer in post-menopausal women

We illustrate the joint approach by fitting models A and B to 1860 cases of incident invasive breast cancer from a
case-control study of post-menopausal breast cancer18 known as CAHRES. The study invited all Swedish born
women ages 50–74 that were diagnosed with invasive breast cancer in Sweden from October 1993 to March 1995.
The participation rate of the study was 84% (n¼ 3345). In extensions of the study, analog mammographic images
were retrieved from mammography screening units and radiology departments managing mammography
screening in Sweden. Information on tumour size, screening history, and mode of detection was collected from
the Swedish Cancer Registry and the Stockholm-Gotland Breast Cancer Registry. The collection of this data has
been described previously by Rosenberg et al.19,20 and Eriksson et al.21 We excluded women from our analysis if
they had missing lymph node status, lacked written consent, had a previous or other cancer diagnosis, had a
noninvasive breast cancer diagnosis, were diagnosed before or after study period, were pre-menopausal, had
unknown age at menopause, lacked screening information, lacked images, had a missing mode of diagnosis, or
were missing tumour size. After those exclusions, 1860 were cases available for analysis. Descriptive information
on the 1860 cases included in our analyses is presented in Table 1.

We fitted model A and model B by maximising the likelihood over parameters �1, �2, �, �1, �2, �3, and rA or
rB. Parameter estimates are given in Table 2. For each model, we used 200 non-parametric bootstrap replicates to
estimate 95% coverage intervals, using the percentile method. Comparing the two models in terms of their
likelihood values, it is clear that model B provides a much better fit to the data than model A. Model-based
estimates of expected lymph node spread as a function of tumour size are plotted alongside observed numbers in
Figure 1 (neither model fits the data well). In the figure, each circle represents the observed averages for each
tumour size interval. The bars intersecting each circle represent 95% confidence intervals, obtained via
bootstrapping.

We attempted to jointly fit the tumour growth model with the lymph spread models of Hanin and Yakovlev,
and Shwartz. In both cases, the models did not converge, and we were not able to retrieve parameter estimates.
Their lymph spread models are not consistent with the data (see Section 2). If we would have been able to get the
joint model to converge, we know that the lymph node models of Hanin and Yakovlev and Shwartz would have
over-estimated the number of affected lymph nodes at large tumour sizes and underestimated the number of
affected lymph nodes at small tumour sizes to the same extent as model A does. Although model B does
underestimate the number of lymph nodes at larger tumour sizes, overall, it provides a better fit to the data
than model A, and the models of Hanin and Yakovlev, and Shwartz.

Table 1. Comparison of screening and symptomatically detected cancers in CAHRES.

Screening Symptomatic

Number of cases 1133 727

Tumour size in mm (median and quartiles) 12 ð9, 18Þ 20 (13, 26)

Percentage density (median and quartiles) 13:6 ð6:8, 23:3Þ 15:7 ð8:6, 28:1Þ
Time since last negative screen in yearsa (median and quartile) 2:0 ð1:8, 2:1Þ 1:4 ð1:0, 2:0Þ
Number of previous screens

Cases with no previous screen 133 197

Cases with one previous screen 214 105

Cases with two previous screens 658 247

Cases with three or more previous screens 128 178

Number of affected lymph nodes

Cases with no affected lymph nodes 890 438

Cases with one affected lymph node 103 104

Cases with two affected lymph nodes 45 55

Cases with three or more affected lymph nodes 95 130

aAmong cases with at least one negative screen.
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Next, we experimented with other functional forms from our new class of lymph node spread models. In
Table 3, we display estimates of the parameter r from equations (12) and (13) for k ¼ 1, 2, 3, 4, 5, 6, together
with optimised log-likelihood values from fitting the joint models of tumour size and spread to the 1860 breast
cancer cases.

From the integer values, we achieved the best model fit for k¼ 5, with a log-likelihood difference of 296.1
compared to the spread component of model B (k¼ 1). Varying both rC and k, we found the optimal value of k to
be 4.75, with 95% confidence interval ð4:47, 5:05Þ, based on the profile likelihood. In Figure 2, we plot estimates of
expected lymph node spread based on the model with k¼ 5, alongside those based on model A.

We fitted joint models of tumour size and lymph node spread, based on the random effects models described by
equations (15) and (16), for k ¼ 1, 2, 3, 4, 5, 6; see Table 4. Allowing for heterogeneity in rates of spread improved

Figure 1. Model-based estimates of expected lymph node spread as a function of tumour size, based on CAHRES. Circles and bars

represent averages and 95% confidence intervals of numbers of lymph nodes affected within each tumour size interval. Model A

(dotted) produces excessive spread at large tumour sizes, while model B (solid) underestimates spread at large tumour sizes.

Table 2. Parameter estimates in joint models of tumour size and lymph node spread, together with bootstrapped 95% coverage

intervals, based on 1860 post-menopausal breast cancer cases (CAHRES).

Parameter Model A Model B

s1 2:12 ð1:65, 3:03Þ 2:17 ð1:55, 3:12Þ

s2 4:26 ð2:76, 7:51Þ 4:40 ð2:93, 8:05Þ

�logð�Þ 8:09 ð7:53, 8:55Þ 8:09 ð7:53, 8:58Þ

�1 �4:70 ð�5:16;�4:40Þ 4:70 ð�5:24;�4:41Þ

�2 0:58 ð0:48, 0:78Þ 0:58 ð0:50, 0:81Þ

�3 �2:10 ð�3:88;�0:93Þ �2:11 ð�3:77;�0:77Þ

rA 0:00017 ð0:00014, 0:00020Þ –

rB – 0:010 ð0:0093, 0:012Þ

�logLð�Þ 7700.5 7342.3

Table 3. Parameter estimates and log-likelihood values for different functional forms of the Poisson lymph node spread model

(CAHRES).

Parameter k ¼ 1 k¼ 2 k¼ 3 K¼ 4 k¼ 5 k¼ 6

rC 1:03 � 10�2 9:61 � 10�4 8:80 � 10�5 7:88 � 10�6 6:90 � 10�7 5:88 � 10�8

�logLð�Þ 7342.3 7201.6 7107.5 7056.6 7046.2 7074.1
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model fit tremendously for all considered integer values of k. Improvements in optimised log-likelihood values
ranged from 1617.9 to 1359.8, and differences in model fit, across different values of k, also diminished greatly.
Varying �1, �2, and k, we obtained an estimate of 4.11 for k, with a 95% confidence interval ð3:44, 4:75Þ.

In Figure 3, we plot estimates of expected number of lymph nodes affected based on the random effects lymph
spread model with k¼ 4. These estimates pass through all the 95% confidence intervals (except one, which comes
very close). In Figure 4 we plot the observed numbers of lymph nodes (bars) within two size categories, along with
the model predicted probabilities at the end points of the intervals. The random effects model accounts for
overdispersion in relation to the Poisson model. We note that if we were to represent model A, allowing or not
allowing for overdispersion, even in this plot, the prediction of the mean value of the number of lymph nodes
would be overestimated for large tumour sizes.

Finally for CAHRES, we divided the data set into screen detected cases and symptomatically detected cases,
and plotted 95% confidence intervals for average number of affected lymph nodes, along with the model-based
estimates obtained from fitting model A and the random effects Poisson model with k¼ 4; see Figure 5. Although
the estimates based on our selected model intersect all but one of the confidence intervals, there is some suggestion
(at large tumour sizes) that the model could be underestimating expected number of lymph nodes in symptomatic
cases and overestimating the expected numbers in screening cases.

6 Validation study of the random effects lymph node spread model

We attempted to validate our lymph node spread model using an independent data set of women diagnosed with
invasive breast cancer between January 1, 2001 and December 31, 2008 in the Stockholm-Gotland healthcare
region in Sweden, known as Libro-1. These women were identified though the Regional Breast Cancer Register.
Information on diagnosis and tumour characteristics were available, but not on time and number of screening

Table 4. Parameter estimates and log-likelihood values for different functional forms of the random effects lymph node spread model

(CAHRES).

Parameter k=1 k¼ 2 k¼ 3 k¼ 4 K¼ 5 k¼ 6

log(g1) –1.58 –1.51 –1.46 –1.43 –1.43 –1.44

log(g2) 3.13 5.58 8.00 10.38 12.73 15.05

�logL(�) 5724.4 5702.1 5688.5 5683.5 5686.4 5696.4

Figure 2. Model-based estimates of expected lymph node spread as a function of tumour size (CAHRES). Circles and bars represent

averages and 95% confidence intervals of numbers of lymph nodes affected within each tumour size interval. The spread component of

Model A (dotted) produces excessive spread in large tumours, whereas in terms of expected numbers of affected lymph nodes the

spread model with k¼ 5 (solid) fits at all tumour sizes.
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rounds. Women were excluded if they were less than 50 years old, underwent diagnostic operations, were pre-
operatively diagnosed with in situ breast cancer but pathology reports showed an invasive component, had
incorrect dates of diagnosis, had more than 63 days between diagnosis and date of surgery, had missing
tumour size, or missing lymph node status. In 2007, the registers changed the definitions and procedures for
evaluating lymph node spread. To keep the data set comparable to the CAHRES data set, we excluded women
that were categorised according to the new standard. The final data set consisted of 3961 women.

Figure 4. Observed and predicted numbers of affected lymph nodes (CAHRES). The bars represent the observed numbers of

affected lymph nodes, within tumour size interval 10–15 mm (left) and 35–45 mm (right), in the CAHRES dataset. Circles represent

predicted probabilities from the Poisson model with k¼ 5, estimated on the CAHRES data set, and dots represent predicted

probabilities from the random effects Poisson model with k¼ 4, also estimated on the CAHRES data set.

Figure 3. Model-based estimates of expected lymph node spread as a function of tumour size (CAHRES). Circles and bars represent

averages and 95% confidence intervals of numbers of lymph nodes affected within each tumour size interval. The spread component of

Model A (dotted) is plotted alongside the random effects spread model with k¼ 4 (solid).
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In Figure 6, we plot 95% confidence intervals of number of affected lymph nodes, within tumour size intervals,
based on the Libro-1 data (bars), along with the expected number of lymph nodes, as a function of tumour
diameter, based on the random effects model with k¼ 4, estimated from the CAHRES data. We also fitted the
random effects model to the Libro-1 data with k ¼ 1, 2, 3, 4, 5, 6; see Table 5. With an integer value for k, model fit
was best at k¼ 4 also on this data set. Estimates of expected numbers of affected lymph nodes for this model are
plotted as the solid line in Figure 6. In Figure 7, we plot the observed numbers of lymph nodes (bars) within two
size categories, for the Libro-1 data, along with the model predicted probabilities at the end points of the intervals
(i.e. self-trained), based on the random effects models fitted to CAHRES data, and Libro-1 data, and also the
Poisson model with k¼ 5, estimated from CAHRES without random effects. Even with parameter values obtained

Figure 6. Model-based estimates of expected lymph node spread as a function of tumour size based on the random effects Poisson

model (k¼ 4), estimated on CAHRES (dotted line) and Libro-1 (solid line), along with 95% confidence intervals of average lymph node

spread obtained from Libro-1.

Figure 5. Model-based estimates of expected lymph node spread as a function of tumour size (CAHRES). To the left, circles and bars

represent averages and 95% confidence intervals of numbers of lymph nodes affected within each tumour size interval for screen

detected cancers, and to the right the corresponding quantities for symptomatically detected cancers. On both figures, the spread

component of Model A (dotted) is plotted alongside the random effects spread model with k¼ 4 (solid).

Isheden et al. 3837



from the CAHRES data, the random effects (k¼ 4) lymph node spread model seems to fit the Libro-1 data on
numbers of affected lymph nodes extremely well.

When estimating �1, �2, and k from the Libro-1 data, we estimated k to have a value of 3.65 and a 95%
confidence interval of ð3:22, 4:05Þ. 95% confidence intervals for k, estimated from Libro-1 and CAHRES,
overlapped, and both included k¼ 4.

7 Discussion

Continuous growth models offer an interesting alternative to multi-state Markov models for studying the natural
history of breast cancer. Previously proposed continuous growth models have components for tumour growth,
time to symptomatic detection, and screening sensitivity. The aim of this article has been to add an additional
component for lymph node spread. We began this article by reviewing the literature of breast cancer lymph spread
models. We identified two models, one from Hanin and Yakovlev,14 and one from Shwartz,13 which is also used by
the CISNET University of Wisconsin group. Both models are Poisson processes with intensity functions
dependent on tumour volume. In this paper, we show that these models have two weaknesses. The first is that
slow growing tumours spread more quickly than fast growing tumours, and the second is that the rate of
additional lymph node spread grows excessively with increasing tumour volume. In order to avoid these two
weaknesses, we have improved upon the existing models and developed new models of lymph node spread in a

Figure 7. Observed and predicted numbers of affected lymph nodes (Libro-1). The bars represent the observed numbers of affected

lymph nodes, within tumour size interval 10–15 mm (left) and 35–45 mm (right), in the Libro-1 dataset. Circles represent predicted

probabilities from the Poisson model with k¼ 5, estimated on the CAHRES data set, dots represent predicted probabilities from the

random effects Poisson model with k¼ 4, also estimated on the CAHRES data set, and crosses represent estimated probabilities from

the random effects Poisson model with k¼ 4, estimated on the Libro-1 data set.

Table 5. Parameter estimates and log-likelihood values for different functional forms of the random effects lymph node spread model

(Libro-1).

Parameter k¼ 1 k¼ 2 k¼ 3 k¼ 4 k¼ 5 k¼ 6

logð�1Þ –1.31 –1.24 –1.20 –1.20 –1.21 –1.24

logð�2Þ 3.39 5.84 8.25 10.63 12.98 15.30

�logLð�Þ 4984.8 4938.9 4914.7 4911.6 4927.6 4959.8
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step-by-step fashion. We focused first on modelling the mean structure and then extended the lymph node spread
model to incorporate random effects.

The first step of the process was to construct a model A, which avoids an inverse relation between tumour
growth rate and lymph node spread. This was done by removing the terms from the intensity function that
contributed to the inverse relationship in Shwartz13 model. We were able to estimate the parameters of model
A jointly with the tumour growth models (see Table 2). This was not the case with the models of Hanin and
Yakovlev,14 or Shwartz. Since we were not able to make those models converge and since we were able to remove
the inverse relationship between tumour growth rate and lymph node spread, we consider model A an
improvement on Hanin and Yakovlev, and Shwartz.

In the second step, we created model B. At this step, we addressed the second weakness. Model A assumes a
linear relationship between the expected number of lymph nodes affected and tumour volume. Because tumour
growth is assumed to be exponential with time, this linear relationship implies that the number of affected lymph
nodes grows exponentially with time. To decrease the rate of spread in the model, we introduce a logarithmic
term. We assume that the intensity function depends on the number of cell divisions instead, which is equivalent
to the tumour volume divided by the volume of a single cell. We found that model B was an improvement
on model A, although it overestimated spread at small tumour sizes and underestimated spread at large
tumour sizes.

Model B removes the exponential spread behaviour of previous models in the literature, and provides a basis on
which to build further. We tested different shapes of the spread functions by introducing a class of lymph spread
models. These models differ in their shape, defined by a factor k, with model B represented as a special case (k¼ 1).
In this model class, we found that k¼ 5 provided good model fit. In terms of expected values, this model fitted well
across all tumour volumes. By extending the lymph node spread models to allow for random effects, we were able
to incorporate heterogeneity in rates of lymph node spread. This extension turned out to be extremely important,
and corrected for overdispersion with respect to the classical Poisson models. In fitting the overdispersed random
effects model, we obtained a point estimate of k¼ 4.11 using the CAHRES study data, and an estimate of k¼ 3.65
using the Libro-1 study data. The 95% confidence intervals for k, estimated on the two data sets, overlapped and
included k¼ 4; this value provided good model fit in both data sets.

The analyses in this paper rely on the assumptions of a stable disease population and the assumption that
screening attendance is independent of tumour growth rate. For the joint analysis of size and lymph node spread,
we have worked with CAHRES, a nationwide cohort with 84% participation rate. The study invited all Swedish
born women ages 50 to 74 that were diagnosed with invasive breast cancer in Sweden from October 1993 to March
1995. In the absence of screening, a population satisfying stable disease assumptions will exhibit a constant
incidence of breast cancer.10 Once a screening program has run for a number of years, we expect a constant
incidence if the stable disease assumptions hold. Of the 26 counties in Sweden, 22 had implemented screening
programmes by, and in many cases well before, 1990,22 and incidence data from the Swedish Cancer Registry
shows that breast cancer incidence was approximately constant between 1991 and 1997.23 In the current study, all
women were post-menopausal at diagnosis. It is unlikely that a large fraction of the women took part in extra
surveillance for breast cancer, which means that the assumption that screening attendance is independent of
tumour growth rate is likely to be reasonable.

The joint model of tumour growth and lymph node spread has two main areas of application. The first one is
for evaluating screening programs, which can be done via microsimulation. Several research groups12,24 have used
Markov models to simulate the natural history of breast cancer. As the number of disease states increases, these
models become impractical, especially if the objective is to simulate screening options based on individual risk
factors. For this, continuous growth models present a strong alternative. The second area of application is to study
factors behind growth and spread. Abrahamsson et al.11 used continuous growth models to regress BMI on the log
inverse growth rate, and breast size on the log of the hazard proportionality constant in the model for time to
symptomatic detection, and Isheden and Humphreys10 studied in detail the relationship between mammographic
density, tumour size, and screening sensitivity. For the new sub-model for lymph node spread, we are currently
working on extensions of the model to study association with observable factors, both traditional breast cancer
risk factors and tumour characteristics/subtypes.

As we have pointed out, our models assume several well known biological properties of cancer. The fact,
however, that the k¼ 4 model fits better than the k¼ 1 model implies that there may be a degree of genomic
instability as breast cancer cells divide. Finally, we point out that in our work we have not been able to specify a
tractable model where fast growing tumours spread more rapidly than slow growing ones. It is possible that an
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alternative model with this characteristic will also provide a good fit to incidence data on tumour size and lymph
node spread.
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6. Bartoszyński R, Edler L, Hanin L, et al. Modeling cancer detection: tumor size as a source of information on unobservable

stages of carcinogenesis. Math Biosci 2001; 171: 113–142.
7. Plevritis SK, Salzman P, Sigal BM, et al. A natural history model of stage progression applied to breast cancer. Stat Med

2007; 26: 581–595.
8. Weedon-Fekjær H, Lindqvist BH, Vatten LJ, et al. Breast cancer tumor growth estimated through mammography

screening data. Breast Cancer Res 2008; 10: R41.
9. Abrahamsson L and Humphreys K. A statistical model of breast cancer tumour growth with estimation of screening

sensitivity as a function of mammographic density. Stat Meth Med Res 2016; 25: 1620–1637.
10. Isheden G and Humphreys K. Modelling breast cancer tumour growth for a stable disease population. Stat Meth Med Res

2017; 0962280217734583.

11. Abrahamsson L, Czene K, Hall P, et al. Breast cancer tumour growth modelling for studying the association of body size

with tumour growth rate and symptomatic detection using case-control data. Breast Cancer Res 2015; 17: 1–11.
12. Berry DA, Cronin KA, Plevritis SK, et al. Effect of screening and adjuvant therapy on mortality from breast cancer. New

Engl J Med 2005; 353: 1784–1792.

13. Shwartz M. An analysis of the benefits of serial screening for breast cancer based upon a mathematical model of the

disease. Cancer 1978; 41: 1550–1564.
14. Hanin L and Yakovlev A. Multivariate distributions of clinical covariates at the time of cancer detection. Stat Meth Med

Res 2004; 13: 457–489.

15. Schwartz M. A biomathematical approach to clinical tumor growth. Cancer 1961; 14: 1272–1294.

3840 Statistical Methods in Medical Research 28(12)

http://orcid.org/0000-0003-2536-2051
http://orcid.org/0000-0002-1372-5508


16. Toi M, Taniguchi T, Ueno T, et al. Significance of circulating hepatocyte growth factor level as a prognostic indicator in
primary breast cancer. Clin Cancer Res 1998; 4: 659–664.

17. Hanahan D and Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011; 144: 646–674.

18. Magnusson C, Baron J, Persson I, et al. Body size in different periods of life and breast cancer risk in post-menopausal
women. Int J Cancer 1998; 76: 29–34.

19. Rosenberg LU, Magnusson C, Lindström E, et al. Menopausal hormone therapy and other breast cancer risk factors in
relation to the risk of different histological subtypes of breast cancer: a case-control study. Breast Cancer Res 2006; 8: R11.

20. Rosenberg LU, Granath F, Dickman PW, et al. Menopausal hormone therapy in relation to breast cancer characteristics
and prognosis: a cohort study. Breast Cancer Res 2008; 10: R78.

21. Eriksson L, Czene K, Rosenberg L, et al. The influence of mammographic density on breast tumor characteristics. Breast

Cancer Res Treat 2012; 134: 859–866.
22. Olsson S, Andersson I, Karlberg I, et al. Implementation of service screening with mammography in Sweden: from pilot

study to nationwide programme. J Med Screen 2000; 7: 14–18.

23. Zahl PH, Gøtzsche PC and Mæhlen J. Natural history of breast cancers detected in the Swedish mammography screening
programme: a cohort study. Lancet Oncol 2011; 12: 1118–1124.

24. Chen HH, Yen AMF and Tabár L. A stochastic model for calibrating the survival benefit of screen-detected cancers. J Am

Stat Assoc 2012; 107: 1339–1359.
25. Forastero C, Zamora L, Guirado D, et al. A Monte Carlo tool to simulate breast cancer screening programmes. Phys Med

Biol 2010; 55: 5213.

Appendix 1. Parameter estimation based on simulated data

We carried out a simulation study to check that we had correctly implemented the likelihood calculations in our
computer program for estimating the values of the parameters in the sub-models of model A, model B, the new
Poisson model, and the random effects lymph node spread model. We simulated 500 cohorts each consisting of
3000 women with breast cancer. For each woman breast cancer progression followed the model according to
equations (3), (4), and (5) with �1 ¼ 2:36, �2 ¼ 4:16, and � ¼ e�8:36. Women were assumed to have onset of breast
cancer at an age increasing rate similar to that in Forastero et al.25 We did not incorporate deaths into our
simulation. To emulate a natural screening history we enforced a screening program starting at age 40. Forty
percent of the women were screened every two years, 35% every four years, 20% every six years, and 5% were not
screened at all. A tumour with diameter d was screen detected with probability

Pðd Þ ¼
expð�0 þ �1d Þ

1þ expð�0 þ �1d Þ
ð21Þ

where �0 ¼ �5:2 and �1 ¼ 0:56. These values were taken from Abrahamsson and Humphreys.9 In that article,
sensitivity was estimated as a function of tumour size and mammographic percent density. In our simulations, we
considered sensitivity to be a function only of tumour size and used a value of �0 which corresponds to a
mammographic percent density of 25%. Finally, we superimposed four lymph node spread processes on these
500 cohorts. This could be done independently because the joint likelihood is separable; see section 4.3. For model

Table 6. Biases, standard errors, and coverages of 95% confidence intervals based on 500 randomly generated cohorts.

Model Parameter True value Bias (%) Standard error Coverage of 95% CI

All models s1 2.36 þ 2.2% 0.008 95.2%

s2 4.16 þ 3.5% 0.023 95.4%

�logð�Þ 8.36 þ 0.2% 0.004 94.4%

�0 –5.2 �7.6% 0.006 21.2%a

�1 0.560 �4.9% 0.001 81.0%

Model A rA 0.000170 þ 0.1% 1 � 10�7 94.0%

Model B rB 0.010 0.0% 7 � 10�6 93.8%

Extended Poisson rC 7:88 � 10�6 0.0% 6 � 10�9 95.8%

Negative binomial logð�1Þ –1.43 þ 0.2% 0.002 94.0%

logð�2Þ 10.38 þ 0.3% 0.003 94.6%

aThe coverage of �0 is highly dependent on the parametrisation of the model for screening sensitivity. Changing the location of the model, we can

achieve 95% coverage probability, as explained in the text below.
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A we used �A ¼ 0:00017, for model B we used �B ¼ 0:01, for the new Poisson model and for the random effects
model, we used k¼ 4, �C ¼ 7:88 � 10�6, logð�1Þ ¼ �1:43, and logð�2Þ ¼ 10:38. We calculated the means, presented
as empirical biases, standard errors of the parameter estimates, as well as coverages of the 95% confidence
intervals, based on the 500 simulated data sets (Table 6).

The parameter estimates in sub-models (4) and (21) were slightly biased. This is something we anticipated since
we used some approximations (tumour sizes are discretised in the model for screening sensitivity, and
approximations are used in the calculations of quantities six and seven in the likelihood; see section 4.3). As we
hoped and expected, at the distributional level, sub-models (4) and (21) were estimated accurately in the
simulation. The parameters in these sub-models are correlated, and thus large changes in parameter values can
result in very small effects on the growth rate distribution and screening sensitivity. The values of �1 ¼ 2:36 and
�2 ¼ 4:16 correspond to an inverse growth rate distribution with mean 0.567, and variance 0.137. From the
simulated data sets, the mean and variance of the inverse growth rate distribution were estimated to be 0.564
and 0.134, with corresponding biases 0.6% and 2.0%, respectively. Similarly, the screening sensitivity at tumour
diameter 12mm (the most common tumour size), based on �0 ¼ �5:2 and �1 ¼ 0:56, is 82.1%, and from the
simulated data sets, the estimated screening sensitivity at this tumour size was 82.7%, with corresponding bias
0.8%. In the simulation study, the coverage for �0 was 21.2%. This value is, however, highly dependent on the
parametrisation of model (21). Reparametrising the model into

Pðd Þ ¼
expð�0 þ �1ðd� 12 mmÞÞ

1þ expð�0 þ �1ðd� 12 mmÞÞ

and re-estimating the coverage on 100 of the simulations, we obtained the same coverages for all other parameters,
but the coverage for �0 changed to 95% (95 out of 100). In Figure 8, we plot the probability distributions of sub-
models (4) and (21) based on the true and estimated parameter values, from which it can be seen that biases, in
terms of the distributions, are small. The estimates of the parameters in the lymph node spread models were clearly
unbiased (see Table 6).

Figure 8. Model-based estimates of the inverse growth rate distribution (left) and screening sensitivity (right), based on simulated

data (dotted). Solid lines represent the same distributions based on the true parameter values.

3842 Statistical Methods in Medical Research 28(12)


