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Cholangiocarcinoma remained a severe threat to human health. Deciphering the
genomic and/or transcriptomic profiles of tumor has been proved to be a promising
strategy for exploring the mechanism of tumorigenesis and development, which could
also provide valuable insights into Cholangiocarcinoma. However, little knowledge
has been obtained regarding to how the alteration among different omics levels is
connected. Here, using whole exome sequencing and transcriptome sequencing, we
performed a thorough evaluation for the landscape of genome and transcriptome in
cholangiocarcinoma and illustrate the alteration of tumor on different biological levels.
Meanwhile, we also identified the clonal structure of each included tumor sample and
discovered different clonal evolution patterns related to patients’ survival. Furthermore,
we extracted subnetworks that were greatly influenced by tumor clonal/subclonal
mutations or transcriptome change. The topology relationship between genes affected
by genomic/transcriptomic changes in biological interaction networks revealed that
alteration of genome and transcriptome was highly correlated, and somatic mutations
located on important genes might affect the expression of numerous genes in
close range.
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INTRODUCTION

Cholangiocarcinoma (CCA), a heterogeneous malignant tumor currently acknowledged as the
second most common primary liver cancer, showed increasing incidents worldwide during past
decades. Although CCA is considered as a rare cancer in most countries due to its relative low
incidents (lower than 6 cases per 100,000 people), the situations are different in several countries
including China and Thailand, where CCA incident reaches an exceptionally high level. Among
all CCA cases, intrahepatic cholangiocarcinoma takes up only 10%, while a minority (15%) of
these patients were diagnosed with resectable disease status (Cardinale et al., 2018; Rizvi et al.,
2018). While the most promising therapeutic strategy for CCA is surgical operation combined
with chemo-/radio- therapy, this approach was considered only suitable for early stage CCA and
later stage CCA patients often face the difficulty of lacking effective treatment options. Thus, most
CCA patients usually suffered from poor prognosis (5-year survival rate less than 10%). Meanwhile,
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the heterogeneity of tumor on multiple levels (e.g., genomic,
transcriptional) often resulted in resistance to therapy, which
further intensifies the challenge of CCA treatments. Thus, a
thorough evaluation of the landscape on CCA genome and
transcriptome could provide clinically related insights into the
genesis and progression of CCA.

Just like other tumors, CCA is developed on the basis
of acquiring tumor somatic mutations and clonal evolution.
When tumor arises and progresses, the acquisition of somatic
mutations randomly happened, resulting in different groups of
tumor cells with distinct genetic features. The tumor clone,
built up with the complicated constitution of groups of tumor
cells (which could be referred as subclones), evolves during its
development, dynamically changing its structure to better fit
the micro-environment (Greaves and Maley, 2012; McGranahan
and Swanton, 2017). During this entirely evolutionary process,
certain somatic mutations could give tumor cells survival
advantage and subpopulation carrying these genomic alterations
expanded, while subclones with mutations reducing survival
capacity diminished. Thus, deciphering the clonal evolution
in CCA could provide valuable information regarding crucial
genetic events in tumorigenesis and progression and how
different biological pathways might be affected by these genetic
events, which in turn could help further understand the intrinsic
mechanisms of tumor progression. Indeed, such efforts have been
made in other types of cancer including leukemia (Ferrando
and López-Otín, 2017) and solid tumors such as hepatocellular
carcinoma (Chen et al., 2018) and breast cancer (Hoadley
et al., 2016), and different clonal evolution patterns have been
discovered with high correlation with patients’ clinical course.

However, the evolutionary process in CCA still requires
further investigation. What more, although the importance of
clonal evolution is widely acknowledged, how tumor clonal
structure affects tumor transcriptome remained poorly explored.
Understanding how somatic mutation interacted with such
transcriptome change could further provide valuable insights
into the evolutionary mechanism of CCA development. To
explore the genetic and transcriptional landscape of intrahepatic
CCA, we performed whole exome sequencing and transcriptome
sequencing on tumor and corresponding peritumor tissue of 9
CCA patients. The differences on genetic and transcriptional
levels were investigated and tumor clonal evolution was
deciphered to discover the molecular pathways taking part in the
deregulation of tumor cells. These findings will be of great value
in understanding the mechanism of CCA development and how
transcriptome interact with genetic alterations.

MATERIALS AND METHODS

Sample Collection
Tumor and corresponding peritumor tissue samples were
collected from 9 patients diagnosed with intrahepatic
cholangiocarcinoma during their surgical operation for tumor
removal. The detailed clinical information is provided in Table 1.
All human tissue sample collection procedures and usage of
these samples were approved by the Institution Review Board of

TABLE 1 | Clinical characteristics of 9 enrolled CCA patients.

Clinicopathological variables Patient
number (n = 9)

Percentage
(100%)

Sex

Male 5 55.6

Female 4 44.4

Age at first enrolled year, Mean ± SD 62.44 ± 11.78

HBV infection

Negative 6 66.7

Positive 3 33.3

HBV DNA

≤103 7 77.8

103–104 1 11.1

104–105 1 11.1

Maximal tumor size, cm

0–2.5 2 22.2

2.5–5.0 2 22.2

5.0–10 5 55.6

Tumor number

Single 8 88.9

Multiple 1 11.1

Liver cirrhosis

Absent 5 55.6

Present 4 44.4

Microvascular invasion

Yes 3 33.3

No 6 66.7

PVTT

Yes 1 11.1

No 8 88.9

Microsatellite lesion

Absent 8 88.9

Present 1 11.1

TNM

I 5 55.6

II 1 11.1

IV 3 33.3

BCLC

0 1 11.1

A 4 44.5

B 1 11.1

C 3 33.3

PVTT, Portal vein tumor thrombosis; TNM, The TNM Classification of Malignant
Tumors; BCLC, the Barcelona Clinic Liver Cancer staging system.

Mengchao Hepatobiliary Hospital of Fujian Medical University
and written consents were obtained from all participated patients
included in this study.

Whole Exome/Transcriptome
Sequencing
Whole-exome and transcriptome sequencing were performed
to capture the genetic and transcriptional features for the
acquired tumor and corresponding peritumor tissue on Illumina
HiSeq 3000 system.
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Whole Exome Sequencing Data
Processing
Somatic single nucleotide variants (SNV) and copy number
alterations (CNA) were detected for the whole exome sequencing
data of tumor tissue samples using the corresponding peritumor
as control. To identify SNVs, SomaticSniper (version 1.0.5.0)
(Larson et al., 2012) were applied using default parameters
provided in the algorithm manual and only SNVs with somatic
score≥ 40 were accepted for downstream analysis. The identified
SNVs were further filtered with such criteria to rule out possible
false discovery: (1) read depth≥ 50 in both tumor and peritumor
tissues; (2) variant allele frequency ≥ 10% in tumor tissue; (3)
variant allele frequency < 10% in normal peritumor tissues. The
detected SNVs were then annotated using wANNOVAR to obtain
related gene and functional information. For CNVs, TitanCNA
(version 1.17.1) (Ha et al., 2014) was applied on the tumor
tissue’s whole exome sequencing data using the corresponding
peritumor as control using the workflow script provided by
the algorithm.

Transcriptome Sequencing Data
Processing
All acquired Transcriptome sequencing reads were first aligned
to ribosomal rRNA sequences to remove ribosomal RNA
sequence. The unmapped reads were then aligned to human
genome reference (GRCH37) using star with GENCODE gene
annotation. The gene expression was quantified with fragments
per kilobase of exon per million mapped fragments (FPKM)
and genes with no read counts in > 50% samples were not
included in downstream analysis. Differentially expressed genes
were identified using limma package. Genes with adjusted p
value < 0.05 (Benjamini-Hochberg correction) and fold-change
>2 or <0.5 were then considered as significantly differentially
expressed between CCA tumor and peritumor.

Clonal Evolution in CCA
For each CCA tumor sample, inference of subclonal population
was conducted using Sclust (Cun et al., 2018). Sclust provided
a copy-number analysis method incorporated with mutational
clustering to accurately determines copy-number states and
subclonal populations. In brief, whole exome sequencing data
of the paired tumor and peritumor samples were first processed
using command bam process to extract the read ratio and SNP
information. Then, the copy number analysis is conducted with
command cn for each patient, using the obtained read ratio
and SNP information together with SomaticSniper mutation
calling results. Finally, the mutational clustering was performed
using command cluster based on above results to identify tumor
clonal structure.

Discovery of Altered Subnetworks
Influenced by Somatic Mutations and
Transcriptome Change
HotNet2 was applied to discover altered subnetworks in the
large gene interaction networks. HotNet2 required two input
files for subnetwork identification: Heat scores and Interaction

network. For somatic mutations, Heat scores for HotNet2 were
generated based on mutation distribution across all patients; For
transcriptome, Heat scores were generated based on the adjusted
p-value produced by DESeq2 package. Network hint + hi2012
and irefindex9 provided by HotNet2 was used as the Interaction
network for this analysis. The algorithm was run using all
recommended parameters provided by algorithm authors and the
identified subnetworks were visualized using Cytoscape (version
3.4.0) (Shannon et al., 2003).

RESULTS

Case Summary
In total, 9 patients that were diagnosed with CCA and received
surgical operation in Mengchao Hepatobiliary Hospital were
included in this study. According to previous reports regarding
inflammatory context of liver tumors (Bishayee, 2014; Banales
et al., 2016), we chose peritumor tissue as sequencing control
to better capture the CCA characteristics. During their surgery,
cholangiocarcinoma tumor tissues along with corresponding
peritumor tissues were collected and the tumor existence for
all patients was histologically confirmed. Then, whole-exome
and transcriptome sequencing were performed for acquired
tissue samples. Among all included patients, 77.8% (7/9) were
diagnosed with TNM staging I-II and the other 22.2% were
diagnosed with TNM staging III. The average diameter of tumor
in each patient was 5.1 cm (range, 2.0–9.5 cm), while Vascular
tumor thrombus was seen in 44.4% (4/9) of all patients. Detailed
clinical information for all included patients before they received
surgical operation is presented in Table 1 and the corresponding
clinical courses were demonstrated in Figure 1A.

Landscape of CCA Genome and
Transcriptome
Whole-exome sequencing achieved a mean average depth of
194.67 × cross all collected tissue samples. To identify tumor
somatic mutations, SomaticSniper was applied on all tumor tissue
samples using corresponding peritumor as control. Meanwhile,
copy number variation was identify using TitanCNA. In total,
an average of 378 somatic SNVs (range, 260–529) were detected
in tumor tissues, and the distribution of SNVs across human
Genome was visualized in Figure 1C. Annotation of acquired
SNVs revealed a number of common mutated genes across
tumor samples, containing several known cancer-related genes
(Figure 1B). Several members of mucin (MUC16, MUC3A,
MUC6, and MUC4) were among the most frequently mutated
genes, which is consistence with previous reports (Chang et al.,
2006; Pereira et al., 2016; Liu et al., 2018; Pareja et al., 2019). Other
noteworthy genes included DSPP, PER3, MTCH2, and KRT18,
all have been reported with important roles in tumor formation
and development. On the other hand, a number of copy number
of variations was also identified in tumor samples, showing a
wide-spread instability of cancer genome (Figure 1D).

Meanwhile, transcriptome sequencing revealed a significant
change on transcriptional level, with a total of 2366 differentially
expressed genes identified between CCA tumor and peritumor
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FIGURE 1 | The Clinical courses and the genome and transcriptome landscape of CCA. (A) The clinical course of 9 included CCA patients. RFA, Radiofrequency
ablation; TACE, Transarterial chemoembolization. (B) The common mutated genes with somatic SNVs identified in include CCA patients. Different color indicated the
functional type of somatic SNVs in these genes (orange: non-synonymous mutation; light blue: synonymous mutation; gray: not mutated). (C) The genomic
distribution of somatic SNVs for included CCA patients. Each circle represented a single patient. Dots in the dot plot represented identified somatic SNVs and their
heights indicated corresponding variant allele frequencies. (D) The genomic distribution of somatic CNVs for included CCA patients. Each circle represented a single
patient. The scatter plot showed the logR value for each segment, and regions with different color indicated their copy number status (red: copy number gain; gray
normal; green: copy number loss). (E) Principal component analysis of CCA transcriptome. The image showed the three-dimension distribution of each sample on
the first three principal components. Red dots represented peritumor samples and black dots represented tumor samples. (F) Clustering of included tissue samples
using top genes correlated with the first three principal components. Genes names and sample names were provided.
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samples. To provide a clear classification based on samples’
transcriptional features, principal component analysis was
conducted to better characterize these samples. Not surprisingly,
tumor samples and peritumor samples were well divided by
the first three principal components, which explained 21.96%,
10.60%, and 8.68% of variation in samples’ transcriptome,
respectively (Figure 1E).

The results showed that the top genes positively associated
with PC1 included RBP4, SLC27A5, and PCK2, all of which
were known tumor-related genes and correlated with cancer
patients’ survival (Anderson and Stahl, 2013; Leithner et al., 2014,
2015; Balsa-Martinez and Puigserver, 2015). Meanwhile, PC1
negatively associated genes included FLNA, ARF5, and SLC25A6,
suggesting its connection to cancer development (Savoy and
Ghosh, 2013; Casalou et al., 2016; Shao et al., 2016; Cho et al.,
2019). For PC2, top positively correlated genes included IFITM1
and GPX1, both have been reported to be associated with risk of
numerous cancers (Ravn-Haren et al., 2006; Arsova-Sarafinovska
et al., 2009; Lee et al., 2012; Ogony et al., 2016), while most
negatively PC2 correlated genes included common-known tumor
over-expressed genes such as EFNA1 (Nakamura et al., 2005;
Xiang-Dan et al., 2010).

As in PC3, most noteworthy genes positively correlated with
this principal component are ZFP36 and DUSP1, both are
known for their function of regulation in cancer progression

(Montorsi et al., 2016; Nagahashi et al., 2018). Other important
correlated genes included t CXCL9 and CXCL10, and they
served as important regulators of immune activation in tumor
microenvironment (Bronger et al., 2016; Ding et al., 2016;
Tokunaga et al., 2018).

Using top genes correlated with the first three principal
components, transcriptome clustering revealed that tumor
sample and peritumor samples could be indeed well separated
(Figure 1F), suggesting that CCA tumors indeed have distinct
gene expression patterns compared to peritumor tissues.

Clonal Evolution in CCA
To explore the evolutionary process driving tumorigenesis
and development, Sclust algorithm was applied to infer
subclonal populations in cancer genomes. Combining copy-
number analysis and mutation clustering approach, Sclust
could accurately determine copy-number states as well as
cellular prevalence of mutations. As shown in Figure 2A and
Supplementary Figure S1, different types of clonal structure
were revealed. For 7 of the included patients (CCA-1218, CCA-
1431, CCA-1461, CCA-950, CCA-1429, CCA-1590, and CCA-
1600), no subclonal mutations were identified since all mutations
within each sample could be clustered into one single cluster
according to their allele frequencies. These results showed
that during the tumor clonal evolution of these patients, the

FIGURE 2 | Clonal evolution of CCA and its influence on biological interaction network. (A) Mutation clusters identified by Sclust in 4 of 9 included CCA patients.
Additional cluster(s) other than cluster 0 were subclonal mutation clusters. Patient identifiers were provided above each plot. (B) Clustering of included tissue sample
using known immune signatures. (C) Go term enrichment results in biological pathways for each identified subnetwork. Subnetwork 2–4 indicated subnetwork
altered by clonal mutations and subnetwork of subclonal mutation indicated the subnetwork altered by subclonal mutations. Subnetwork 1 only contained two
genes and did not show significant enrichment in Gene Ontology of biological pathways.
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randomly accumulated mutations might not create subclones
with significant survival advantage. The other 2 patients (CCA-
1141 and CCA-1174), on the other hand, presented considerable
portion of subclonal mutations. In patient CCA-1141, two
large subclonal mutation clusters were observed, with cellular
frequency of 46.70% and 86.88%, respectively. The other patient,
CCA-1174, also showed one considerable subclonal mutation
clusters, accounting for 63.48% of all tumor cells. The existence
of a large number of subclonal mutations might suggest that
the emerge of these tumor subclones took place in the later
stage of tumor development, while a high cellular frequency
further indicated that they possessed notable survival advantage.
Surprisingly, these two patients with subclonal mutations
identified showed better prognostic outcome compared to other
patients, with relapse-free survival and over-all survival both
longer than 20 months. One possible explanation is that
in this kind of patients, some critical mutations that might
greatly benefit tumors’ growth took place in the later period
of tumor development (which explained the expanding tumor

subclones), while other tumor acquired these genetic alterations
in the early stage, and thus resulted in the differences in
patients’ prognosis. Evaluation of known immune signature
based on gene expression further revealed that CCA-1141
and CCA-1174 could be categorized into cold tumor with
relatively low level of cells correlated with immune response
(Figure 2B). This result suggested that the clonal evolution of
CCA might be closely related to its immune microenvironment,
and high level of infiltration might suppress the evolutionary
process of tumor cells.

To better understand how tumor clonal evolution affected
different biological pathways/processes in tumor cells, we first
divided patients’ somatic mutations into clonal mutations and
subclonal mutations, and then HotNet2 algorithm was used to
scan gene interaction networks for altered subnetworks affected
by different categories of mutations. For clonal mutations,
four subnetworks were identified (Figures 3A–E). The first
subnetwork contained only 2 core genes: RUNX1T1 and
TAL2 (Figure 3A). These two genes were both related to

FIGURE 3 | Subnetworks altered by CCA clonal and subclonal mutations. (A–E) Subnetworks that were affected by tumor clonal/subclonal mutations identified by
HotNet2. Red circles indicated genes that were identified as core genes within corresponding subnetwork, and blue circles indicated expansion genes within
corresponding subnetwork, while gray circles indicated genes that were not identified by HotNet2 but served as linker genes that connect identified genes.
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gene transcription and their dysregulation has been reported
to promote tumorigenesis in various cancer. The second
subnetwork (Figure 3B) contained three core genes (FBLN1,
FBLN2, and ZNF8, label with red) and six expansion genes
(CDC42EP4, EIF2AK4, EXPH5, GIGYF1, VPS8, and ZNF233,
labeled with blue). Gene Ontology (GO) term enrichment
analysis revealed that this subnetwork is closely related with
extracellular matrix structure, cell-substrate adhesion and cell
morphogenesis (Figure 2C), suggesting that tumor clonal
mutation would show a tendency to affect biological pathways
related to cells’ interaction with microenvironment, which is
critical for tumor development. The third subnetwork was made
up of eight highly interacted genes, namely ATXN1, BCR,
GLI1, HTT, LZTR1, SPTBN4, SYNE1, and TP53 (Figure 3C).
All these genes were known as oncogenes, including a well-
known driver gene in various cancer, TP53. The last and biggest
subnetwork (Figure 3D) including 10 core genes (ALK, DEF6,
GRIK2, GRIN2B, HIVEP2, KRT18, LRP2, LRRC7, TIAM1,
UBXN11) and 6 expansion genes (KLC2, MYO5B, PTPRE,
SETD5, TRMT2A, and ZC3H12A), most of which served as
important components of multiple signaling pathways and
involved in regulation of cancer cell.

Interestingly, several subnetworks altered by tumor clonal
mutations were closely related to major metabolism pathways. It’s
within expectation since one well-known intrinsic character for
tumor cells is its abnormal metabolism.

On the other hand, we also analyzed the subnetwork affected
by tumor subclonal mutations. Considered that two out of
nine patients were identified with subclonal mutations, HotNet2
identified only one subnetwork that was altered by subclonal
mutations (Figure 3E). GO analysis revealed that the mutated
genes were most relevant to cell adhesion. This result suggested
that subclonal mutations benefiting tumor metastasis might bring
survival advantage for corresponding tumor subclones.

Transcriptome Analysis Revealed
Alteration in Pathways Enriched in CCA
Clonal Evolutionary Process
we next explored the transcriptome landscape to evaluate the
change in gene expression during CCA development. Using
limma algorithm, a total of 2366 differentially expressed genes
[| log(fold-change)| ≥ 1 and Padjusted < 0.05] were identified
in CCA tumor comparing to peritumor samples (Figure 4A).
Among these genes, 1833 were significantly upregulated in CCA
and 533 were downregulated. Transcriptome clustering using the
top 20 differentially expressed genes also showed an excellent
separation between tumor and peritumor samples (Figure 4B).
GO-term enrichment analysis revealed that the up-regulated
genes (Figure 4C) were mostly enriched in the regulation of
biological process (GO:0048519, GO:0048522 and GO:0048523),
while down-regulated genes (Figure 4D) were mostly enriched
in metabolism related biological processes including carboxylic
acid metabolic process (GO:0019752) and oxoacid metabolic
process (GO:0043436).

Next, HotNet2 was once again applied to identify the
altered subnetworks affected by transcriptome aberration.

Surprisingly, genes identified in subnetworks affected by
somatic mutations (clonal or subclonal) rarely appeared in
subnetworks affected by transcriptome change. However,
mapping genes affected by transcriptome change back to
biological interaction networks revealed that many of these
genes were in close range of the altered subnetworks affected
by tumor somatic mutations (Figures 5A–E). It appeared that
tumor genomic alterations created a spreading aberration
across the biological interaction network and thus a number
of genes were under their influence, resulting in a wide-
range change of tumor transcriptome. Meanwhile, Gene
Ontology enrichment analysis revealed that subnetworks
altered by transcriptome change were dominantly enriched
in biological processes related to cell division and cell cycle
(Figure 4E), including cell division (GO:0051301), cell cycle
(GO:0004857), protein localization (GO:0008104) and cellular
component organization (GO:0016043), indicating notable
change of proliferation capacity happened during tumor
clonal evolution. It’s not surprising that cell morphogenesis
(GO:0000902), cellular localization (GO:0051641), intracellular
transport (GO:0046907) and maintenance of protein
location in cell (GO:0032507), four biological pathways
that had been reported to be significantly enriched for
mutation-affected subnetworks, were also enriched for these
transcriptome-change-affected genes.

Furthermore, we also found that these multi-omics-altered
subnetworks were significantly overlapped with pathways
presented in kegg database (Supplementary Figures S2–S21).
Noteworthily, all hot subnetworks were significantly overlapped
with pathways in cancer (hsa05200), while other enriched
pathways included cell-cycle (Vermeulen et al., 2003), ECM-
receptor interaction (Lu et al., 2012) and VEGF signaling pathway
(Roskoski, 2007), all have been reported to be related with
tumor progression.

To further investigate if the altered pathways could be
clinically related, we obtain the gene expression profile
from TCGA-CHOL dataset and use Cox regression analysis
to identify potential biomarkers for CCA patients’ overall
survival. Univariate cox regression analysis revealed that
14 genes within the hot subnetworks showed expression
pattern significantly correlated with patients’ overall survival
(Supplementary Figure S22), including PTN and EGFR, two
major players in tumor progression. Then these genes were
utilized to generate the multivariate Cox regression model using
stepwise forward selection. The acquired model consisted of 4
genes (PTPRZ1, CFH, RCN2 and VPS4B) and corresponding
model parameters were summarized in Supplementary Table S1.
The prognostic value was then calculated from the model score
as follows:

prognaotic value =
e
score

1+ escore

Applying the 50-percentage cutoff of prognostic value, the
TCGA-CHOL dataset could be divided into two risk groups
with distinct prognostic patterns (Kaplan-Meier survival analysis,
p = 0.00015, Supplementary Figure S23).
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FIGURE 4 | Differentially expressed genes and their connection to tumor clonal evolution. (A) Volcano plot showing the differentially expressed genes identified by
limma package. Genes with | log2(fold-change) | ≥ 1 and Padjusted ≤ 0.05 were marker as red, and other genes were marked as gray. (B) Clustering of included
tissue samples using top differentially expressed genes. (C,D) Go term enrichment results for up-regulated (C) and down-regulated (D) genes. (E) Go term
enrichment results in biological pathways for genes in identified subnetworks altered by transcriptome change.

All these results suggested that the alteration of tumor genome
and transcriptome were closely related, and the influence of
driver gene mutations might spread to faraway downstream.

DISCUSSION

Clonal evolution has been proved to be one of the most important
concepts in tumor genesis and development. Currently, a lot of
researches have been conducted in variable kinds of tumors and
revealed different clonal evolution patterns along with cancer
development, providing insights into better understanding of
their evolutionary mechanism. These valuable knowledges were
of great value in prognosis evaluation and treatment selection.

In our analysis including 9 cholangiocarcinoma patients, we
discovered that a major portion (7/9) of CCA cases did not
show visible subclones within the primary tumors, indicating
the existence of mature clonal structure after tumorigenesis.
Interestingly, the other two CCA patients with considerable
subclones demonstrated significantly longer RFS and OS
compared to these patients without visible subclones. Above
phenomena might suggest that the forming of a stable and
lasting clonal structure at early stage might lead to worse
clinical outcome for CCA cases. Another intriguing finding
is that the expanding subclones in tumor were connected
to relatively low immune signatures (as we showed before),
showing a close interaction between tumor and its immune
microenvironment. Meanwhile, identification of subnetworks
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FIGURE 5 | The interaction between somatic mutations and transcriptome change. (A–E) Interaction networks formed by subnetworks that were altered by tumor
mutation and corresponding close-range subnetwork genes affected by transcriptome change. Red circles indicated genes that were identified as core genes within
corresponding subnetwork, blue circles indicated expansion genes within corresponding subnetwork, orange circle indicated core genes in subnetworks altered by
transcriptome change, and green circles indicated expansion genes in subnetworks altered by transcriptome change, while gray circles indicated genes that were
not identified by HotNet2 but served as linker genes that connect identified genes.

affected by CCA clonal/subclonal mutations revealed that
clonal mutations’ influence spread across a number of different
biological pathways, while subclonal mutations influence mainly
focused on pathways that benefiting tumor metastasis. This
result indicated that most mutations with survival advantage
were acquired during early stage of CCA development and
acquisition of mutations on key regulator genes could affect
how tumor evolved.

Cancer development involved biological
alteration/dysregulation on multiple biological levels, including
genomic, epigenomic and transcriptomic. Although a lot of
studies have been conducted on every single omics level,
discovering a variety of patterns and mechanism for how
these alterations contribute to tumorigenesis, one major
question still remained largely unanswered: how the alteration
on multiple biological levels interact? In our analysis, we
identified key subnetworks that were greatly affected by genomic
and transcriptomic changes. Interestingly, although genes
in subnetworks greatly affected by genomic change rarely

overlapped with those under the influence of transcriptome
alteration, it appeared that these two groups of genes were in close
range within biological interaction networks, suggesting that
dysregulation of genome and transcriptome were closely related.
One possible explanation might be that genes that were mutated
served as sources of disturbance and affected the expression of
their neighbor genes. This disturbance could further spread,
creating a large-scale change of tumor transcriptome.

CONCLUSION

In conclusion, integrating whole exome and transcriptome
sequencing technology, our analysis demonstrated the landscape
of CCA genome as well as transcriptome and discovered the
different clonal evolution patterns in these patients. We also
identified biological pathways significantly altered by tumor
somatic mutations and transcriptome change and reveal the
connection among the alteration on different omics levels, which
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could bring insight for better understanding the mechanism of
CCA development and help future prognosis evaluation.
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