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Abstract

Although it is well known that abundant proteins evolve slowly across the tree of life, there is little consensus for why this is true. Here,
| report that abundant proteins evolve slowly in the hypermutator populations of Lenski’s long-term evolution experiment with
Escherichia coli (LTEE). Specifically, the density of all observed mutations per gene, as measured in metagenomic time series covering
60,000 generations of the LTEE, significantly anticorrelates with mRNA abundance, protein abundance, and degree of protein—
protein interaction. The same pattern holds for nonsynonymous mutation density. However, synonymous mutation density, mea-
sured across the LTEE hypermutator populations, positively correlates with protein abundance. These results show that universal
constraints on protein evolution are visible in data spanning three decades of experimental evolution. Therefore, it should be possible

to design experiments to answer why abundant proteins evolve slowly.
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Significance

A universal evolutionary pattern is that highly abundant and highly interacting proteins evolve slowly. This pattern was
discovered in analyses that cover millions of years’ worth of sequence variation, so it is not clear how long it takes
(decades, centuries, millennia) for such patterns to emerge. Here, | report that this universal evolutionary pattern
emerges in metagenomic data that cover just 30 years of experimental evolution.

Introduction

One consequence of the high complexity and intricate func-
tional organization of organisms is that most mutations are
deleterious. Natural selection resists the loss of function and
fitness caused by mutation accumulation over time (Leiby and
Marx 2014; LaBar and Adami 2017; Grant et al. 2021). This
process, called purifying selection, maintains the complexity
and functional integrity of evolved organisms.

Despite its importance, purifying selection has been little
studied in experimental systems (Alvarez-Ponce et al. 2016), in
contrast to adaptive evolution (Barrick and Lenski 2013). In
two recent papers, my colleagues and | reported evidence for
purifying selection in metagenomic time series of Lenski’s
long-term evolution experiment with Escherichia coli, often
called the LTEE for short (Lenski et al. 1991; Good et al.
2017). We considered the molecular evolution of the six

hypermutator LTEE populations, which have elevated muta-
tion rates due to evolved defects in DNA repair (Tenaillon et al.
2016; Maddamsetti and Grant 2020a). These populations
continue to increase in fitness due to adaptive evolution,
even though genome evolution in these populations largely
reflects the accumulation of nearly neutral mutations (Couce
et al. 2017). In Grant et al. (2021), we reported evidence for
purifying selection on aerobic- and anaerobic-specific genes in
E. coli. In Maddamsetti and Grant (2020b), we then reported
evidence for purifying selection on genes that were found to
be essential in the ancestral LTEE strain, REL606, in a transpo-
son mutagenesis screen (Couce et al. 2017).

Here, | report evidence that purifying selection in the LTEE
reflects a universal constraint on protein evolution found
across the tree of life, namely that highly abundant and highly
interacting proteins evolve slowly (Fraser et al. 2002; Hahn
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et al. 2004; Drummond et al. 2005; Hahn and Kern 2005;
Drummond and Wilke 2008; Alvarez-Ponce et al. 2017).
Despite the universality and simplicity of this pattern of puri-
fying selection, its proximate causes continue to be debated
(Plata et al. 2010; Plata and Vitkup 2018; Razban 2019;
Usmanova et al. 2021). A number of compelling hypotheses
have been proposed, but consensus has not been reached.
The findings reported here will not settle this debate.
Nonetheless, an important consequence of my findings is
that it may be possible to resolve the causes of this universal
pattern by experimental means.

Results

Rationale and Study Design

This study takes a novel approach to study the anticorrelation
between protein abundance and evolutionary rates (Pal et al.
2001; Drummond et al. 2005, 2006; Drummond and Wilke
2008; Lobkovsky et al. 2010; Yang et al. 2010; Wylie and
Shakhnovich 2011; Serohijos et al. 2012; Serohijos and
Shakhnovich 2014). In this section, | present the logical struc-
ture of the hypotheses and predictions under consideration
and explain the methods that | use (fig. 1).

| assume that the mutation rates in the hypermutator LTEE
populations are high enough that the vast majority of ob-
served mutations are nearly neutral hitchhikers, whose dy-
namics are driven by a relatively small number of highly
beneficial mutations (Barrick and Lenski 2009; Levy et al.
2015; Maddamsetti, Lenski, et al. 2015; Tenaillon et al.
2016; Couce et al. 2017; Good et al. 2017; Ba et al. 2019;
Maddamsetti and Grant 2020a). This allows us to infer infor-
mation about mutation rates and biases (Couce et al. 2017;
Maddamsetti and Grant 2020a) even under environmental
and population-genetic conditions that favor strong positive
selection. It follows that the mutations observed across the
nonmutator and hypermutator LTEE populations, to a large
extent, reflect different parts of the distribution of mutation
fitness effects (DFE) per gene.

With this assumption in hand, | start from the hypothesis
that purifying selection causes abundant proteins to evolve
slowly. This means that the DFE for abundant proteins should
contain more deleterious mutations than the DFE for less
abundant proteins, all else being equal. It follows that highly
abundant proteins should have fewer observed mutations in
the hypermutator LTEE populations, because it is unlikely that
highly deleterious mutations will reach observable allele fre-
guencies in the LTEE, given the population-genetic conditions
of the LTEE (Good et al. 2017). This is the logical basis for
using the hypermutator LTEE populations to test for purifying
selection on abundant proteins.

The key technical trick is that we do not need to calculate
evolutionary rates for the LTEE—in fact, we can completely
ignore the phylogenetic structure of each population. Instead,

we only need to count the number of observed mutations per
gene across all hypermutator populations, and normalize by
gene length (fig. 1). An additional benefit of this approach is
that the effects of clonal interference and frequency-
dependent selection (Maddamsetti, Lenski, et al. 2015;
Good et al. 2017) can be ignored, because these phenomena
do not affect the density of mutations that are ever observed
in the LTEE. By contrast, clonal interference and frequency-
dependent selection may have significant effects on evolu-
tionary rates (Lang et al. 2013; Serohijos and Shakhnovich
2014; Maddamsetti, Lenski, et al. 2015; Good et al. 2017).
The great advantage of the LTEE, and other evolution
experiments with microbes, is the “fossil record” of frozen
samples that can be revived for comparison with later sam-
ples. The vast majority of mutations in the LTEE lie off the line
of descent, but are still accessible from sequencing those fro-
zen population samples (Good et al. 2017). By contrast, anal-
yses of natural sequence data are largely restricted to extant
within-population polymorphism and between-species fixa-
tions. The use of mutations off the line of descent in the
LTEE, along with its multidecade duration, provides sufficient
(and ever increasing) statistical power to discern patterns of
purifying selection, such as the one discussed in this work.

Correlations between mRNA and Protein Abundance and
Mutation Density per Gene in LTEE Populations

| compared the density of observed mutations in the LTEE
(Good et al. 2017) with mRNA and protein abundance data
for the LTEE ancestral strain, REL606, grown in DM500 media
(Caglar et al. 2017). These comparisons are shown in figure 2;
note that throughout this section, all significant Spearman
correlation coefficients and associated P values are labeled
on the figures. In the hypermutator LTEE populations,
mRNA abundance during exponential growth significantly
anticorrelates with mutation density, whereas protein abun-
dance, at all time points, significantly anticorrelates with mu-
tation density. The same anticorrelation holds, for all time
points, when only nonsynonymous (i.e., missense and non-
sense) mutations are considered (fig. 3). The significance of
these anticorrelations increases when genes with no observed
mutations in the metagenomic data are excluded (supple-
mentary fig. S1, Supplementary Material online, for all muta-
tion types; supplementary fig. S2, Supplementary Material
online, for nonsynonymous mutations). By contrast, the den-
sity of synonymous mutations across the hypermutator pop-
ulations shows a significant positive correlation with mRNA
and protein abundance for REL606 in DM500 media, across
all phases of growth (fig. 4). When genes with no mutations
in the metagenomic data are excluded, significant positive
correlations remain between synonymous mutation density
and mRNA and protein abundance, although to a lesser de-
gree (supplementary fig. S3, Supplementary Material online).
In the nonmutator LTEE populations, both mRNA and protein
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Fic. 1.—Study design. (A) Many studies have reported that highly abundant proteins evolve slowly. If this fact is caused by purifying selection, then
mutations in highly abundant proteins, should be more deleterious than mutations in less abundant proteins, on average. This logic leads to the prediction
that highly abundant proteins should have fewer observed mutations than less abundant proteins across the hypermutator populations of the LTEE, taking
gene length into account. (B) Previous studies inferred evolutionary rates using DNA and protein sequence comparisons across species. (C) This study sums all
observed mutations per gene in metagenomic time series of the long-term evolution experiment with Escherichia coli (LTEE), considering nonmutator and
hypermutator populations separately. This approach increases statistical power over a rate-based approach and is affected by neither clonal interference nor
frequency-dependent selection. To give a concrete example, the top panel in (C) shows the number of observed mutations (stars) in the adhesin gene yee/in
the nonmutator population Ara — 6 over 60,000 generations. The bottom panel in (C) shows the number of observed mutations (stars) in yee/ in the
hypermutator population Ara + 6 over the same period. For comparison across genes, the number of observed mutations is normalized by gene length.

abundance for REL606 grown in DM500 show significant
positive correlations with the density of observed mutations
(supplementary fig. S4, Supplementary Material online).

| also asked whether the strength of the Spearman corre-
lations between protein abundance and mutation density in
the hypermutator populations increased over the course of
the LTEE (fig. 5). In analyses of natural sequence variation, it is
understood that the strength of anticorrelation between pro-
tein evolutionary rates and protein abundance increases with
divergence time among the taxa under consideration

(Serohijos et al. 2012). Based on protein biophysics,
Serohijos et al. (2012) additionally predicted that the strength
of the anticorrelation between evolutionary rates and protein
abundance would increase, but at declining rates over time.
Even though the differences in measurements, units, and
timescales make direct comparisons to those theoretical pre-
dictions impossible, it is striking that a similar functional form
of the relationship between time and the strength of the rate-
abundance anticorrelation occurs with the mutations ob-
served across the LTEE hypermutator populations (fig. 5A
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Fic. 2—The density of observed mutations per gene across all hypermutator LTEE populations anticorrelates with mRNA abundance in exponential
growth phase, and anticorrelates with protein abundance at all time points. RNA and protein abundance were measured for the ancestral LTEE clone
REL606, grown in DM500 media (Caglar et al. 2017). Each point represents a protein-coding gene in the genome of the ancestral LTEE clone, Escherichia coli
B strain REL606. The abundance of mRNA or protein expressed per gene is shown on the x axis of each plot. The density of observed mutations per gene is
shown on the y axis of each plot. Comparisons to mRNA abundance are shown in purple, whereas comparisons to protein abundance are shown in green.
Statistically significant correlations are shown in blue, whereas nonsignificant correlations are shown in light gray. Spearman correlation coefficients (rho) and
associated P values are shown on each panel.
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Fic. 3.—The density of observed nonsynonymous mutations per gene across all hypermutator LTEE populations anticorrelates with mRNA abundance in
exponential growth phase, and anticorrelates with protein abundance at all time points (see fig. 2 legend for further details).
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Fic. 4—The density of observed synonymous mutations per gene across all hypermutator LTEE populations positively correlates with mRNA and protein

abundance at all time points (see fig. 2 legend for further details).
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Fic. 5.—Correlations between protein abundance in REL606 and mutation density are consistent over time. Points represent Spearman correlation
coefficients, calculated using the cumulative number of mutations observed by each 10,000-generation mark in the metagenomic time series for the LTEE
hypermutator populations. Colors indicate the growth time at which protein abundance was sampled for REL606; the growth times correspond to the
separate panels in figures 2—4. (A) Correlations between protein abundance in REL606 and mutation density across all hypermutator LTEE populations. (B)
Correlations between protein abundance in REL606 and nonsynonymous mutation density across all hypermutator LTEE populations. (C) Correlations
between protein abundance in REL606 and synonymous mutation density across all hypermutator LTEE populations.

and B). By contrast, the positive Spearman correlation coeffi-
cient between synonymous mutation density and protein
abundance remains steady at ~0.075 for at least 40,000
generations, ranging from the 20,000-generation mark
through 60,000 generations (fig. 5C).

A limitation of these analyses is that these RNA and protein
abundance data come from the ancestral LTEE clone, REL606,
and so these patterns may not hold for evolved strains. To
address this limitation, | examined RNA abundance data for
eleven 50,000 generation LTEE clones, grown to exponential
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phase in DM4000 media (Favate et al. 2021). In every single
case, the density of observed mutations per gene, measured
across all hypermutator populations, significantly anticorre-
lates with  mRNA abundance (supplementary fig. S5,
Supplementary Material online). In addition, a significant anti-
correlation is seen with nonsynonymous mutations for all 11
clones (supplementary fig. S6, Supplementary Material on-
line), whereas a positive correlation is seen with synonymous
mutations, again for all 11 evolved clones (supplementary fig.
S7, Supplementary Material online). The density of observed
mutations per gene in the nonmutator populations signifi-
cantly correlates with mRNA abundance in seven out of 11
clones (supplementary fig. S8, Supplementary Material
online).

As an additional check for the robustness of these correla-
tions, | compared the density of observed mutations per gene
in the LTEE with protein abundance data in the ProteomeVis
database (Razban et al. 2018). Although these data only cover
664 out of 4,205 genes analyzed in the LTEE metagenomic
data, they still reveal significant anticorrelations between mu-
tation density per gene in the hypermutator populations and
protein abundance, when all mutations and nonsynonymous
mutations are analyzed  (supplementary  fig.  S9,
Supplementary Material online). Corresponding results for
synonymous mutations in the hypermutator LTEE popula-
tions, and for all mutation types in the nonmutator LTEE pop-
ulations, are not statistically significant.

Highly Interacting Proteins Evolve Slowly in Hypermutator
Populations

Another universal pattern is that highly interacting proteins
evolve more slowly than those with fewer interaction partners
(Fraser et al. 2002; Hahn et al. 2004; Hahn and Kern 2005;
Alvarez-Ponce et al. 2017). | hypothesized that highly inter-
acting proteins would be under strong selection in the LTEE,
based on those reports, as well as previous results showing
that the E. coli core genome is under positive selection in the
LTEE (Maddamsetti et al. 2017), and that global regulators of
gene expression show evidence of strong positive selection in
both nonmutator and hypermutator LTEE populations
(Maddamsetti and Grant 2020b). In particular, | hypothesized
that highly interacting proteins should evolve rapidly in the
nonmutator LTEE populations due to positive selection, but
should evolve slowly in the hypermutator populations during
to purifying selection.

| compared the number of protein—protein interactions
(PPI) with the density of observed mutations across LTEE pop-
ulations for every protein-coding gene in the E. coli genome,
using three curated data sets of PPl in E. coli (Razban et al.
2018; Cong et al. 2019; Zitnik et al. 2019), which | refer to as
the Cong data set, the Zitnik data set, and the Razban data
set. These comparisons are shown in figure 6 and supplemen-
tary figure 10, Supplementary Material online. | find

significant negative correlations between mutation density
and PPl degree in the hypermutators (Spearman’s
rho=—0.056, P=0.00037 for Cong data set; Spearman’s
rho=—-0.11, P<10~"" for Zitnik data set; Spearman’s
rho=—0.068, P< 10~ for Razban data set). However, the
weak positive correlations between mutation density and PPl
degree in the nonmutators are not significant (supplementary
fig. 10, Supplementary Material online).

Discussion

| show that a number of well-known but poorly understood
correlations between mRNA abundance, protein abundance,
PPl degree, and evolutionary rates across the tree of life are
also found in the hypermutator populations of the LTEE. In
some cases, | find significant anticorrelation between muta-
tion densities and mRNA abundance in exponential phase,
but not during stationary phase. The simplest explanation
for this finding is that mRNAs decay more rapidly than the
proteins they encode. Protein abundance consistently shows a
negative correlation with the density of all observed mutations
(fig. 2) and with nonsynonymous mutation density across all
time points (fig. 3).

It is widely believed that these correlations are driven by
purifying selection on universal aspects of protein evolution
(Drummond et al. 2006; Drummond and Wike 2009;
Serohijos et al. 2012; Serohijos and Shakhnovich 2014), and
indeed, this is the most parsimonious explanation for why
similar patterns are seen in the LTEE. An intriguing difference,
however, is the positive correlation that | find between syn-
onymous mutation density across LTEE hypermutator popu-
lations and protein abundance (fig. 4)—which contrasts with
the anticorrelation between the rate of synonymous muta-
tions and gene expression seen in nature (Drummond and
Wilke 2008). In part, this may be explained by the differences
in the distribution of synonymous mutations observed in the
LTEE, and the distribution of synonymous diversity per gene in
nature (Maddamsetti, Hatcher, et al. 2015; Maddamsetti and
Grant 2020a), although the causes for this difference be-
tween natural variation and experiment is still a matter for
hypothesis generation (Maddamsetti 2016), data collection,
hypothesis testing, and debate.

An important limitation of these results is that the protein
and mRNA abundance data for LTEE strains were collected in
DM500 and DM4000 media (Caglar et al. 2017; Favate et al.
2021). These media contain much more than the 25 mg/l glu-
cose in the DM25 media used in the LTEE. This represents a
technical compromise due to the fact that researchers have
not yet succeeded in isolating sufficient mRNA from exponen-
tial phase cultures in DM25 for RNA-seq (Jagdish T and Grant
N, personal communication). With this caveat in mind, my
findings support the conclusion that highly abundant proteins
evolve slowly in the hypermutator LTEE populations.
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Fic. 6.—The density of observed mutations per gene across all hypermutator LTEE populations negatively correlates with PPl degree. Comparisons to the
PPI data from Cong et al. (2019) are shown in light blue, comparisons to the PPl data from Zitnik et al. (2019) are shown in orange, and comparisons to the
PPI data in the ProteomeVis database (Razban et al. 2018) are shown in red. Significant Spearman correlations are shown in blue. For improved visual
dispersion, PPl degree is square-root transformed; the Spearman correlation is unaffected by this monotonic data transformation. (A) Proteins with more
interactions in the Cong et al. (2019) data set tend to evolve more slowly than those with fewer interactions in the hypermutator LTEE populations. (B)
Proteins with more interactions in the Zitnik et al. (2019) data set tend to evolve more slowly than those with fewer interactions in the hypermutator LTEE
populations. (C) Proteins with more interactions in the ProteomeVis Escherichia coli PPl data set (Razban et al. 2018) tend to evolve more slowly than those

with fewer interactions in the hypermutator LTEE populations.

The causes for why highly abundant proteins evolve slowly
may emerge from a number of different, and nonmutually
exclusive phenomena, so many explanations have been pro-
posed (Razban 2019). These include the protein misfolding
avoidance hypothesis (Yang et al. 2010), the protein misinter-
action avoidance hypothesis (Levy et al. 2012; Yang et al.
2012), the mRNA folding hypothesis (Park et al. 2013), puri-
fying selection on protein function (Konaté et al. 2019), fold-
ing stability (Serohijos et al. 2012; Serohijos and Shakhnovich
2014), and others (Tartaglia et al. 2007; Plata et al. 2010;
Kepp and Dasmeh 2014).

Differentiating among these possibilities is difficult, be-
cause it is challenging to study the causes of patterns that
span millions of years of protein evolution. | do not draw
conclusions about the causes of these correlations. Rather,
my results show that evolution experiments are reasonable
model systems to study the causes of evolutionary rate varia-
tion in proteins. A concrete approach would be to recode the
genomes of hypermutator strains to modulate the anticipated
action of purifying selection per protein, based on the predic-
tions of a particular explanation, and then ask whether those
predictions are borne out during experimental evolution.
Breakthroughs that allow for the inexpensive recoding of
whole bacterial genomes may be needed, but it is plausible
that such experiments will be feasible in the future.

Many other experimental directions are possible. First, a
better understanding of how chaperones and other molecular
mechanisms of protein quality control affect evolutionary rates
and fitness (Chen et al. 2017; Alvarez-Ponce et al. 2019;
Samhita et al. 2020) is needed. We also need to better under-
stand purifying selection on synonymous mutations (Walsh
et al. 2020). Second, studies on how RNA transcription error
rates (Li and Lynch 2020) and RNA folding errors affect evo-
lutionary rates would be valuable. Indeed, mRNA accessibility
seems to be an important predictor of protein abundance

(Terai and Asai 2020)—and RNA chaperones buffer deleteri-
ous mutations in LTEE hypermutator strains (Rudan et al.
2015). Third, it would be interesting to experimentally test
the hypothesis that protein and RNA chaperones evolve under
more and more stringent purifying selection during long-term
experimental evolution, which follows from the premise that
hypermutator LTEE populations are affected by a mutation
load that affects protein folding and stability. Studies on the
existence and relevance of phenomena like evolutionary ca-
pacitance caused by the contributions that PPl make to folding
stability (Dixit and Maslov 2013; Jarzab et al. 2020; Mateus
et al. 2020), including cryptic genetic variation hidden by pro-
tein and RNA chaperones (Queitsch et al. 2002; Bergman and
Siegal 2003; Masel 2005, 2006, 2013; Trotter et al. 2014,
Geiler-Samerotte et al. 2016; Zheng et al. 2019) during exper-
imental evolution, and the effects of such phenomena on rates
of protein evolution may be especially valuable in this regard.
Finally, it would be valuable to develop a better understanding
of the temperature sensitivity of evolved LTEE populations
(Mongold et al. 1996, 1999; Leiby and Marx 2014), and to
collect data on protein evolutionary rates in long-term experi-
ments conducted at elevated temperatures (Bennett et al.
1990; Tenaillon et al. 2012). Much remains to be explored,
in regard to how evolution experiments can deepen our un-
derstanding of purifying selection on molecular and cellular
organization and function.

Materials and Methods

Preprocessed LTEE metagenomic data were downloaded from:
https:/github.com/benjaminhgood/LTEE-metagenomic.

Transcriptomic and proteomic data for REL606, grown in Davis
minimal media with 500 mg/l glucose (DM500), were taken
from the supplementary tables for Caglar et al. (2017). For ro-
bustness, | also analyzed the transcriptomic data for eleven
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50,000 generation LTEE clones grown in DM4000 media
(Favate et al. 2021) available at: https:/github.com/shahlab/
LTEE-gene-expression. | analyzed three different data sets of
PPl in E. coli. First, | used the PPl network for E. coli K-12
MG1655 in the STRING database (Szklarczyk et al. 2021) as
curated by Zitnik et al. (2019). Second, | used the data set of
high confidence E. coli PPl interactions reported by Cong et al.
(2019), which combines coevolutionary information in large
protein multiple sequence alignments with gold-standard pro-
tein complexes in E. coli reported in the Ecocyc and Protein
Databank (PDB) databases (Berman et al. 2000; Keseler et al.
2013). PPl network statistics were calculated using the SNAP
toolkit (Leskovec and Sosic 2016; Zitnik et al. 2019). Third, ad-
ditional data on E. coli PPl interactions and protein abundance
were downloaded using the web interface to the ProteomeVis
database (Razban et al. 2018), available at http:/poroteomevis.
chem.harvard.edu/. Associated metadata for ProteomeVis were
downloaded from: https:/github.com/rrazban/proteomevis/
blob/master/make_database/proteomevis_inspect.csv.

Al statistical analyses involve two-sided tests for Spearman
correlation coefficients that are significantly different from
zero, using the cor.test function in the R statistical program-
ming language, version 4.0 (R Core Team 2020). Unless
stated otherwise, all correlations include genes with no muta-
tions (i.e., zeros are included).

Supplementary Material

Supplementary data are available at Genome Biology and
Evolution online.
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