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Abstract: Wildly grown in most regions of the world, Carissa edulis is a highly underutilised fruit with
significant antioxidant characteristics. The phyto and physicochemical properties of C. edulis berries at
different stages of ripening are evaluated in this work. Total flavonoids (TF), total phenolic content (TPC)
and antioxidant activity were determined spectrophotometrically, while concentration of polyphenols was
determined using liquid chromatography coupled to diode array detection and electrospray ionization mass
spectrometry. Results showed that antioxidant activity was lowest (18.36 ± 0.12 mmol TE/g) in RS3 and
decreased with TPC upon increased ripening. Conversely, TF increased with ripening progression
with TF found to be highest in RS3 (5.92 ± 0.03 mg CE/g). Identified phenolic acids in C. edulis
were quinic acid, protocatechuoyl-hexose, neochlorogenic acid, chlorogenic acid, cryptochlorogenic
acid and dicaffeoylquinic acid. Identified flavonoids included rutin, catechin, procyanidin dimer,
procyanidin trimer, quercetin-3-O-glucosyl-xyloside, quercetin-3-O-robinobioside, quercetin-3-O-glucoside
and quercetin-3-OH-3-methylglutaryl-glucoside. Physicochemical properties of C. edulis varied among
samples with sugar/acid ratio of C. edulis ranging from 25.70 for RS1 to 50.36 for RS3. Ripening stage of
C. edulis undoubtedly affects the phyto and physicochemical properties of C. edulis.

Keywords: Carissa edulis; phytochemicals; antioxidant activity; physicochemical properties; free radicals;
ripening stage

1. Introduction

Carissa edulis is a much branched spiny evergreen shrub or small tree, usually multi-stemmed,
often scrambling up to 6 m tall and forming a dense canopy. All parts of the plant release white,
non-toxic milky latex. Young branches are green, smoothly covered with minute hair, but older
branches and stems become light brown and corky with deep cracks. The plant is armed with rigid
spines up to 70 mm long and nearly always simple, not forked as with other species [1]. Leaves are
simple, opposite, leathery, dark green above and paler below, while fruits are green, dark red and
purple as ripening progresses. Fruits are also fleshy, ovoid, 6–11 mm in diameter, red to purplish black
berries and two- to four-seeded (Figure 1). In the works of Muthsinyalo and Malatji [2], C. edulis is
reported to occur in bush-veld, often in riverine vegetation, on termite mounds and is common in
deciduous to evergreen woodland. Distribution of the fruit in Africa is from Senegal to East Africa
and from Mpumalanga to Limpopo in South Africa [2]. Globally, the fruit is cultivated in Thailand,
India and Indian Ocean Islands. Carissa edulis is generally referred to as a berry due to its small nature,
seedless/small seed and its ability to be eaten whole [3].
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Indian Ocean Islands. Carissa edulis is generally referred to as a berry due to its small nature, 
seedless/small seed and its ability to be eaten whole [3]. 

 
Figure 1. Carissa edulis fruits at different ripening stages used for the study. (a) First stage of ripening; 
(b) second stage of ripening and (c) last stage of ripening. Source: Makumbele [4]. 

Harvest maturity and ripening stage of maturity are some factors that may lead to changes in 
sensory and nutritional qualities of C. edulis. Moreover, there has been a constant increase in 
popularity and interest regarding research of all kind of fruits, including berries, in the last few 
decades, as they are reported to be a good source of bioactive compounds [5]. Recent interest in food 
phenolics has greatly increased because of the antioxidant and free radical-scavenging abilities 
associated with phenolics and their potential effects in human health [6]. Bioactive compounds are 
present in great quantity in highly coloured berries [7], with anthocyanins, flavonols, flavanols, 
phenolic acids and tannins reported as the major phenolic compounds found in foods [8]. 
Anthocyanins, which are a subclass of flavonoids, are water-soluble pigments responsible for 
providing red, blue and violet colours present in most plant species [8]. Berries are rich in 
anthocyanin, which provides pigmentation to fruits and serves as natural antioxidants [9]. The dark 
red and purple colouration of C. edulis is an indication of the presence of anthocyanins in the fruit. 
Apart from flavonoids, pigmentation in other fruits and vegetables can also be due to the presence of 
other compounds, such as carotenoids and chlorophylls [10]. 

Carissa edulis berries are richly coloured, as they are red, purple and purplish black when ripe. 
The fruit is mostly consumed in most rural tribal communities due to its medicinal value and 
application in different processed commodities, such as beverages, jellies and syrup [11,12]. Several 
studies conducted on the fruit have reported its antiscorbutic properties [12], therapeutic use in the 
treatment of anaemia and diabetes [13] as well as its use as an antiplasmodial [14,15], anticonvulsant 
[16], antiherpetic [17] and antiviral agent [18,19]. Carissa edulis fruit can be consumed raw fresh, or it 
can be processed to other consumed products. However, there exists a scarcity of information in 
literature on the polyphenolic properties of the fruit, especially at various stages of maturity. Though 
the fruit is frequently harvested at dark red and purple stages, when its flavour is most desirable as 
consumers do not usually eat C. edulis at other maturation stages, there is thus a need to examine the 
effect of ripening on the phytochemical, antioxidant and polyphenolic properties of the fruit. This 
work therefore intends to determine the physicochemical properties and the bioactive compounds 
present in C. edulis fruit at different stage of ripening.  
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Figure 1. Carissa edulis fruits at different ripening stages used for the study. (a) First stage of ripening;
(b) second stage of ripening and (c) last stage of ripening. Source: Makumbele [4].

Harvest maturity and ripening stage of maturity are some factors that may lead to changes in
sensory and nutritional qualities of C. edulis. Moreover, there has been a constant increase in popularity
and interest regarding research of all kind of fruits, including berries, in the last few decades, as they are
reported to be a good source of bioactive compounds [5]. Recent interest in food phenolics has greatly
increased because of the antioxidant and free radical-scavenging abilities associated with phenolics and
their potential effects in human health [6]. Bioactive compounds are present in great quantity in highly
coloured berries [7], with anthocyanins, flavonols, flavanols, phenolic acids and tannins reported as
the major phenolic compounds found in foods [8]. Anthocyanins, which are a subclass of flavonoids,
are water-soluble pigments responsible for providing red, blue and violet colours present in most plant
species [8]. Berries are rich in anthocyanin, which provides pigmentation to fruits and serves as natural
antioxidants [9]. The dark red and purple colouration of C. edulis is an indication of the presence of
anthocyanins in the fruit. Apart from flavonoids, pigmentation in other fruits and vegetables can also
be due to the presence of other compounds, such as carotenoids and chlorophylls [10].

Carissa edulis berries are richly coloured, as they are red, purple and purplish black when ripe.
The fruit is mostly consumed in most rural tribal communities due to its medicinal value and application
in different processed commodities, such as beverages, jellies and syrup [11,12]. Several studies
conducted on the fruit have reported its antiscorbutic properties [12], therapeutic use in the treatment
of anaemia and diabetes [13] as well as its use as an antiplasmodial [14,15], anticonvulsant [16],
antiherpetic [17] and antiviral agent [18,19]. Carissa edulis fruit can be consumed raw fresh, or it can be
processed to other consumed products. However, there exists a scarcity of information in literature on
the polyphenolic properties of the fruit, especially at various stages of maturity. Though the fruit is
frequently harvested at dark red and purple stages, when its flavour is most desirable as consumers do
not usually eat C. edulis at other maturation stages, there is thus a need to examine the effect of ripening
on the phytochemical, antioxidant and polyphenolic properties of the fruit. This work therefore intends
to determine the physicochemical properties and the bioactive compounds present in C. edulis fruit at
different stage of ripening.
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2. Results and Discussion

2.1. Physicochemical Properties of Carissa edulis Fruit Samples

2.1.1. pH and Total Titratable Acidity (TTA) of Carissa edulis Fruit

The analysed data of pH of C. edulis are presented in Table 1. An increase in pH value shows that
there is a decrease in acidity. The pH of C. edulis ranged from 2.85 ± 0.04 (RS1) to 3.10 ± 0.01 (RS3).
Significant difference was observed between the pH of samples RS1 and RS3 with the pH increasing as
ripening progressed. This observed increase in pH for sample RS3 can be attributed to the degradation
of organic acids in the fruit as ripening progressed [20]. The increase in pH during ripening progression
is triggered by the decrease in free organic acids as well as the build-up of potassium [20]. Changes in
pH can affect enzymatic activity and possibly ionic interactions with calcium, as a change in calcium
concentration can affect cell-wall extensibility [21]. The pH of the reference sample was significantly
different (p < 0.05) from that of RS3 of C. edulis fruit. There was, however, no significant difference
(p < 0.05) between the pH of samples RS1 (2.85 ± 0.04) and RS2 (2.91 ± 0.01) of the C. edulis fruit.

Table 1. pH, total acidity and total soluble solids of Carissa edulis fruit samples.

Samples pH TTA (g/100 mL) TSS (oBrix) TSS/TTA

RS1 2.85 ± 0.04 a 0.37 ± 0.01 c 9.51 ± 0.21 a 26.03
RS2 2.91 ± 0.01 a 0.35 ± 0.01 c 11.12 ± 0.08 b 31.95
RS3 3.10 ± 0.01 b 0.27 ± 0.02 b 13.51 ± 0.21 d 50.36
SR 3.32 ± 0.07 c 0.21 ± 0.02 a 13.14 ± 0.07 c 61.55

Means in the same column with the same superscript letter (a, b, c, d) are not significantly different (p > 0.05). RS1 = first
stage of ripening of C. edulis fruit; RS2 = second stage of ripening of C. edulis fruit; RS3 = third stage of ripening of
C. edulis fruit; SR = standard reference sample (commercial blueberries); pH = potentia hydrogenii; TTA = total
titratable acid; oBrix = soluble solids; TSS/TTA = sugar/acid ratio. Values are means ± standard deviation (n = 3).

The total titratable acid of samples analysed (expressed as citric acid by 0.064 factor (g/100 mL)
varied among samples examined. The acidity of C. edulis berries ranged from 0.37 ± 0.01 g/100 mL
for sample RS1 to 0.27 ± 0.02 g/100 mL for sample RS3 (Table 1). There was no significant difference
(p < 0.05) between samples RS1 (0.37 ± 0.01 g/100 mL) and RS2 (0.35 ± 0.01 g/100 mL), but both
samples differed significantly (p < 0.05) from RS3 (0.26 ± 0.02 g/100 mL). The works of Zarei et al. [22]
reported a significant decrease (p < 0.05) in TTA content at the last stage of ripening in Punica granatum.
Rubinskiene et al. [23] also reported similar results of reduction in TTA during ripening of black
currants fruit. The author reported that the acidity of the black currants fruit at 50% ripeness stage
was 5.05%, which reduced to 2.81% at 100% stage of ripeness. Observed decrease in TTA during
ripening is attributed to the fact that during ripening, as the concentration of soluble solids build up,
the concentration of organic acids decreases due to simple dilution and the utilization of acids in the
process of plant respiration [24].

2.1.2. Total Soluble Solids of Carissa edulis Fruit

Total soluble solids (oBrix) of samples showed significant increase between RS1 and RS3 (Table 1).
Significant difference (p > 0.05) was recorded among all samples, including the reference sample.
The TSS of C. edulis fruit samples at RS1 was 9.51 ± 0.21 oBrix, which significantly increased (p < 0.05) to
11.12± 0.87 oBrix at RS2. The soluble solids again increased significantly (p < 0.05) from 11.12± 0.09 oBrix
in RS2 to 13.51 ± 0.21 oBrix in RS3. The increase of sugars in the berries during ripening is as a result of
the storage and breakdown of carbohydrates in the roots and trunk of the vines as well as through the
process of photosynthesis. Sucrose produced by photosynthesis is transferred from the leaves to the
berries as it is broken down into glucose and fructose molecules upon ripening of the fruit [25].
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Rubinskiene et al. [23] reported an increase in soluble solids of black currants ranging from
12.0 oBrix for the 50% ripeness stage to 15.3 oBrix at the 100% ripeness stage. An increase in soluble
solids content and decrease in titratable acidity during ripening stages of the fruit was also observed
by Rubinskiene et al. [23]. Sample RS3 of C. edulis berries recorded the highest concentration of soluble
solids (13.51 ± 0.21 oBrix) among the three samples examined. Sample RS3 was observed to also be
significantly different (p < 0.05) from the soluble solids of SR (13.14 ± 0.07 oBrix).

2.1.3. Sugar/Acid Ratio of Carissa edulis Fruit

The concentration of soluble solids/acidity ratio was not static but varied significantly (p < 0.05)
during fruit development in the samples examined. A decrease in total acidity and an increase in total
sugars are important factors in the development of flavour. The sugar/acid ratio has been used as
fruit maturity index and has been found to increase with ripening of fruit and decrease as senescence
occurs in fruit [26]. The sugar/acid ratio of C. edulis ranged from 26.03 to 50.36 (Table 1). Analysed data
showed that sample RS3 contained a high TSS and acidity ratio of 50.36 while the TSS/TTA was low
for sample RS1 (26.03). Gunduz et al. [27] also reported similar results in cherry fruits. According to
the authors, sugar/acid ratio of cherry fruits during different stages of ripening increased as ripening
progressed with the reported values for the sugar/acid ratio of cherry fruits occurring at a range of
3.7% to 8.4%.

2.1.4. Colour Properties of Carissa edulis Fruit

In the CIELAB system of colour measurement, L* value is a measure of lightness of the samples,
and when L* is 0 it means the fruit is black, and when 100 it indicates a diffuse white. The a* value
measures redness when positive and greenness when negative, while the b* value measures the blue
(negative values) and yellow (positive values) colouration of samples. Apart from its use in the
determination of colour characteristics of food samples, the HUNTERLAB colorimeter values have
been reported to be used in determining the colour change during ripening or between different stages
of ripening of C. edulis fruits [8]. Similarly, results for colour properties during fruit maturity have
been reported by Celik et al. [28] in cranberry and Özgen et al. [29] in arbutus andrachne fruits.

In this study, the L* value of C. edulis ranged from 15.05 ± 0.04 to 24.79 ± 0.78 among the three
samples examined (Figure 2). The L* values significantly decreased with ripening progression time,
though there was no significant difference between RS2 and RS3. The results showed that sample
RS1 was significantly different from all ripening stages among samples analysed. The L* value of
the reference sample, 25.26 ± 1.46, was significantly different from sample RS3 of C. edulis berries.
The a* value of RS3 (5.14 ± 0.19) was significantly different (p < 0.05) from RS2 (6.74 ± 0.13). The b*
value of C. edulis ranged from 7.29 ± 0.49 to 1.27 ± 0.09 among the three samples. The b* value of
RS1 (7.29 ± 0.48) was significantly different (p < 0.05) from RS2 (1.24 ± 0.21) and RS3 (1.27 ± 0.09).
The significantly low b* values were expected as the berries were more red than yellow.

These observations show that the ripening progression had a high impact on colour change
of C. edulis fruits. Eichholz et al. [30] reported that colour changes during fruit ripening implies
both synthesis and degradation of the plant pigments, including chlorophyll, carotenoids as well as
flavonoids. As the berries ripen, the concentration of phenolic compounds, such as anthocyanins,
replaces the green colour of chlorophyll in the berries, which makes them purple instead. Colour change
in fruit samples is as a result of pigments which were always present in the fruit and becomes visible
when chlorophyll is degraded [31].
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Figure 2. CIELAB colour properties of Carissa edulis fruit samples. RS1, first stage of ripening of C. 
edulis; RS2, second stage of ripening of C. edulis berries; RS3, third stage of ripening of C. edulis berries; 
SR, standard reference sample (commercial blueberries); L*, lightness of samples; a*, redness when 
positive and greenness when negative; b*, yellow when positive and blue when negative. Error bars 
are standard deviation of mean values (n = 3). 
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the three C. edulis samples examined (Table 2). The extracts of all four samples had higher 
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edulis samples was significantly different (p < 0.05) during the different stages of ripening, with the 
TPC of C. edulis fruit samples decreasing with ripening stage progression. At RS1, TPC was 6.81 ± 
0.02 mg GAE/g, which decreased to 5.90 ± 0.41 mg GAE/g at RS2 and then increased to 6.71 ± 0.13 mg 
GAE/g at the final stage of ripening (RS3). These results can be compared to those of Castrejón et al. 
[32] who studied the phenolic profile and antioxidant activity of highbush blueberries during fruit 
maturation and ripening. The authors reported that TPC at the first stage of ripening had higher 
concentration of 42 mg GAE/g, which reduced to 30 mg GAE/g at the second stage of ripening and 
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Figure 2. CIELAB colour properties of Carissa edulis fruit samples. RS1, first stage of ripening of
C. edulis; RS2, second stage of ripening of C. edulis berries; RS3, third stage of ripening of C. edulis berries;
SR, standard reference sample (commercial blueberries); L*, lightness of samples; a*, redness when
positive and greenness when negative; b*, yellow when positive and blue when negative. Error bars
are standard deviation of mean values (n = 3).

2.2. Phytochemical Properties of Carissa edulis Fruit Samples

2.2.1. Total Phenolic Content (TPC) of Carissa edulis Fruit

The TPC of samples was determined using the Folin–Ciocalteu reagent on aqueous extracts of
C. edulis berries. Results of TPC ranged from 5.90 ± 0.41 mg GAE/g to 6.81 ± 0.02 mg GAE/g among the
three C. edulis samples examined (Table 2). The extracts of all four samples had higher concentrations
of TPC at the maturity stage RS1. Subsequently, there was an observed decrease in TPC during colour
break and ripening, particularly at the first stage in unripe berries. The TPC of C. edulis samples
was significantly different (p < 0.05) during the different stages of ripening, with the TPC of C. edulis
fruit samples decreasing with ripening stage progression. At RS1, TPC was 6.81 ± 0.02 mg GAE/g,
which decreased to 5.90 ± 0.41 mg GAE/g at RS2 and then increased to 6.71 ± 0.13 mg GAE/g at the final
stage of ripening (RS3). These results can be compared to those of Castrejón et al. [32] who studied the
phenolic profile and antioxidant activity of highbush blueberries during fruit maturation and ripening.
The authors reported that TPC at the first stage of ripening had higher concentration of 42 mg GAE/g,
which reduced to 30 mg GAE/g at the second stage of ripening and was further reduced to 19 mg
GAE/g at the third stage of ripening.

Table 2. Total phenolic and flavonoid content of Carissa edulis fruit samples.

Samples TPC (mg GAE/g) TFC (mg CE/g) DPPH (mmol TE/g)

RS1 6.81 ± 0.02 b 5.09 ± 0.04 b 20.24 ± 0.27 c

RS2 5.90 ± 0.41 a 5.92 ± 0.03 b 19.09 ± 0.02 b

RS3 6.71 ± 0.13 c 5.95 ± 0.76 a 18.36 ± 0.12 a

SR 7.21 ± 0.23 c 6.31 ± 0.27 b 20.26 ± 0.56 c

Means in the same column with the same superscript letter (a, b, c) are not significantly different (p > 0.05) for C. edulis.
RS1 = first stage of ripening of C. edulis; RS2 = second stage of ripening of C. edulis; RS3 = third stage of ripening of
C. edulis; SR = standard reference sample (commercial blueberries); TFC = total flavonoids content; TPC = total
phenolic content; DPPH = 2,2 diphenyl-1-picryl-hydrazyl; GAE = gallic acid equivalent; CE = catechin equivalent.
Values are means ± standard deviation (n = 3).
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Kalt et al. [33] reported a decrease in TPC at a ripe stage of fruit maturity for bush blueberries.
The authors reported a TPC of 12.5 ± 2.10 mg GAE/g DW for high bush blueberries at 50% ripeness
stage, with the TPC increasing to 18.5 ± 2.34 mg GAE/g DW at 100% ripeness stage. As observed by
Mäkilä [34], reported decrease in TPC in fruits may be due to environmental factors, such as sunlight
and room temperature, during sample analysis as total phenolics determination is very sensitive to
sunlight and high temperature. Phenolic compounds are generally sensitive to both temperature and
light, with Mäkilä [34] reporting a light induced conversion of (E)-p-coumaric acid derivatives into the
corresponding (Z)-isomers. Similarly, Zheng and Wang [35] reported an increase in phenolic content at
high temperatures of growth and a decrease during lower temperatures of growth.

Wang and Lin [36] observed that the content of total phenolics increased in black and red raspberry
from pink to the ripe stage, whereas for other berry species, such as strawberry and blackberry, the less
ripe berries had higher contents of total phenolics than the fully ripe berries. Similarly, Shin et al. [37]
reported decreasing TPC in strawberries with enhanced ripening. Such variations in the TPC are
mainly due to differences in genotypes of the cultivar, although several factors such as temperature,
light, and analytical conditions are known to be responsible for these dissimilarities [38,39]. The works
of Eichholz et al. [30] suggested that during ripening of highbush blueberry, there was a shift in
the pool of total polyphenols towards anthocyanin synthesis and an overall decline in the content
of further phenolic compounds. However, additional quantitative studies of individual phenolic
compounds appear to be needed for further clarification of the mechanisms responsible for the observed
variations [40].

In the work done by Kutz [41], phenolic antioxidants were reported to exhibit a weak absorption
tail extending well above 300 nm, which makes them easily transformed when they are irradiated with
terrestrial sunlight’s wavelength. As a result, phenolic antioxidants are not very effective UV stabilisers.
Light, UV-radiation, fungal infection, interaction with microorganisms or wounding affects the phenolic
profiles of plant tissues including the flavonoid biosynthesis [42,43]. These factors imply stress in
plants and thus results in an accumulation of phenolic compounds as a plant defence response [43].
Hence, during the analysis of C. edulis fruit samples, fruit extract from samples were kept in a brown
box for 30 min to avoid degradation of bioactive compounds.

2.2.2. Total Flavonoids of Carissa edulis Fruit

As reported by Harborne and Williams [44], flavonoids account for 60% of total dietary
phenolic content. Flavonoids are phenolic compounds, which are very effective antioxidants [45].
The predominant flavonoids found in berries and red grapes are anthocyanins and flavonols, which are
almost exclusively present in their glycosylated forms [30]. The total flavonoids content (TFC) of
samples obtained in this study ranged from 5.09 ± 0.04 mg CE/g to 5.95 ± 0.76 mg CE/g (Table 2) with
the TFC of C. edulis samples increasing with ripening stage progression. Total flavonoids were found to
be significantly higher (p < 0.05) at RS3 (5.92 ± 0.03 mg CE/g) among samples examined. Results of the
study also showed that there was no significant difference (p > 0.05) between RS1 (5.09 ± 0.04 mg CE/g)
and RS2 (5.92 ± 0.03 mg CE/g), yet RS3 (5.95 ± 0.76 mg CE/g) was significantly different (p < 0.05) from
RS1 and RS3. Sample SR with a flavonoid concentration of 6.31 ± 0.27 mg CE/g and used as standard
in this study was significantly different from sample RS3 at the ripe stage of maturity.

Flavonoids concentration of C. edulis berries used in this study increased with ripening stage
progression. There is evidence that flavonoid biosynthesis is associated with the development stages
of the fruit [32]. The enzyme activities are controlled in response to different developmental and
environmental conditions.
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2.2.3. 2,2 diphenyl-1-picryl-hydrazyl (DPPH) Radical Scavenging Activity of Carissa edulis Fruit

The DPPH radical scavenging assay was employed in evaluating the antioxidant activity of plant
extracts due to its effectiveness [46]. Antioxidants are compounds that are capable of donating electrons
of hydrogen atom to inhibit a free radical reaction [8]. An antioxidant effect is observed by scavenging
free radicals that are involved in slowing or inhibiting oxidative stress.

The DPPH scavenging activity of sample RS1 (20.24 ± 0.27 mmol TE/g) was significantly higher
(p < 0.05) than scavenging activities of RS2 (19.09 ± 0.02 mmol TE/g) and RS3 (18.36 ± 0.12 mmol
TE/g). There was a significant difference (p < 0.05) between the three different stages of ripening
of C. edulis berries. Generally, the DPPH scavenging activities of all C. edulis samples decreased
with the ripening stage progression, with sample RS3 recording a significantly least antioxidant
activity of 18.36 ± 0.12 mmol TE/g among all samples examined. The reference sample SR exhibited an
antioxidant activity of 20.26 ± 0.56 mmol TE/g, which was not significantly different from sample RS1.
Gunduz et al. [27], who conducted a study on the antioxidant, physical and chemical characteristics
of cornelian cherry fruits (Cornus mas) at different stages of ripeness, reported that the antioxidant
activity of the cornelian cherry fruits ranged from 55.0–7.8 µmol TE g−1 FW and this decreased with the
ripening progression. At the first stage of ripening of the cornelian fruits (with light yellow colouration),
the fruits contained significantly higher antioxidant activity (55.0 µmol TE g−1 FW) than the last stage
of ripening (with dark red colouration), which contained significantly lower antioxidants activity
(7.8 µmol TE g−1 FW).

2.2.4. Polyphenolic Profile of Carissa edulis Fruit

Phenolic compounds in C. edulis fruit were analysed by liquid chromatography-mass spectrometry
(LC-MS) using a Waters Acquity ultra-performance liquid chromatography (UPLC) with photo
diode array (PDA) detector connected to a Waters Synapt G2 quadrupole time-of-flight (QTOF)
mass spectrometer (Waters, Milford, MA, USA). Detected compounds were tentatively characterised
by means of high-resolution MS data together with the interpretation of the observed MSE and
UV spectra in comparison with those in literature and online databases. Several compounds were
identified from C. edulis fruit samples, as shown in Figures 3 and 4. These compounds together
with their retention times, mass errors, molecular ions and their tentative names are presented in
Table 3. Polyphenolic compounds obtained from samples of C. edulis fruits used in this study could be
classified primarily as phenolic acids and flavonoids. Other compounds not classified as polyphenolic
compounds were also identified in the fruit samples.



Molecules 2019, 24, 2630 8 of 19Molecules 2018, 23, x FOR PEER REVIEW  8 of 21 

8 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. TIC Chromatograms of fruit samples at ripening stage 1. A, zoomed in chromatogram > 4 min; B, full chromatogram.  

 

Figure 3. TIC chromatograms of Carissa edulis fruit samples at ripening stage 1. (A) Zoomed in chromatogram > 4 min; (B) full chromatogram. 

1 

2 

3 
5 6 

7 
8 

9 10
11 12 13 14 16 

Time
4.00 4.50 5.00 5.50 6.00 6.50 7.00 7.50 8.00 8.50 9.00 9.50 10.00 10.50 11.00 11.50 12.00 12.50 13.00 13.50 14.00 14.50 15.00 15.50 16.00 16.50 17.00 17.50 18.00

%

1

3 

4 5 

6 

7 

8 

9 

17 

10 

11 12 
13 

14 15 

18 

17 

18 

19 

19 4 15 

16 

A 

B 
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Table 3. Compounds identification in Carissa edulis fruit.

Peak
No.

Rt
(min)

[M − H]−
(m/z)

[M − H]−
Formula

Error
(ppm) MSE Fragments (m/z) UV (nm) Tentative Identification Classification

1 1.16 191.0539 C7H11O6 2.6 85 264 Quinic acid Phenolic acids (Cyclic polyol)
2 2.17 191.0181 C6H7O7 0.6 155, 127, 111 280 Citric acid Organic acid
3 4.35 309.1188 C12H22O9 −1.0 309, 129 Weak Unknown
4 6.56 315.0715 C13H15O9 −0.3 153, 109 306 Protocatechuoyl-hexose Phenolic acids
5 6.75 353.0854 C16H17O9 1.7 191, 179, 135 325 Neochlorogenic acid (3CQA) Phenolic acids
6 8.09 175.0605 C7H11O5 −2.9 115 Weak Unknown
7 8.65 353.0876 C16H17O9 −2.5 191 325 Chlorogenic acid (5CQA) Phenolic acids
8 9.10 353.0886 C16H17O9 0.8 191, 179, 173, 135 325 Cryptochlorogenic acid (4CQA) Phenolic acids

9 9.56 577.1357 C30H25O12 2.6 407, 289 279 Procyanidin dimer
Flavonoid

(Proanthocyanidin/condensed
tannin)

10 10.26 289.0695 C15H13O6 1.7 245, 203, 179, 137, 125 278 Catechin Flavonoid (Flavan-3-ol)
11 10.93 439.1859 C18H31O12 −1.8 408, 289, 161, 125 278 Unknown

12 11.21 865.1946 C45H37O18 −3.9 695, 575, 407, 289, 161 278 Procyanidin trimer
Flavonoid

(Proanthocyanidin/condensed
tannin)

13 12.75 595.132 C26H27O16 3.5 300, 271, 255 349 Quercetin-3-O-glucosyl-xyloside Flavonoid (Flavonol-glycoside)
14 13.44 609.1467 C27H29O16 3.8 301, 300, 271, 255 351 Quercetin-3-O-robinobioside Flavonoid (Flavonol-glycoside)
15 13.75 609.147 C27H29O16 2.6 301, 300, 271, 255 351 Quercetin-3-O-rutinoside (rutin) Flavonoid (Flavonol-glycoside)
16 14.06 463.0867 C21H19O12 0.4 300, 271, 255 353 Quercetin-3-O-glucoside (isoquercitrin) Flavonoid (Flavonol-glycoside)
17 15.24 607.1327 C27H27O16 −0.5 505, 463, 300, 271 351 Quercetin-3-OH-3-methylglutaryl-glucoside Flavonoid (Flavonol-glycoside)
18 16.82 515.1204 C25H23O12 2.7 191, 179, 173, 135 329 Dicaffeoylquinic acid Phenolic acids
19 17.61 1381.4824 C60H85O36 −0.3 869, 827, 511, 409 277 Unknown

Rt, retention time.
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It is well known that flavonoid biosynthesis is closely related to the developmental stages of
the fruit [32,33,47,48]. As reported by Halbwirth et al. [48], two distinct flavonoid enzyme activity
peaks exist during ripening: The first corresponding to the production of flavonols and phenolic
acids at the early stage of ripening accompanied by a second biosynthesis peak involving a shift
in enzyme pathways towards the production of anthocyanins during berry ripening. A total of
19 compounds were found to be present in the first stage of ripening (peaks 1–19). Peaks 1, 4, 5, 7, 8 and
18 were identified as quinic acid (m/z 191.0181, λ: 280), protocatechuoyl-hexose (m/z 315.0715, λ: 306),
neochlorogenic acid (m/z 353.0854, λ: 284), chlorogenic acid (m/z 353.0876, λ: 191), cryptochlorogenic
acid (m/z 353.0886, λ: 284) and dicaffeoylquinic acid (m/z 515.1204, λ: 329), as seen in Table 3. Peaks 13
(a quercetin diglycoside) and 16, a quercetin monoglycoside, showed molecular ion at m/z 595.132 and
463.0867 with formulas C26H27O16 (3.5) and C21H19O12 (0.4). Both peaks 13 and 16 were identified as
quercetin-3-O-glucosyl-xyloside and quercetin-3-O-glucoside. Furthermore, peaks 14 and 15, which are
quercetin diglycosides and showed molecular ion at m/z 609.1467 and 609.147 with formulas C27H29O16

(3.8) and C27H29O16 (2.6), were identified as quercetin-3-O-robinobioside and quercetin-3-O-rutinoside.
Peaks 9, 10, 12 and 17 with molecular ion at m/z 577.1357 (C30H25O12, 2.6), 289.0695 (C15H13O6, 1.7),
865.1946 (C45H37O18, −3.9) and 607.1327 (C27H27O16, −0.5) were identified as procyanidin dimer,
catechin, procyanidin trimer and quercetin-3-OH-3-methylglutaryl-glucoside, respectively.

Phenolic acids present in C edulis fruit samples include: Quinic acid, protocatechuoyl-hexose,
neochlorogenic acid, chlorogenic acid, cryptochlorogenic acid and dicaffeoylquinic acid. Authors Lachowicz
et al. [10] reported the presence of neochlorogenic, chlorogenic, cryptochlorogenic and protocatechuic
acid among other phenolic acids in Saskatoon berry genotypes grown in central Poland. Similarly,
Brito et al. [49] reported the presence of chlorogenic and neochlorogenic acid in their work on
anthocyanin characterization, total phenolic quantification and antioxidant features of some Chilean
edible berry extracts. In C. edulis fruit samples examined in this study, concentration of chlorogenic
acid was seen to be high at both stages of ripening with the concentration of chlorogenic acid ranging
from 215.87 ± 7.10 (RS1) to 215.15 ± 16.03 µg/g (RS2). It could be inferred that C. edulis at different
stages of ripening is a good source of chlorogenic acid. Gibson et al. [50] reported a high concentration
of chlorogenic acid in lowbush blueberries during the stages of maturity. The authors further stated
that the first stage of maturity on lowbush blueberries contained 307 ± 32 mg/100 g DW of chlorogenic
acid while the second stage of maturation contained 200 ± 25 mg/100 g DW of chlorogenic acid
concentration. As observed, concentration of phenolic acids varied at different stages of ripening with
its occurrence differing as ripening progressed.

Flavonoids identified in C. edulis samples examined include: procyanidin dimer, procyanidin
trimer, catechin, quercetin-3-O-glucosyl-xyloside, quercetin-3-O-robinobioside, quercetin-3-O-
rutinoside (rutin), quercetin-3-O-glucoside (isoquercitrin) and quercetin-3-OH-3-methylglutaryl-glucoside.
Jurikova et al. [51] reported the presence of rutin, quercetin monoglycosides (quercetin-3-O-glucoside
and quercetin-3-glucosyl-xyloside) and quercetin diglycosides (quercetin-3-O-robinobioside and
quercetin-3-rutinoside) in a review on flavonoid profile of Saskatoon berries and their health promoting
effects while Brito et al. [49] further confirmed the presence of isoquercitrin, quercetin and rutin
in their work done on some Chilean edible berry extracts. Other flavonoids, such as procyanidin
dimer, catechin, caffeoylquinic acid derivatives and quercetin-3-O-robinobioside, were identified
in chokeberry juice and dried fruits by Oszmianski and Lachowicz [52]. Catechin was identified
in C. edulis berries at different stages of ripening and at varying concentrations. At RS1, C. edulis
contained higher concentration of catechin (118.97 ± 10.78 µg/g), while C. edulis at RS2 contained
catechin concentration of 28.24 ± 5.31 µg/g (Figure 5a,b). In the works of Sun et al. [53], catechin at a
concentration of 48.9 mg/kg was identified in grapes at maturation stage of development. The author
equally reported identification of catechin at veraison stage with a concentration of 28.7 mg/kg.
Similarly, Stanila et al. [54] also reported catechin as the most abundant polyphenolic compound in
Rosa canina wild berries.
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Procyanidin dimer was also identified in large concentrations of 130.66 ± 12.05 µg/g in RS1 and
43.91 ± 6.23 µg/g in sample RS2. Procyanidin is a phenolic compound with four to eight bonds that
possesses the ability to act as free radical scavenger. Sample RS1 recorded a higher procyanidin dimer
concentration when compared to sample RS2. This shows that ripening stage progression affected the
procyanidin dimer concentration of C. edulis samples. Rutin, another flavonoid identified in samples RS1
and RS2 of C. edulis samples, examined recorded a concentration of 39.15 ± 9.67 to 45.24 ± 11.85 µg/g
for samples RS1 and RS2, respectively. A similar result was observed by Gibson et al. [50], who reported
a decrease in rutin concentration during different maturation stages in lowbush blueberries. It must
be noted, however, that there was an observed increase in rutin concentration between samples RS1
(39.15 ± 9.67 µg/g) and RS2 (45.24 ± 11.85 µg/g) as ripening progressed.

Apart from polyphenols identified in C. edulis fruit samples, other plant nutrients, such as
citric acid and some unknown compounds not grouped as polyphenols, were observed in the fruit
samples examined.

3. Materials and Method

3.1. Fruit Samples

Carissa edulis fruits used for this study were harvested at various stage of ripeness at Ha-Mashau
Limpopo Province, South Africa. Upon harvest, fruits were grouped according to their state of maturity
and ripeness: First stage of ripening (red ripe), RS1; second stage of ripening (purple ripe), RS2;
and last stage of ripening (purplish black ripe), RS3. Commercial blueberries purchased at Shoprite
Thohoyandou, South Africa, were used as standard reference sample (SR). Carissa edulis fruit samples
at various stage of senescence and in their unprocessed fresh state were used for determination of the
various physicochemical properties. Samples were then stored at freezing temperature of −20 ◦C for
further use.

3.2. Preparation of Plant Extracts

Plant extracts were prepared by refluxing 2 g of crushed C. edulis samples with 20 mL of methanol
containing 1% HCl for 2 h at 60 ± 5 ◦C [55]. The mixtures were centrifuged (5000 rpm, 20 min) and the
supernatants separated and used for analysis of total phenolic content, total flavonoid content and
antioxidant activity.

3.3. 2,2-diphenyl-1-picrylhydrazyl (DPPH) Radical Scavenging Activity

The DPPH radical scavenging activity was determined according to the method of De Ancos
et al. [56] with some modifications. An aliquot (10µL) of the acidified methanolic extract was mixed with
distilled water (90 µL) and 3.9 mL of methanolic 0.1 mM DPPH solution. The mixture was thoroughly
vortexed and kept in the dark for 30 min, and the absorbance was read at 515 nm. A calibration curve
was prepared using a standard solution of Trolox (R2 = 0.9633) and results were expressed as mmol of
Trolox equivalent (TE) per g of the sample. All samples were analysed in triplicate.

3.4. Total Phenolic Content Determination

Total phenolic content was determined by the Folin–Ciocalteu method, a colorimetric assay based
on procedures described by Singleton et al. [57]. Briefly, 0.1 mL of the acidified methanolic extract
was mixed with 5 mL distilled water in a 50 mL volumetric flask. Folin–Ciocalteu’s reagent (1:2
dilution with water, 2.5 mL) and 7.5 mL 15% sodium carbonate solution were added, mixed thoroughly,
made up to 50 mL and allowed to react for 30 min. The absorbance of the reaction mixture was read at
760 nm with a spectrophotometer. A calibration curve was prepared using a standard solution of gallic
acid (R2 = 0.995) and result was expressed as mg of gallic acid equivalent (GAE) per g of the sample.
All samples were analysed in triplicate.
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3.5. Total Flavonoids Determination

Total flavonoid content was determined spectrophotometrically according to Zhishen et al. [58].
A 0.1 mL extract was mixed with 4.9 mL distilled water and 0.3 mL (5% w/v) NaNO2 was added.
After 5 min, 0.3 mL (10% w/v) AlCl3 and at 6 min, 2 mL 1 M NaOH were added, with the total volume
immediately made up to 10 mL using distilled water. The mixture was vortexed and the absorbance
read at 510 nm. A calibration curve was prepared using catechin hydrate standard (R2 = 0.9317)
and the result expressed as mg catechin equivalents per g of the sample. All samples were analysed
in triplicate.

3.6. Determination of pH and Titratable Acidity

The pH of samples was determined in triplicate at room temperature using a Fisher Accumet,
Model 15, pH Meter (Fisher Scientific, Edmonton, AB, Canada). Three-point calibration was
accomplished employing pH 7.0, 4.0 and 2.0 buffers [4,8].

The method of AOAC 942.15 [59] was used in the determination of titratable acidity.
Approximately 10 g of crushed C. edulis berries were diluted to 250 mL with distilled water and
titrated with 0.1N NaOH using 0.3 ± 0.1 mL of phenolphthalein for each 100 mL of solution to pink
end persisting for 30 s. Acidity was reported as mL 0.1 N NaOH per 100 mL. Total titratable acidity
was expressed as citric acid by 0.064 factor (g/100 mL). All analyses were carried out in triplicate.

3.7. Determination of Soluble Solids (oBrix)

Total soluble solids of samples were determined spectrophotometrically according to Green [8]
with some modifications [4]. Soluble solids were expressed as oBrix for obtained data from samples
examined. The fruits were crushed using pestle and mortar, and soluble solids were determined on the
crushed berries using a Leica Auto Abbe refractometer, Model 10,504 (Leica Inc., Buffalo, NY, USA)
with temperature compensation. Fruit samples were analysed in triplicates.

3.8. Determination of Colour Parameters

The colour of C. edulis was measured using a colorimeter (ColourFlex, HunterLab, Hunter Associates
Laboratory, Inc., Reston, VA, USA) according to the method of AOAC 955.23 [57]. The colorimeter
was calibrated with a standard white (L* = 93.71, a* = –0.84 and b* = 1.83). The berries were
transferred to a glass sample cup (Hunter Associates) and placed over the analysis port on the colour
meter. A black cover cup was placed over the sample, and the CIELAB L*, a* and b* values were
measured. Colour was expressed as L-value (lightness/darkness), a-value (redness/greenness) and
b-value (yellowness/blueness). Samples were analysed in triplicate.

3.9. Liquid Chromatography Coupled to Diode Array Detection and Electrospray Ionisation Mass Spectrometry
(LC-DAD-ESI-MS) Analysis of Phenolic Compounds in Carissa edulis Fruit

A total of 10–15 fruit samples were homogenised and macerated using a mortar and pestle. To the
crushed C. edulis samples, 5 g was removed and placed in sample bottles. A total of 20 mL of 50%
methanol and 1% formic acid was then added to the 5 g crushed sample. The mixture was vortexed and
allowed to stand overnight for extraction. The solution was then sonicated for 30 min and 2 mL of the
aliquot centrifuged at 12,000 rpms for 5 min. From the centrifuged solution, 1 mL of the fruit sample
was placed in vials, sealed in preparation for liquid chromatographic analysis. Liquid chromatography
mass spectrometry (LC-MS) analysis was conducted on a Waters Synapt G2 quadrupole time-of-flight
mass spectrometer (Waters, Milford, MA, USA). The instrument was connected to a Waters Acquity
ultra-performance liquid chromatography (UPLC) and Acquity photo diode array (PDA) detector.
Ionisation was achieved with an electrospray source using a cone voltage of 15 V and capillary voltage
of 3 kV using negative mode for determination of phenolic compounds. Data were acquired in MSE
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mode, which involves a low collision energy scan followed by a high collision energy scan to acquire
both molecular ion and fragmentation data in one run.

Desolvation gas used was nitrogen at a flow rate of 650 L/h and desolvation temperature of 275 ◦C.
Aqueous formic acid 0.1% (v/v) and acetonitrile were used as mobile phases A and B, respectively.
Separation was carried out in 29 min under the following conditions: 0 min, 0% B; 22 min, 28% B; 22.5 min,
40% B; 23 min, 100% B; 25 min, 0% B, with the initial conditions held for 4 min as a re-equilibration step.
The separations were conducted on a Waters Acquity BEH C18 column (2.1 × 100 mm, 1.7 µm particle
size), with injection volume of 3 µL at flow rate of 0.4 mL/min. Epicatechin standard obtained from
Sigma-Aldrich, South Africa, was used for relative quantification of phenolic compounds in C. edulis
fruit with samples extracted in triplicate and injected three times. Detected compounds were tentatively
characterised by means of MS data together with the interpretation of the observed MSE spectra in
comparison with those in literature and online databases, such as Metlin, ChemSpider and MassBank.
Obtained data were expressed as microgram epicatechin per gram of sample.

3.10. Statistical Analysis

The fruit samples were analysed in triplicates for each determined fruit assay. Statistical analysis
was performed using one-way analysis of variance (ANOVA) and means of triplicate determinations
separated using Duncan multiple range test (p < 0.05). The results of analysis were expressed as mean
values ± standard deviation (SD) and all statistical analysis performed using IBM SPSS Statistics for
windows version 24 (IBM Corp., Armonk, NY, USA).

4. Conclusions

Obtained results clearly demonstrate that the phenolic content, antioxidant and physicochemical
properties of C. edulis fruits are affected by ripening stages. Significant variability was observed for
physicochemical (colour, total solid solubility and pH) antioxidant and phenolic properties among
all three stages of ripening of C. edulis fruit samples. Recorded antioxidant activities, total phenolics
and flavonoid content as well as individual polyphenols with varying concentrations were equally
reported among ripening stages in fruit samples examined. Although ripe C. edulis berries are
generally more edible at the final stage of ripening, greater antioxidant activity was observed at the
first stage of ripening while total flavonoid content increased with progression in ripening. A total
of 19 compounds—14 phenolics, 1 organic and 4 unknown compounds—were identified in C. edulis
berries used in this study with the identified polyphenolic compounds mainly of the phenolic acids
and flavonoid groups. Citric acid was the organic acid identified in fruit samples with the other
unknown compounds. This study thus provides, for the first time, information regarding polyphenolic
compounds present in C. edulis fruit and at different stages of ripening of the berries. More studies on
the phenolic profiles during ripening of different genotypes in relation to colour, flavour, acidity and
other attributes need be investigated.
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