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Abstract: (1) Background: the use of machine learning techniques for the purpose of anticipating
hypoglycemia has increased considerably in the past few years. Hypoglycemia is the drop in blood
glucose below critical levels in diabetic patients. This may cause loss of cognitive ability, seizures,
and in extreme cases, death. In almost half of all the severe cases, hypoglycemia arrives unannounced
and is essentially asymptomatic. The inability of a diabetic patient to anticipate and intervene the
occurrence of a hypoglycemic event often results in crisis. Hence, the prediction of hypoglycemia
is a vital step in improving the life quality of a diabetic patient. The objective of this paper is to
review work performed in the domain of hypoglycemia prediction by using machine learning and
also to explore the latest trends and challenges that the researchers face in this area; (2) Methods:
literature obtained from PubMed and Google Scholar was reviewed. Manuscripts from the last five
years were searched for this purpose. A total of 903 papers were initially selected of which 57 papers
were eventually shortlisted for detailed review; (3) Results: a thorough dissection of the shortlisted
manuscripts provided an interesting split between the works based on two categories: hypoglycemia
prediction and hypoglycemia detection. The entire review was carried out keeping this categorical
distinction in perspective while providing a thorough overview of the machine learning approaches
used to anticipate hypoglycemia, the type of training data, and the prediction horizon.

Keywords: hypoglycemia; machine learning; prediction; detection; artificial intelligence; decision
support system (DSS)

1. Introduction

Hypoglycemia is the drop in blood glucose (BG) below critical levels [1]. The BG level
at which hypoglycemia occurs, however, has long been a topic of much debate in medical
circles [2]. The most accepted definition is that when the BG level drops below 70 mg/dL
or 3.9 mmol/L, hypoglycemia is diagnosed [3]. It is one of the most lethal conditions that
may arise most commonly in type 1 diabetics (T1D) followed by type 2 diabetics (T2D).
Hypoglycemia may lead to loss of consciousness, confusion, seizures, and in extreme cases,
death [4]. The symptoms of hypoglycemia, however, may vary for different individuals
based on several factors. For a symptom to be associated with hypoglycemia, it is important
that it satisfies Whipple’s triad [5]. This essentially means that the symptom is consistent
with hypoglycemia, the blood glucose level is below the normal range, and the symptom is
relieved when the plasma glucose level is increased to normal or above. The symptoms
of hypoglycemia are eventually connected to neuronal glucose deprivation, which in
layman terms means glucose deprivation of the human nervous system and brain [6].
These symptoms could then be categorized into neurogenic symptoms caused by glucose
deprivation of the autonomic nervous system and the neuroglycopenic symptoms caused
by the glucose deprivation of the central nervous system. Based on the level of BG, the
symptoms of hypoglycemia can be categorized as mild, moderate, and extreme. It is in
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the extreme form that hypoglycemia is most lethal. In most cases, however, hypoglycemia
does not have any symptoms at all and occurs silently. The silent arrival of hypoglycemia
is one of the causes of distress for its sufferers. Along with the physical discomforts that
hypoglycemia brings, the mental torments are a major reason for the diabetics to despise
its existence. The insecurity and fear of hypoglycemia causes the life quality of diabetics to
degrade immensely [7]. The main cause of hypoglycemia is the reduction in blood glucose
levels because of an overdose of insulin or a low intake of food/carbohydrates [8]. The
reduction in BG that is caused by insulin or any other form of drugs is known as iatrogenic
hypoglycemia [9]. Hypoglycemia may occur because of multiple other reasons, i.e., kidney
failure, liver complications, hyperthyroidism, starvation, and the consumption of certain
drugs including alcohol. Hypoglycemia may be classified into multiple groups based on
factors, i.e., the agent of cause, the time of the day it occurs, the age of the individual, the
severity of the glycemic event, and the connection to another condition in the body [10].

Based on the time of occurrence, hypoglycemia is commonly characterized into day-
time hypoglycemia, postprandial hypoglycemia [11], and nocturnal hypoglycemia [10].
Daytime hypoglycemia typically means the hypoglycemic event that occurs during the day.
Postprandial hypoglycemia refers to the hypoglycemic event after the patient has eaten.
It could also be referred to as reactive hypoglycemia, whereas nocturnal hypoglycemia
means the hypoglycemic event occurs during the night when the patient is sleeping. Each
type of hypoglycemia has its own associated risks. Patients run the risk of postprandial
hypoglycemia when they misestimate the amount of carbohydrates (CHO) consumed in
each meal. Varying insulin sensitivity is also a major factor in misanalysing the amount
of bolus insulin needed and might lead to postprandial hypoglycemia [12]. Nocturnal
hypoglycemia, on the other hand, is a much bigger problem than any other form of hypo-
glycemia. The reason is that nocturnal hypoglycemia occurs when the patient is sleeping
and is virtually incapable of defending him-/herself against the glycemic event. The fact
that over half of all the extreme hypoglycemic episodes occur during sleep add to the
severity of this type of hypoglycemia.

Since hypoglycemia is a combination of various symptoms when blood glucose drops
below 70 mg/dL and sometimes it is entirely asymptomatic, diagnosing it is very hard
and it is near impossible for a human to predict its occurrence in advance. In the case
of a hypoglycemic event, the initial treatment could be consuming 15 to 20 g of fast
acting carbohydrates [2], and even though the consumption of glucose seems like the
only solution to overcome an ailment that is caused by the deficiency of glucose, it takes
10–15 min for the human body to process glucose [4]. This means that the patient has
already experienced mental and physical trauma before returning to a normal glycemic
state. Moreover, clinical evidence and observational data show that the recommended
glycated haemoglobin (HbA)targets are not met in the majority of T1D patients [13]. A
more appropriate approach is to manage the blood glucose in such way that hypoglycemia
is prevented.

There has been an immense surge in the use of technologies for diabetes management.
Glucose monitoring systems have been one of the trending topics in biomedicine [14].
Multiple glucose monitoring devices are available these days that provide periodic or
flash updates of the patient’s glucose levels. Some commercially available devices include
Medtronic CGM, Abbott FreeStyle Libre, and Dexcom CGM systems [15,16]. These devices
contain a continuous glucose monitoring (CGM) sensor along with a portable monitor
that displays glucose levels and in some cases provides alarms of adverse glycemic events.
The CGM sensors measure glucose dynamically and have a tiny filament inserted beneath
the skin. These sensors remain in contact with the interstitial fluid with the help of an
enzymatic electrode. Such electrodes use enzymes to cause reduction–oxidation reactions
and then measure the amount of current or voltage produced by the movement of electrons,
which is often concentration dependant [15]. The latest commercially available CGM
sensors such as the FreeStyle Libre by Abbot give a BG value reading with a sampling time
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of 1 s and has a lifespan of 14 days after its first use, during which it does not need to be
calibrated. This makes the process of testing BG less painful.

These monitoring devices are sometimes used in coordination with an insulin pump
to form the sensor-augmented pump (SaP) therapy [17]. The SaP forms an important
component of a closed-loop artificial pancreas (AP) system. Such systems have been
worked upon for many years [18]. A closed-loop AP system has three main components, a
CGM, an insulin pump, and control algorithm that controls the insulin dose. In other cases,
the glucose monitoring systems, when used in coordination with an artificially intelligent
decision-making module that gives suggestions about insulin and carbohydrate intake
to the patients, form a decision support system (DSS). The DSS has proven to be an apt
therapy for multiple daily injections (MDI) users, which is the most common method of
insulin treatment for diabetic patients.

Machine learning (ML) has emerged as one of the major fields of artificial intelligence
(AI) in recent times, and its impact on healthcare has been huge [19,20]. The concept of ML
has its roots in computer science, statistics, and optimization. With a focus on enabling the
computer to train itself without being explicitly programmed, ML gives a computer the
power to predict outcomes up to a certain level of accuracy. In many medical scenarios
knowledge of an adverse event beforehand could prevent an emergency and in many cases
save lives. The quality of ML to predict the future makes it a great tool to anticipate such
events [21]. Hypoglycemia, being one of such events, may also be anticipated using ML.
The uncertainty associated with the occurrence of a hypoglycemic event looms on the
horizon for T1Ds, making their lives ever so miserable. Biomedical engineers, therefore,
want to come up with efficient predicting models in order to reduce the uncertainty and
improve the life quality of diabetics. This is the reason that there has been an exponential
increase in research work focused on ML techniques to predict adverse glycemic events in
general and hypoglycemia in particular [22]. It is still too early to say that most such works
are truly ready to be made commercially available for the public use; however, encouraging
results have been seen in several of these works. It is known that ML techniques feed
on large amounts of data in order for their prediction to be accurate. Moreover, the data
need to be diverse and free of any corruption and irregularities [23]. To have such data
for any biomedical application is a hard task because of the involvement of many such
constraints that affect the quality of the data being acquired. Medical data are renowned for
being complex and disordered. The limitations associated with sensors, noncompliance of
patients to the study protocols, faults in the study protocols, and unwillingness of patients
to undergo the study are some of the factors that affect the quality of data available for
the training of ML algorithms. It is for this reason that biomedical data require a lot of
pre-processing and filtration before being ready to be fitted with an ML model.

The Aim of Hypoglycemia Prediction

Experts have tried to identify hypoglycemia based on different characteristics but most
of the times, hypoglycemia is asymptomatic and is often unrecognized. This is one reason
hypoglycemia can prove deadly. The absence of signs and prior indicators may cause the
patients to act undesirably in the wake of a hypoglycemic event and consequently move
themselves into disaster. Though the occurrence of hypoglycemia is hard to determine, it is
often observed in patients who take insulin regularly [24]. Of the patients who take insulin,
type 1 diabetics are three times more likely to experience hypoglycemia as compared to
type 2 diabetics [25].

In many cases even when a hypoglycemic is recognized by the patient, it is often
too late to prevent it. Hence, taking carbohydrates/glucose when a hypoglycemic event
is taking place will not help the cause. It is therefore necessary to have a mechanism
that could inform the patient in advance about the occurrence of a hypoglycemic event
in the future. The aim of such a system should be to correctly forecast a hypoglycemic
event in the future and then inform/warn the patient about it. A prediction system like
this could be efficiently embedded in a decision support system (DSS). A DSS could then



Sensors 2021, 21, 546 4 of 21

guide the patient about the steps and measures to be taken to prevent the predicted event
from happening.

This review focuses on the performance and potential of several such works. The
works that are reviewed here are explicitly focused on ML techniques for hypoglycemia
prediction/detection in T1Ds. Tables 1 and 2 shows the entire collection of manuscripts
reviewed. It could be observed from these tables that the majority of the works done in
the domain of hypoglycemia prediction/detection were published in 2019 and 2020. This
is proof of a rising trend in the use of ML models for hypoglycemia prediction/detection.
It is important to mention here that throughout this review, the ML frameworks are not
discussed explicitly. No effort in establishing a ranking criterion has been made. The
reason for this is that a large variety of ML frameworks are used in the literature and also,
the factors defining the frameworks are diverse. Since no two studies used a common
framework for ML modelling, comparing research works based on their frameworks was a
hard task. Another reason of refraining from any sort of quantitative comparison was to
keep the review as impartial as possible and let the readers establish an understanding of
the work done in the field of ML-based prediction of hypoglycemia.

The methodology of the entire review process is discussed in the next section. Results
obtained from the review are discussed in the section after that. A thorough analysis of the
reviewed manuscripts is done in the results section based on a distinction between studies
aimed at hypoglycemia detection and prediction, the data used to train the ML models,
the type of ML models used, and the prediction/forecasting horizon. A discussion about
the entire review is presented in the succeeding section followed by a conclusion of the
presented work.
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Table 1. Summary of reviewed manuscripts addressing hypoglycemia detection: ML model used to perform the detection, type of data (ToD) used to train the ML model, the size of the
cohort, recording duration (RD), age of population (AoP), gender of the participants in study, treatment method (TM).

Ref Year ML Model ToD Cohort RD AoP Gender TM

[26] 2019 cTAKES clinical notes 395 and 460 notes - - - -

[27] 2017 LDA a BG, breath samples 56 1 bag each CH n, ADO p, ADU q F r: 55.36%,
M s: 44.64% -

[28] 2018 PLSR b, ANN d temp, IR c, Z 20 2 days ADU - -

[29] 2018 CNN e EHR 500 records 95,246 sentences - - -

[30] 2019 LSVM f, LR g, RF h Secure messages 3000 messages - - - -

[31] 2020 XGBoost EHR 17,658 4 years ADU F: 47%
M: 53% MDI

[32] 2016 SVM i HR, temp, GSR 1 2 months ADU M: 100% IP u

[33] 2018 RF, MLP t BG, PA 93 4 months CH, ADO, ADU F: 46.2%
M:53.7% IP

[34] 2016 DT j ECG, breath data, accelerometer 5 260 h - - IP

[35] 2016 DL k ECG 15 10 h CH - MDI

[36] 2019 DL EHR 500 records - - - -

[37] 2015 - EEG 15 - CH, ADO, ADU - -

[38] 2019 KNN l camera, BG 14 850 samples/subjects ADU - -
a LDA: Linear Discriminant Analysis; b PLSR: Partial Least Square Regression; c IR: Infra-Red; d ANN: Artificial Neural Network; e CNN: Convolutional Neural Network; f LSVM: Linear Support Vector
Machine; g LR: Logistic Regression; h RF: Random Forest; i SVM: Support Vector Machine; j DT: Decision Tree; k DL: Deep Learning; l KNN: K-Nearest Neighbor; n CH: Children; p ADO: Adolescents; q ADU:
Adults; r F: Female; s M: Male; t MLP: Multilayer Perceptron.
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Table 2. Summary of reviewed manuscripts addressing hypoglycemia prediction: ML model used to perform the detection, prediction horizon (PH) in minutes, the size of the cohort,
recording duration (RD), type of data (ToD) used to train the ML model, treatment method (TM), age of population (AoP), gender of the participants in study.

Ref Year ML Model PH (min)
Cohort

Size RD ToD TM AoP Gender

[39] 2019 LDA 35 463 4721 nights BG, Insulin IP ADU F: 58% M: 42%

[40] 2019 DT, RF 30 55 244 exercise sessions HR, BG IP ADU F: 60% M: 40%

[41] 2020 MLP, SVM 360 10 12 weeks HR, BG, CHO MDI ADU F:80% M:20%

[42] 2016 Extreme ML NN 360 16 4.09 days ECG - CH -

[43] 2019 RF, SVM, KNN, LR 30 104 113 days BG MDI ADU F: 60% M: 40%

[44] 2017 k-mean clustering 540 34 10 days BG - ADU -

[45] 2020 RMRF a - 127 2525 nights BG, PA, Insulin, CHO - - -

[46] 2019 Ensemble of commonly
used ML models 30 104 Between 2014 and 2015 1 (BG) - - -

[47] 2020 RF 360 9800 1 mil nights BG IP ADU F: 51% M: 49%

[48] 2020 SVR b 360 124 22,804 nights BG, Insulin IP ADO, ADU F: 60% M: 40%

[49] 2016 stochastic models 60, 240, 360
34 150 days

BG MDI CH, ADU -
179 476 days

[50] 2019 ANN 30 N/A 1 Week BG - - -

[51] 2018 ANN 30, 60 6 8 weeks Insulin, BG, PA, CHO IP ADU -

[52] 2020 LR, RF 0–15, 15–30,
30–45, 45–60 112 90 days BG, Insulin, CHO IP ADO, ADU F: 39.2% M: 60.7%

[53] 2019 ANN, SVM, AB c, GNB d 240 10
10 Several months BG, PA, Insulin, CHO MDI ADU -

[54] 2017 CART 15 33 72 to 96 h BG - - -

[55] 2020 MLR, LASSO 420
100 162,000 traces

BG, CHO - ADU -
218 2 months

[56] 2020 MDP e 210 NIDDK repository 6 Treatment points BG, Insulin, CHO - ADU -
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Table 2. Cont.

Ref Year ML Model PH (min)
Cohort

Size RD ToD TM AoP Gender

[57] 2019 ARIMA, RF, SVM 15 25 14 days BG IP ADU F: 44% M: 56%

[58] 2020 KKR f 30 11 7–50 days BG IP ADU -

[59] 2019 GE g, SVM, ANN

60 100 14 days

BG, Insulin, CHO, PA IP ADU -240 10 6 weeks

360 6 8 weeks

[60] 2019 RF, SVM, ANN 120 6 8 weeks Insulin, BG, PA, CHO IP ADU -

[61] 2020 KNN 10,080 70 15 weeks BG, insulin, CHO MDI - -

[62] 2019 GRU h 45 40 4 days BG - - -

[63] 2017 DL 30 25 N/A BG - CH, ADO -

[64] 2020 RNN i 30
10 360 days

Insulin, BG, PA, CHO IP - -
6 8 weeks

[36] 2019 RNN 30 124 27,466 days BG, Insulin IP ADU -

[65] 2020 DRL j The meal
duration

10
10 6 months BG, CHO MDI ADO, ADU -

[66] 2019 XGBT q The meal
duration 100 2 months BG, Insulin, CHO - ADU -

[67] 2019 KNN The meal
duration 100 4 days BG, Insulin, CHO - ADU -

[68] 2019 SVM The meal
duration 10 BG, Insulin, CHO IP ADU F:20%, M: 80%

[69] 2016 Combination of
NH predictors

360
34 150 days

BG MDI CH, ADU -
179 476 days

[70] 2016 ACL k 1440 28
100 BG, PA, Insulin, CHO - CH, ADO, ADU -

[71] 2019 10 Different ML Methods 30 6 8 weeks Insulin, BG, PA IP ADU -
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Table 2. Cont.

Ref Year ML Model PH (min)
Cohort

Size RD ToD TM AoP Gender

[72] 2020 RF, GBT The meal
duration 100 162 meal conditions BG, Insulin, CHO - - -

[73] 2019 DRL N/A 10
10 30 days CGM, CHO - ADO, ADU -

[74] 2019 DL 30, 60

10 6 months

BG, Insulin, CHO IP ADO, ADU -6 8 weeks

10 180 days

[75] 2020 ARM r, RF, LGBM l,
FCNNs m,GCNN n

30, 60
141 9083 days

BG - - -
30 30 days

[76] 2018 ANN 30 12 1 year BG IP ADU F: 50%, M: 50%

[77] 2017 GP o, RF, KNN, GE 30 10 N/A BG, insulin, CHO - - -

[78] 2020 DL 30, 60 10
10 6 months BG, Insulin, CHO, PA ADU -

[79] 2019 RF, SVM 15 25 14 days BG MDI ADU F: 44%, M: 56%

[80] 2017 LSTM p 30, 60, 90 106 7 days BG Both - -
a RMRF: Repeated Measures Random Forest; b SVR: Support Vector Regression; c AB: Adaboost; d GNB: Gaussian Naïve Bayes; e MDP: Markov Decision Process; f KKR: Kernel Ridge Regression; g GE:
Grammatical Evolution; h GRU: Gradient Recurrent Unit; i RNN: Recurrent Neural Network; q XGBT: Extreme Gradient Boosted Tree; k ACL: Actor Critic Learning; l LGBM: Light Gradient Boosting; m FCNN:
Fully-convolutional Neural Networks; n GCNN: Gradually Connected Neural Networks; o GP: Genetic Programming; p LSTM: Long Short-term Memory; q ARM: Autoregressive Model.
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2. Materials and Methods

This paper looks at the broader horizon of the work done in the domain of ML for
hypoglycemia prediction. The searched manuscripts were obtained by combining the
results of multiple individual searches to form a pool of 900 manuscripts. PubMed and
Google Scholar were used for the selection of manuscripts. PubMed was selected because
it is the premier source of published research in biomedicine and life sciences available on
the internet. Google scholar was selected for manuscript searching to enlarge the search
area. English articles of the past five years were considered in this review. We excluded
studies that involved type 2 diabetes or were review articles.

Manuscripts were searched through the advanced searching options in PubMed. The
search was carried out by first combining the keywords ‘machine learning’ and ‘hypo-
glycemia’ with the help of an ‘AND’ logical operator to search all the fields provided in
PubMed advanced search option. This search yielded a total of 41 manuscripts. Later,
keywords ‘artificial intelligence’ and ‘hypoglycemia’ were searched together for all the
fields, which yielded a total of 47 manuscripts. ‘Machine learning’ was also searched
together with ‘blood glucose prediction’, yielding a total of 119 manuscripts. The keywords
‘hypoglycemia’ and ‘machine learning’ were then searched together with a series of other
keywords by using the same logical operator to obtain the following results: prediction
(23), detection (10), hypoglycemic event (15), and adverse glycemic event (4). The keyword
‘hypoglycemia’ was then solely searched with other keywords using the logical opera-
tor yielding the following results: support vector machine (9), random forest (15), deep
learning (8), ANN (6), supervised learning (21), and clustering (82). In google scholar,
keywords ‘machine learning’, and ‘hypoglycemia’ were searched. This search was carried
out to expand the pool of the total shortlisted manuscripts. A total of 500 manuscripts
were searched using google scholar. All these individual searches were then combined
together to form a grand pool of 900 manuscripts. Here, it is important to understand
that the majority of the manuscript searched in both google scholar and PubMed were
similar because both platforms provide distinct methods of article searching. A thorough
review of the selected manuscript pool was performed. Moreover, the bibliographies of
the selected manuscripts were looked into for a detailed analysis of the manuscripts cited
in these works. The shortlisted manuscripts were then scrutinized to obtained the final
collection of 57 papers by using the methodology given in Figure 1.
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3. Results

Results were obtained from the 57 shortlisted papers after a comprehensive analysis
of the attributes that were found to be most impactful in deciding the quality of the work.
The details of all the reviewed manuscripts are given in Tables 1 and 2. The results section
is based on the following categories:

• The prediction and detection of hypoglycemia
• Type of data
• ML models
• Prediction horizon (PH)

3.1. The Prediction and Detection of Hypoglycemia

The first major classification of the manuscripts reviewed was done on the basis of
where in time the ML models look for the occurrence of a hypoglycemic event. Hypo-
glycemia prediction essentially means forecasting the future hypoglycemic events. On the
other hand, the detection of hypoglycemia only means detecting whether a hypoglycemic
event has occurred at the present time or not. Many ML-based systems are just detection
models. They do not look into the future to forecast the occurrence of an event. Even
though this review primarily focuses on discussing the prediction models, the importance
of detection models cannot be undermined. Automatic real-time detection of hypoglycemia
may be crucial in many scenarios. In this section, works whose aim was to recognize or
estimate the occurrence of a hypoglycemic event in the present have been identified. The
purpose of doing so was to narrow down the review towards the works that were only
focused on hypoglycemia prediction in the sections ahead. It is important to take into
consideration that in order to have an ML algorithm that forecasts future events we must
have time series data. In the context of this review, this is equivalent to saying that in order
to predict the occurrence of a hypoglycemic event at a specific time in the future, the data
used to train the ML models need to contain the BG, insulin, CHO or some other form of
time series data.

From this, it can be deduced that works that do not use time series data do not try
to predict the occurrence of hypoglycemia in the future but most often than not try to
detect hypoglycemia in the present. The details of such works are given in Table 1. Phys-
iological parameters of an electrocardiogram (ECG) were used to detect hypoglycemia
by Ling et al. [42], Ranvier et al. [34], and San et al. [35]. Multiple systems used text and
language processing for the detection of hypoglycemia. For instance, hypoglycemia was de-
tected from electronic health records (EHRs) in the investigations proposed by Jin et al. [29],
Ruan et al. [31], and Jin Li et al. [34]. Chen et al. [30] employed patient secure messages
for automatic detection of hypoglycemia while Zhou et al. [26] aimed at detecting hypo-
glycemia by processing the text of clinical notes of patients. Temperature, near infra-red,
and bio impedance sensors were employed in their system for the detection of BG trends
during the occurrence of a hypoglycemic event by Tronstad et al. [28]. Marling et al. [32]
used heart rate (HR), temperature, and galvanic skin response (GSR), and Juhl et al. [37]
utilized electroencephalogram (EEG) data to perform hypoglycemia detection.

3.2. Type of Data: What Are the Current Models Trained on?

ML engineering primarily involves fitting ML models to a large amount of data in
order to locate patterns and classify them into different label groups. For an ML model
to work efficiently, a large quantity of good relevant data is required, which means that
the data used to train ML models should be accurate, complete, and valid. However, in
biomedical applications, the availability of good data for ML designers is rare, the reason
being different natural and technical constraints involved in the process of data collection.

ML models for hypoglycemia prediction/detection may be trained on several types
of data. The manuscripts we have reviewed used 12 different types of data to train ML
models. These data include BG, insulin, carbohydrates (CHO), ECG, EHRs, HR, breath
samples, temperature, clinical notes, secret messages, GSR, and EEG. Figure 2 shows the
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distribution of the number of manuscripts for each type of data. It must be kept in mind
that by data we mean the acquired data in their original form and not the extracted features.
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3.2.1. Blood Glucose (BG) Data

As one might think, the most relevant data while predicting events based on BG levels
would be the BG values itself. Based on the profile of an individual’s BG levels an ML
system could be trained to predict the future BG values. This approach was used by the
majority of the works that have been reviewed. Approximately 77% of the total manuscripts
reviewed use BG data to train ML models for hypoglycemia prediction. It is, however,
important to mention that not all of these models were trained on actual clinical data. Actual
clinical data come from clinical trials. These trials are overseen by a clinical trial protocol
that describes the terms and conditions under which the study is ought to be conducted.
Some of these works use BG data from diabetes patient simulators. Diabetes simulators
are platforms that are used to emulate certain physiological characteristics of a diabetic
patient and allow the user to perform experiments by controlling different parameters
related to insulin dosing strategies for diabetes patients. Diabetes simulators are often
preferred in pre-clinical trials to evaluate the performance of new diabetes management
systems/strategies. Some of the famous diabetes simulators include the UVA/PADOVA
simulator and Hovorka model, etc. Of the works based on BG data reported in this review,
13.63% use simulated BG data from different diabetes patient simulators, while 68.18%
use actual clinical data, whereas 18% of the manuscripts use both real and simulated
patient data.

Moreover, of the works that use BG for hypoglycemia detection, some make use
of sole BG data while others use BG plus a combination of different types of data such
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as insulin, CHO, and PA data, etc. The distribution of different BG data combinations
may be observed in Figure 2. About 36.36% of the manuscripts used BG data alone for
hypoglycemia prediction; 6.82% of manuscripts predicted hypoglycemia by using BG
combined with insulin data, and an equal amount of research work used BG combined
with CHO. A total of 22.73% works used BG combined with insulin, CHO, and PA data. A
total of 15.91% studies used BG, insulin, CHO, and PA data in conjunction while 11.36%
studies made use of BG in combination with other sources of data, e.g., HR and ECG, etc.

3.2.2. Only BG

The details of the works that trained ML models only on BG data are given in Table 2.
Most of these models are time series forecasting models and involve BG data that have
certain timestamps associated with the actual BG values. Nocturnal hypoglycemia predic-
tion was targeted in studies such as Kriukova et al. [44], Vu et al. [47], Sampath et al. [69],
and Tkachenko et al. [49]. Seo et al. [43] proposed the prediction of postprandial hypo-
glycemia by training ML models with BG data while Jung et al. [54] predicted day-time
hypoglycemia using similar data. Quan et al. [50], Dong et al. [62], and Mhaskar et al. [63]
used neural networks trained on BG data for hypoglycemia prediction. On the other hand,
Rodriguez et al. [57] used three different ML models trained on BG data from 25 patients.
A KRR-based system was presented by Marcus et al. [58] while Seo et al. [46] proposed
another model to predict hypoglycemia that used BG values.

3.2.3. BG Combined with Other Types of Data

From Figure 2 it is evident that of the manuscripts which use BG data for training,
a portion use the combination of BG and insulin data. Jensen et al. [39] and Mosquera-
Lopez et al. [48] proposed models that predicted nocturnal hypoglycemia from BG and
insulin together. These systems showed moderate performance in terms of sensitivity and
specificity. A recurrent neural network (RNN) was trained by Mosquera et al. [81] using
BG and insulin data for adverse glycemic event prediction. This system was reported to be
more than 90% accurate in predicting hypoglycemic events.

Some studies trained ML models on BG along with CHO values. The quantity of such
studies is very low since the CHO data are often very inconsistent and not a lot of ML
designers like to work with them. CHO, however, is an important feature to consider in
insulin prediction models. Insulin bolus calculation was performed by Zhu et al. [65] and
Giulia Noaro et al. [55]. Both of these works employed BG and CHO data. Zhu et al. [73]
presented a system based on DRL. This study displayed an improved control of single
hormone and dual hormone insulin delivery.

Other works such as Dave et al. [52], Shifrin et al. [56], and Cappon et al. [66] used BG
along with insulin and CHO for prediction purposes. Aiello et al. [67] and Oviedo et al. [53]
both aimed at postprandial hypoglycemia prediction by utilizing BG data combined with
insulin and CHO data. Noaro et al. [72] proposed an insulin bolus calculator while
Vehi et al. [59] proposed a hypoglycemia prediction and prevention system that employed
BG, insulin, and CHO data for ML model training. A DSS that provides weekly insulin
dosage recommendations for type1 diabetics was proposed by Tyler et al. [61].

There are certain works that along with BG, insulin and CHO made use of addi-
tional data e.g., physical activity (PA) data and HR etc. Nocturnal hypoglycemia was
predicted from BG, insulin, CHO and PA data by Calhoun et al. [45], Bertachi et al. [51],
Bertachi et al. [41] and Güemes et al. [60]. Glucose value forecasting is performed by
Li et al. [78], Mayo et al. [71], Zhu et al. [64] and Daskalaki et al. [70] through the utilization
of such a combination of data.

Certain works have also used BG data in combination with other data such as breath
samples and camera samples, etc. Reddy et al. [40] predicted hypoglycemia at the start of an
aerobic exercise. Hypoglycemia was predicted from breath samples using ML techniques
by Siegel et al. [27]. Vahedi et al. [33] predicted BG levels from BG and PA while BG levels
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were estimated from PPG signals using the mobile phone camera of a patient and the BG
data in a study proposed by Zhang et al. [38].

3.2.4. Other Types of Data

We are aware that the beauty of ML lies in formalizing non-linear relationships
between different data(s) and outcomes. Researchers have hence tried to predict hypo-
glycemia by training ML models using multiple types of other data. Of the works that
we have reviewed, 22.81% are based on data other than BG as shown in Figure 2. These
data include the EHR, ECG, GSR, EEG, clinical notes, secret messages, breath samples, and
body temperature. The individual percentages of works based on these data are as follows:
EHR 5%, ECG 5%, HR 5%, breath samples 3.5%, body temperature 3.5%, clinical notes 2%,
secret messages 2%, GSR 2%, EEG, 2%.

3.3. Machine Learning Models

ML designers have a variety of ML algorithms at their disposal while implementing
new designs. The choice of an ML algorithm is guided by multiple factors, i.e., the type of
data used to train the model, the number of features, and most importantly, the quantity
of data available [82]. The literature reviewed here shows that a total of 34 unique ML
algorithms have been used as can be observed in Tables 1 and 2. These algorithms have
been categorized into six major families of ML algorithms as shown in Figure 3. The most
common of these families is the ANNs followed by the DTs, kernels, and others. If we
talk about the most famous individual ML models, RF has been the choice of designers
followed by SVM.
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The majority of the studies have utilized the self-learning capabilities of ANN. These
studies have employed multiple variants of ANN such as RNN, DL, CNN, MLPs, etc.
ANNs were used by Bertachi et al. [41], Vahedi et al. [33], Zhu et al. [64], Mosquera-
Lopez et al. [81], San et al. [35], Jin et al. [36], Mhaskar et al. [63], Li et al. [74], Li et al. [78],
Bertachi et al. [51], Güemes et al. [60], Oviedo et al. [53], Vehi et al. [59], Quan et al. [50], and
Amar et al. [75]. Unlike other ML models, ANNs extract their own features from the inputs
based on their hidden parameters. ANNs were used together with a reinforcement learning
algorithm in studies presented by Zhu, Li, Kuang, et al. [65], and Zhu, Li, Herrero, et al. [73].

DTs are predictive models that predict the outcome for a set of input features after
testing the features through several tree branches. DTs too have multiple variants that were
utilized in the studies cited in this review. The most famous variant of DT is RF. Because of
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characteristics such as robustness to noise, handling of missing values and robustness to out-
liers, RF has been chosen by many ML designers for this application. RF creates a large num-
ber of decision trees and then outputs the mode of all the decision trees. This approach fixes
the over-fitting problem of decision trees. Seo et al. [43], Güemes et al. [60], Vahedi et al. [33],
G Noaro et al. [72], Vu et al. [47], Reddy et al. [40], Chen et al. [30], Dave et al. [52],
Calhoun et al. [45], Amar et al. [75], Hidalgo et al. [77], and Rodriguez et al. [79] have all
used RF for predicting/detecting hypoglycemia. Ruan et al. [31] and Cappon et al. [66]
used the XGboost algorithm. XGboost is the gradient-boosted variant of DT and is
aimed at enhancing the performance of decisions trees. Common DTs were employed by
Ranvier et al. [34] and Reddy et al. [40].

Kernel-based SVM is the second most common choice of ML algorithms for designers
working towards the goal of hypoglycemia detection/prediction. This is an indicator
of the fact that SVM works well for such problems where the data-sets are relatively
small. SVM is a binary linear classifier that maps feature points in space, creating different
categories [83]. These categories are separated by a gap as wide as possible. When a
test point is brought to the model, SVM maps it to one of the various categories and
then assigns it a label. Marling et al. [32], Mosquera-Lopez et al. [48], Seo et al. [43],
Güemes et al. [60], Oviedo et al. [68], Vehi et al. [59], Chen et al. [30], Bertachi et al. [41],
and Rodriguez et al. [79] have all used SVM.

Regression techniques in ML predict the result of a continuous output variable. In the
case of LR, however, the output is often a discrete label. The various types of regression
used by studies in this review are LR, GE, and MLR. Studies proposed by Chen et al. [30],
Dave et al. [52], and Seo et al. [43] use LR. LR fits a logistic function to data and outputs
the probability of one or more classes. KNN is another ML approach that was used in
several studies, such as Tyler et al. [61], Zhang et al. [36], Aiello et al. [67], Seo et al. [43], and
Hidalgo et al. [77]. KNN looks for the closest examples in the feature space and then assigns
them a label. Jensen et al. [39] and Siegel et al. [27] used LDA for prediction purposes. LDA
is often used for the purpose of dimensionality reduction in classification problems.

It is important to consider that ML models can be evaluated with a range of different
performance metrics. It is, therefore, impossible to present a quantitative performance
comparison of the reviewed literature since the performance metrics differ for different
works. Sensitivity and specificity have been the researchers most favorite performance
metric with 47% of the studies using it, followed by root mean square error (RMSE), in
21% of the research works reviewed. Accuracy was used as a performance metric in a
total of 13% of the manuscripts, similar to the area under the ROC curve (AUC). The mean
absolute percentage error and blood glucose risk index were each used to evaluate 3.3% of
the total manuscripts.

3.4. Prediction Horizon: How Far Are the Current Systems Forecast in the Future?

In ML analysis of time series data, PH or forecasting horizon is the amount of time
the user has before the occurrence of a predicted event. In biomedical applications, ideally,
the PH should be large enough to give the patient apt time to take preventive measures
and prevent an adverse event from happening. In the case of hypoglycemia, if the ML
algorithm predicts the occurrence of a possible hypoglycemic event 30 min from the time
of prediction, the user only has 30 min to take necessary actions in order to prevent the
predicted hypoglycemic event from happening. In the mentioned case, whether the PH
of 30 min is enough time or not is a debate that is dependent on various factors such as
the severity of the hypoglycemic event, effectiveness of medications, and the amount of
CHO consumption. The PH defined in a particular approach has two important effects
on the achieved predictions: the time a patient has to respond and the error associated
with estimations increase together. Therefore, it is extremely important to find a balance
between the error we are willing to take and the requirements of our approach. There
are a total of 14 different PHs reported in the literature reviewed with the PH of 30 min
being the most common, followed by PH values of 6 h, 60 min, and 15 min. The PH values
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are categorized based on short-term, medium-term, and long-term predictions. The PH
categories based on their frequency of usage are provided in Figure 4. The details about all
the PHs reported in the literature are given in Table 3.
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Prediction Type Manuscript Prediction Horizon (PH)

Shor-Term Prediction

[52,54,57,79] 15 min

[40,43,46,50–52,58,63,64,71,74–78,80,81] 30 min

[39] 35 min

[52,62] 45 min

[49,51,52,59,74,75,78,80] 60 min

Medium-Term Prediction

[80] 90 min

[60] 120 min

[56] 210 min

[49,53,68] 240 min

Long-Term Prediction

[41,42,47–49,69] 360 min

[55] 420 min

[44] 540 min

[61] 1 Week

[66,67,72] Meal Duration

4. Discussion

After an organized analysis of high quality research work in PubMed and Google
Scholar, we pinned down manuscripts with an aim of providing a thorough overview of
the work done in the field of ML for predicting hypoglycemia. The review demonstrates
that the use of ML models for the prediction of hypoglycemia has increased considerably
over the last five years. It was observed that not all the manuscripts reviewed focused
on predicting hypoglycemia. Some of the works only focused on the detection of the
glycemic event. Technically, detection of an event could be referred to as description. It is
important to understand that hypoglycemia prediction is BG level prediction in essence.
Hypoglycemia is but a condition labelled on the predicted BG value graph. That is precisely



Sensors 2021, 21, 546 16 of 21

the reason why some of the works that we have reviewed are BG level prediction models
and do not talk about hypoglycemia prediction explicitly. These works, however, do
provide a framework for the prediction of hypoglycemia.

A correlation between the type of data used for training the ML model and the nature
of output (description/prediction) suggests that ML time series prediction is only possible
with time series data such as BG, insulin, and CHO, while detection could be performed
using other types of data such as breath samples, EEG, PPG, etc. Data acquisition in
biomedical applications suffers from multiple constraints such as hardware limitations,
restricted clinical environments, failure of patients to comply with study protocols, and
obstacles in the way of large biomedical data collection. These barriers compel ML de-
signers to work with the available imperfect data and look for solutions. The issue of
imperfect data may be tackled through different strategies. The missing values problem
is often addressed by using some kind of interpolation or imputation method. Prediction
of missing values based on other values is also a technique that has been used to address
this problem. Different types of regression or classification models can be used to predict
missing values. Deep learning-based imputation is often preferred because of its accuracy.
In various studies a certain range of missing values is selected to perform interpolation.
Any gap in the data that exceeds that limit of missing values is then termed missing data
and no interpolation is done. Frameworks based on conditional probability such as the
theory of belief function, evidence theory or linear belief functions can be used to address
the problem of incomplete data or missing data.

In this review, the assessment of data used in training exhibits a slanted picture with
BG data dominating most of the reviewed studies. It has been observed that studies
that use data other than BG are almost all targeted at detecting hypoglycemia. There are
claims by some works of predicting hypoglycemia while using data other than BG, but
a thorough inspection revealed that the targeted PH was either too small to be classified
as real prediction or it does not exist at all. It is also worth mentioning here that many
works reported an issue with the acquired data in terms of size or completeness. The need
for data that are both large in size and good in quality is ultimate. It is known that ML
models map complex nonlinear relationships in physiological data to perform prediction
or description. To perform this nonlinear mapping, the required data have to be complete
and relevant. In particular, BG value detection and prediction feed on data obtained from
various types of sensors, i.e., CGM and HR sensors, etc. Two of the most common issues
with CGM sensors is the sensor delay and sensor malfunctions. Sensor delay in CGM is
the inherited 10-min discrepancies, while sensor malfunctions are those periods in which
no BG value is recorded. The quality of these sensors is one area that needs to be improved
in future.

An in-depth analysis of ML models presented a broader picture of the preferred
techniques for the purpose of hypoglycemia prediction. It is understood that the quality
and quantity of data affect the choice of the ML model. Since the data in this case suffer
from various issues, the choice of ML model should be made such that it makes up for the
deficiencies in the data. Models such as SVM are preferred because of their ability to handle
a relatively small amount of data with greater efficiency. ML models are also chosen based
on the level of complexity. Simpler models such as RF and KNN are preferred because they
give good results most of the time and are easier to implement. Moreover, the reason that
the majority of the works use RF and SVM is that these algorithms provide a higher level of
versatility in terms of the type of problem they are used for. On the other hand, ANNs are
data hungry and in the case of hypoglycemia prediction it is observed that efforts are made
to train the network on large datasets. DL is an area that has not been used extensively
for hypoglycemia prediction and can be explored more in future. Gradient-boosted tree
algorithms such as XGB are nowadays preferred by designers for time series analysis if the
time series problem is a supervised learning problem. The use of multiple gradient-boosted
algorithms can be observed in the review. The quest for improved results is analogous to
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training different ML models. Designers, therefore, have trained various other models in
the work reviewed.

It is understood from the review that, for a hypoglycemia DSS, the most important
trait to have is to warn the patient about a hypoglycemic episode well before it happens.
Early detection helps the patient cope with the hypoglycemic event in a better way. PH
is a term closely associated with time series data forecasting. How far does an ML-based
prediction model see into the future is a thing to consider before passing any verdict about
the quality of the model. The length of a PH correlates with the amount of data an ML
model is trained on. Ranging from a PH length of 15 min to 1 week, designers have tried to
predict hypoglycemia in different future time frames. The race for a longer PH is always
on but the desirable choice of PH mostly depends on the nature and type of application.

5. Conclusions

ML for the prediction of hypoglycemia has been trending topic among biomedical
data engineers. Our review demonstrates the potential impact such predictive models
could have in the field of diabetes healthcare. A highly efficient hypoglycemia predictor
may prove life-changing for T1Ds. The timely prediction of a hypoglycemic episode
can immensely improve the life quality of T1D patients and on top of that, save their
lives. There has been a stark increase in the amount of research work done in the area of
hypoglycemia prediction using ML. This is evident from the increasing number of studies
published in this domain during the past five years as depicted by this review. Though ML
models appear to be the right choice for figuring out the nonlinear relationships between
different types of physiological data and the occurrence of hypoglycemia, there is still
room for improvement. This review gives an insight into the challenges faced by the
designers while dealing with imperfect data for hypoglycemia prediction and detection.
The results obtained from this review provide an overview of the go-to ML models for
researchers while predicting/detecting hypoglycemia. Discussion of the PH portrays a
picture regarding how far the current systems predict hypoglycemia in the future. It is
concluded that ML for hypoglycemia prediction holds considerable potential. Research
in this domain must continue and more directions should be explored. Researchers are
advised to further explore this domain by training different ML models on various types of
sensor data. In the context of hypoglycemia prediction, it is paramount to come up with
new strategies to train ML models with more data. ML engineers could use a two-phase
training approach by first training the ML models with a huge amount of data (populational
models, similar patients, virtual patients, generated data, etc.) and then training the ML
models with more specific data such as cohort data, real time data, etc. Creativity in feature
engineering and techniques for the acquisition of healthy datasets are areas that need
to be worked on for the realization of accurate ML-based hypoglycemia predictors. The
incorporation of such ML models in DSS should be ensured and made available for the
benefit of patients.
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