
Reverse Engineering Time Discrete Finite Dynamical
Systems: A Feasible Undertaking?
Edgar Delgado-Eckert1,2¤*

1 Centre for Mathematical Sciences, Technische Universität München, Garching, Germany, 2 Pathology Department, Tufts University, Boston, Massachusetts, United States

of America

Abstract

With the advent of high-throughput profiling methods, interest in reverse engineering the structure and dynamics of
biochemical networks is high. Recently an algorithm for reverse engineering of biochemical networks was developed by
Laubenbacher and Stigler. It is a top-down approach using time discrete dynamical systems. One of its key steps includes
the choice of a term order, a technicality imposed by the use of Gröbner-bases calculations. The aim of this paper is to
identify minimal requirements on data sets to be used with this algorithm and to characterize optimal data sets. We found
minimal requirements on a data set based on how many terms the functions to be reverse engineered display. Furthermore,
we identified optimal data sets, which we characterized using a geometric property called ‘‘general position’’. Moreover, we
developed a constructive method to generate optimal data sets, provided a codimensional condition is fulfilled. In addition,
we present a generalization of their algorithm that does not depend on the choice of a term order. For this method we
derived a formula for the probability of finding the correct model, provided the data set used is optimal. We analyzed the
asymptotic behavior of the probability formula for a growing number of variables n (i.e. interacting chemicals).
Unfortunately, this formula converges to zero as fast as r qnð Þ, where q[N and 0vrv1. Therefore, even if an optimal data set
is used and the restrictions in using term orders are overcome, the reverse engineering problem remains unfeasible, unless
prodigious amounts of data are available. Such large data sets are experimentally impossible to generate with today’s
technologies.

Citation: Delgado-Eckert E (2009) Reverse Engineering Time Discrete Finite Dynamical Systems: A Feasible Undertaking? PLoS ONE 4(3): e4939. doi:10.1371/
journal.pone.0004939

Editor: Gustavo Stolovitzky, IBM Thomas J. Watson Research Center, United States of America

Received July 21, 2008; Accepted February 6, 2009; Published March 19, 2009

Copyright: � 2009 Delgado-Eckert. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by Public Health Research Grant RO1 AI062989 to Dr. David Thorley-Lawson at Tufts University, Boston, MA, USA. The funders
had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The author has declared that no competing interests exist.

* E-mail: edgar.delgado-eckert@mytum.de

¤ Current address: ETH Zürich, Department of Biosystems Science and Engineering (D-BSSE), Basel, Switzerland

Introduction

Since the development of multiple and simultaneous measure-

ment techniques such as microarray technologies, reverse

engineering of biochemical and, in particular, gene regulatory

networks has become a more important problem in systems

biology. One well-known reverse engineering approach is that of

top-down methods, which try to infer network properties based on

the observed global input-output-response. The observed input-

output-response is usually only partially described by available

experimental data.

Depending on the type of mathematical model used to describe a

biochemical process, a variety of top-down reverse engineering

algorithms have been proposed [1,2,3]. See also [4] for probabilistic

approaches. Each modeling paradigm presents different require-

ments relative to quality and amount of the experimental data

needed. Moreover, for each type of model, a suitable mathematical

framework has to be developed in order to study the performance

and limitations of reverse engineering methods. For any given

modeling paradigm and reverse engineering method it is important

to answer the following questions:

1. What are the minimal requirements on data sets?

2. Can data sets be characterized in such a way that ‘‘optimal’’

data sets can be identified? (Optimality meaning that the

algorithm performs better using such a data set compared to its

performance using other data sets.)

The second question is related to the design of experiments and

optimality is characterized in terms of quantity and quality of the data

sets. Some algebraic approaches dealing with issues related to the

design of statistical experiments have yielded problems that are

algebraically similar to the above questions (put in the context of

this paper). In particular, in the relatively new field of algebraic

statistics, Gröbner-bases theory (see below) has been used to address

similar issues. Some of the findings on this topic and also some of

the limitations attached to the use of term orders (to be defined

below) can be found in [5] and [6].

The authors of [7] developed a top-down reverse engineering

algorithm for the modeling paradigm of time discrete finite

dynamical systems. Herein, we will refer to it as the LS-algorithm.

They apply their method to biochemical networks by modeling the

network as a time discrete finite dynamical system, which is

obtained by discretizing the concentration levels of the interacting

chemicals to elements of a finite field. One of the key steps of the

LS-algorithm includes the choice of a term order, a technicality

PLoS ONE | www.plosone.org 1 March 2009 | Volume 4 | Issue 3 | e4939

imposed by the use of Gröbner-bases calculations (see, for

instance, [8]). The modeling paradigm of time discrete finite

dynamical systems generalizes the Boolean approach [9] (where

the field only contains the elements 0 and 1). Moreover, it is a

special case of the paradigm described in [10], in which

asynchronous updating of the state variables is allowed.

Some aspects of the performance of the LS-algorithm were

studied by the author of [11] in a probabilistic framework.

Specifically, the author of [11] explores a somewhat different

question, namely, how many randomly generated data points are

needed on average before the LS-algorithm finds the correct

model (we will give a precise definition of ‘‘correct model’’). To

this end, the author of [11] assumes that information about the

actual number of interactions (or an upper bound for this number)

in the biochemical network is available. Furthermore, two

particular classes of term orders are considered in the analysis.

Many of the bounds derived by the author of [11] for the

necessary length of a data set to provide enough information, are

bounded below by aqk or bnk, where n is the total number of

species, q[N, a,b[Rz are positive real constants and k is an upper

bound for the number of species affecting the entity whose

function is to be reverse engineered. As a consequence, even in the

case of a relatively small biochemical network involving only

n = 30 entities, to successfully reverse engineer a function

depending on only k = 5 variables would require (according to

the results presented in [11]) about 305 = 24.3 million random

experiments. We consider this outcome of the analysis by the

author of [11] rather discouraging from an experimental point of

view. It is also an open question to what extent it is realistic to

assume that biological or biochemical experiments can be

massively performed in a randomized manner.

In this paper we investigate the two questions stated above in

the particular case of the LS-algorithm. For this purpose, we

developed a mathematical framework that allows us to study the

LS-algorithm in depth. Having expressed the steps of the LS-

algorithm in our framework, we were able to provide concrete

answers to both questions: First, we found minimal requirements

on a data set based on how many terms the functions to be reverse

engineered display. Second, we identified optimal data sets, which

we characterize using a geometric property called ‘‘general

position’’. Moreover, we developed a constructive method to

generate optimal data sets, provided a codimensional condition is

fulfilled.

In addition, we present a generalization of the LS-algorithm

that does not depend on the choice of a term order. We call this

generalization the term-order-free reverse engineering method. For this

method we derive a formula for the probability of finding the

correct model, provided the data set used satisfies an optimality

criterion. Furthermore, we analyze the asymptotic behavior of the

probability formula for a growing number of variables n (i.e.

interacting chemicals). Unfortunately, this formula converges to

zero as fast as r qnð Þ, where q[N and 0vrv1. Consequently, we

conclude that even if an optimal data set is used and the

restrictions imposed by the use of term orders are overcome, the

reverse engineering problem remains unfeasible, unless experi-

mentally impracticable amounts of data are available. This result

discouraged us from elaborating on the algorithmic aspects of the

term-order-free reverse engineering method.

In [12,13] and [14] the weaker problem of finding the causal

(static) relationships between the variables in the network (as

opposed to reverse engineering the dynamical properties of the

network, which automatically provides the dependencies between

the variables) has been studied in the context of the LS-algorithm.

However, neither of the two questions stated above was addressed

in those publications. In [14], the authors make use of the Gröbner

fan to take into account all possible term orders and produce a

consensus graph representing the most likely dependency relations

among the nodes in the network. While this approach is helpful for

finding the causal relationships between the variables, it still does

not circumvent the issues related to the use of term orders when it

comes to the more challenging task of reverse engineering the

dynamical properties of the network. This is because the Gröbner

fan only comprises term orders.

In contrast to [11], we focus here on providing possible criteria

for the design of specific experiments instead of assuming that the

data sets are generated randomly. Moreover, we do not necessarily

assume that information about the actual number of interactions

in the biochemical network is available.

The organization of this article is the following:

The Methods Section is devoted to the mathematical back-

ground: We briefly describe the LS-algorithm and provide a

mathematical framework to study it. Moreover, we introduce the

term-order-free reverse engineering method. The Results Section

presents rigorous results and some of their consequences. In the

Discussion Section we summarize our main results, discuss their

consequences and provide further conclusions.

To fully understand the technical details of our analysis, very

basic knowledge in linear algebra and algebra of multivariate

polynomials is required. We have included a series of endnotes to

provide some guidance. Nevertheless, we refer the interested

reader to [15] and [8].

Methods

Mathematical background
A short description of the LS-algorithm. We encourage

the interested reader to read the original work [7], where the LS-

algorithm is introduced. We also refer to 2.1 in [11] for another

mathematical description of the LS-algorithm. However, for the

sake of completeness, in this subsection we describe the LS-

algorithm and its basic mathematical properties.

In the modeling paradigm described in [7], a biological or

biochemical system is described by n time varying quantities

s1(t),…,sn(t), which represent the state of the system at the point in

time t. The evolution of the system is observed by taking m

consecutive measurements of each of the interacting quantities.

This yields one time series

~ss 1ð Þ~ s1 1ð Þ,s2 1ð Þ, . . . ,sn 1ð Þð Þ, . . . ,~ss mð Þ~ s1 mð Þ,s2 mð Þ, . . . ,sn mð Þð Þ

Such series of consecutive measurements are repeated l times

starting from different initial conditions, where the length mk of

the series may vary. At the end of this experimental procedure,

several time series are obtained:

s1
!

1ð Þ, . . . ,s1
!

m1ð Þ
..
.

sk
!

1ð Þ, . . . ,sk
!

mkð Þ
..
.

sl
!

1ð Þ, . . . , sl
!

mlð Þ

Each point in a time series is a vector or n-tuple in Rn, where R is

the set of all real numbers. Time series are then discretized using a

discretization algorithm (see, for instance, [16]) that can be

expressed as a map

Reverse Engineering

PLoS ONE | www.plosone.org 2 March 2009 | Volume 4 | Issue 3 | e4939

D : Rn?Sn ð1Þ

where the set S is a finite field1 of cardinality q :~ Sj j (the

cardinality of the field used is determined during the discretization

process). The discretized time series can be written as

dk
�!

1ð Þ:~D sk
!

1ð Þ
� �

, . . . , dk
�!

mkð Þ :~D sk
!

mkð Þ
� �

, k~1, . . . ,l

One fundamental assumption made in their paper is that the

evolution in time of the discretized vectors obeys a simple rule,

namely, that there is a function

F : Sn?Sn

such that

dk
�!

iz1ð Þ~F dk
�!

ið Þ
� �

for i~1, . . . , mk{1ð Þ; k~1, . . . ,l ð2Þ

The authors of [7] call F the transition function of the system. One

key ingredient in the LS-algorithm is the fact that the set S is

endowed with the algebraic structure of a finite field. Under this

assumption, the rule (2) reduces to a polynomial interpolation

problem in each component, i.e. for each j[1, . . . ,nf g

dkj iz1ð Þ~Fj dk
�!

ið Þ
� �

for k~1, . . . ,l; i~1, . . . , mk{1ð Þ ð3Þ

The information provided by the equations (3) usually under-

determines the function Fj : Sn?S, unless for all possible vectors

~xx[Sn, the values Fj ~xxð Þ are established by (3). Indeed, any non-zero

polynomial function that vanishes on the data inputs

X :~ dk
�!

ið Þ k~1, . . . ,l; i~1, . . . , mk{1ð Þj
n o

could be added to a function satisfying the conditions (3) and yield

a different function that also satisfies (3). Among all those possible

solutions, the LS-algorithm chooses an interpolating polynomial

function Fj : Sn?S that does not contain any terms vanishing on

the set X. Unfortunately, the LS-algorithm works within an

algebraic framework that depends on the choice of a so called term

order. For every different term order, the output of the algorithm

might be a different one. In addition, term orders impose some

quite arbitrary conditions on the set of possible candidates for the

output of the LS-algorithm. Furthermore, there is no clear

criterion when it comes to actually choosing a term order. In

the next subsection we will provide the definition of term order as

well as a geometric framework in which the algebraic steps of the

LS-algorithm can be visualized and better understood. In Section

1 of the Appendix S1, we provide a concrete example in which the

output of the algorithm is clearly presented.

For the sake of completeness, we summarize here the technical

steps of the LS-algorithm: To generate its output, the algorithm

first takes as input the discretized time series and generates

functions fj ,j~1, . . . ,n that satisfy (3) for each j[1, . . . ,nf g
correspondingly. Secondly, it takes a monomial order vj as input

and generates the normal form of fj with respect to the vanishing

ideal I Xð Þ and the given order vj . For every j[1, . . . ,nf g, this

normal form is the output Fj of the algorithm.

A mathematical framework to study the reverse

engineering problem. The mathematical framework

presented here is based on a general algebraic result presented

by the author in Section 4 of the Appendix S1. This result is

known among algebraists, however, to the author’s best

knowledge, it has never been formulated within the context

considered herein. This framework will allow us to study the LS-

algorithm as well as a generalized algorithm of it that is

independent on the choice of term orders. Furthermore, within

this framework, we will be able to provide answers to the two

questions stated in the Introduction, (see the Results section

below). In this sense, this subsection ‘‘sets the stage’’ for our

investigations. We use several well established linear algebraic

results to construct the framework within which our investigations

can be carried out.

We start with the original problem: Given a time-discrete

dynamical system over a finite field S in n variables

F : Sn?Sn

and a data set X(Sn generated by iterating the function F starting

at one or more initial values, what are the chances of

reconstructing the function F if the LS-algorithm or a similar

algorithm is applied using X as input time series?

From an experimental point of view the following question

arises: What is the function F in an experimental setting? Contrary

to the situation when models with an infinite number of possible

states are reverse engineered (see 1.2 in [17]), there is a finite

number of experiments that could, at least theoretically, be

performed to completely characterize the system studied. In this

sense, even in an experimental setting, there is an underlying

function F. The components of this function is what the author of

[11] called htrue.

Since the algorithms studied here generate an output model

G : Sn?Sn by calculating every single coordinate function

Gj : Sn?S separately, we will focus on the reconstruction of a

single coordinate function Fj which we will simply call f. We will

use the notation Fq for a finite field of cardinality q[N. In what

follows, we briefly review the main definitions and results stated

and proved in Section 4 of the Appendix S1:

We denote the qn-dimensional vector space of functions

g : Fn
q?Fq with Fn Fq

� �
. A basis for Fn Fq

� �
is given by all the

monomial functions

gnqa : Fn
q?Fq

~xx.~xxa :~xa1

1
: . . . :xan

n

where the exponents ai are non-negative integers satisfying aivq.

The basis of all those monomial functions is denoted with

gnqa

� �
a[Mn

q
, where

Mn
q :~ a[N0ð Þn ajvq V j[1, . . . ,nf g

��� �
We call those monomial functions fundamental monomial functions.

This fact is basically telling us that all functions g : Fn
q?Fq are

polynomial functions of bounded degree2.

When dealing with polynomial interpolation problems, it is

convenient to establish the relationship between a polynomial

function f [Fn Fq

� �
and the value it takes on a given point~xx[Fn

q or

set of points X(Fn
q. A technique commonly used in algebra is to

define an evaluation mapping that assigns to each polynomial

function f [Fn Fq

� �
the list of the values it takes on each point~xx[X

of a given set of different points X(Fn
q. Just to make sure this

mapping is unique, we order this list of evaluations according to a

Reverse Engineering

PLoS ONE | www.plosone.org 3 March 2009 | Volume 4 | Issue 3 | e4939

fixed but arbitrary order. This is equivalent to ordering the set

X(Fn
q in the first place (see endnote 4 in the next page).

Summarizing, consider a given finite field Fq, natural numbers

n,m[N with mƒqn and an (ordered) tuple

~XX :~ ~xx1, . . . ,~xxmð Þ[Fn
q

� �m

of m different points with entries in the field Fq. Then we can

define the mapping

W~XX : Fn Fq

� �
?Fm

q

f.W~XX fð Þ:~ f ~xx1ð Þ, . . . ,f ~xxmð Þð Þt

(where t denotes transpose). It can be shown (see Theorem 21 in

Section 4 of the Appendix S1), that this mapping is a surjective

linear operator3. We call this mapping the evaluation epimorph-

ism of the tuple ~XX .

For a given set X(Fn
q of data points and a given vector~bb[Fm

q ,

the interpolation problem of finding a function g[Fn Fq

� �
with the

property

g ~xxið Þ~bi V i[1, . . . ,mf g,~xxi[X

can be expressed using the evaluation epimorphism as4 follows:

Find a function g[Fn Fq

� �
with the property

W~XX gð Þ~~bb ð4Þ

Since a basis of Fn Fq

� �
is given by the fundamental monomial

functions gnqa

� �
a[Mn

q
, the matrix5

A:~ W~XX gnqa

� �� �
a[Mn

q
[M m|qn; Fq

� �
representing the evaluation epimorphism W~XX of the tuple ~XX with

respect to the basis gnqa

� �
a[Mn

q
of Fn Fq

� �
and the canonical basis

of Fm
q has always the full rank m~min m,qnð Þ. That also means,

that the dimension of the ker W~XX

� �
is6

s:~dim ker W~XX

� �� �
~dim Fn Fq

� �� �
{m~qn{m ð5Þ

In the case mvqn where m is strictly smaller than qn~ Fn
q

��� ��� we

have dim ker W~XX

� �� �
w0 and the solution of the interpolation

problem is not unique. There are exactly qdim ker W~XXð Þð Þ different

solutions which constitute an affine subspace of Fn Fq

� �
(see Fig. 1).

Only in the case m~qn, that means, when for all elements of Fn
q

the corresponding interpolation values are given, the solution is

unique. Experimental data are typically sparse and therefore

underdetermine the problem. If the problem is underdetermined and

no additional information about properties of the possible solutions is

given, any algorithm attempting to solve the problem has to provide

a selection criterion to pick a solution among the affine space of possible

solutions. If we visualize the affine subspace of solutions of (4) in the

space Fn Fq

� �
(see Fig. 1), among all possible solutions, the one that

geometrically seems to capture the essential part of a solution is the

one perpendicular to the affine subspace. This solution does not

contain any components pointing in the direction of the subspace,

which, at least geometrically, seem redundant.

Interestingly, this simple geometric idea comprises the algebraic

selection step in the LS-algorithm and at the same time generalizes

the pool of possible candidates to be selected. Of course we need to

formalize this approach algebraically. The standard tool in this

context is called orthogonality. For orthogonality to apply, a

generalized inner product (see [15]) has to be defined on the

space Fn Fq

� �
. We finish this subsection reviewing these concepts

(cf. Appendix S1).

The space Fn Fq

� �
is endowed with a symmetric bilinear form7

S:,:T : Fn Fq

� �
|Fn Fq

� �
?Fq

i.e. a generalized inner product. Two functions f ,g[Fn Fq

� �
are

called orthogonal if it holds Sg,hT~0. A family of functions

u1, . . . ,us[Fn Fq

� �
is called orthonormal if it

holds8Sui,ujT~dij V i,j[1, . . . ,sf g.
For a given set X(Fn

q of data points, consider the evaluation

epimorphism W~XX of the tuple ~XX and its kernel ker W~XX

� �
. Now, let

u1, . . . ,usð Þ be a basis of ker W~XX

� �
(Fn Fq

� �
. By the basis

extension theorem (see [15]), we can extend the basis

u1, . . . ,usð Þ to a basis u1, . . . ,us,usz1, . . . ,udð Þ of the whole space

Fn Fq

� �
, where d:~dim Fn Fq

� �� �
~qn. (There are many possible

ways this extension can be performed. See more details below). As

in Example 5 of Subsection 4.2.1 in the Appendix S1, we can

construct a generalized inner product on Fn Fq

� �
by setting9

Sui,ujT:~dij V i,j[1, . . . ,df g ð6Þ

The orthogonal solution of (4) is the solution v�[Fn Fq

� �
that is

orthogonal to ker W~XX

� �
, i.e. it holds W~XX v�ð Þ~~bb and for an

arbitrary basis w1, . . . ,wsð Þ of ker W~XX

� �
the following orthogonality

conditions hold

Figure 1. The set of all solutions to the polynomial interpola-
tion problem is an affine subspace. A two-dimensional represen-
tation of the space of functions Fn Fq

� �
. Within this space, a one-

dimensional representation of the affine subspace of solutions of
W~XX gð Þ~~bb. Three particular solutions are depicted; one (red) is the
orthogonal solution.
doi:10.1371/journal.pone.0004939.g001

Reverse Engineering

PLoS ONE | www.plosone.org 4 March 2009 | Volume 4 | Issue 3 | e4939

Swi,v
�T~0 V i[1, . . . ,sf g

The way we extend the basis u1, . . . ,usð Þ of ker W~XX

� �
to a basis

u1, . . . ,us,usz1, . . . ,udð Þ of the whole space Fn Fq

� �
determines

crucially the generalized inner product we get by setting (6).

Consequently, the orthogonal solution of (4) may vary according

to the extension usz1, . . . ,ud[Fn Fq

� �
chosen. In the Appendix S1,

a systematic way to extend the basis u1, . . . ,usð Þ to a basis for the

whole space is introduced. With the basis obtained, the process of

defining a generalized inner product according to (6) is called the

standard orthonormalization. This is because the basis

u1, . . . ,us,usz1, . . . ,udð Þ is orthonormal with respect to the

generalized inner product defined by (6).

A basis is by definition an ordered set. The basis of fundamental

monomial functions gnqa

� �
a[Mn

q
is an ordered set arranged

according to a fixed order relation defined on the set Mn
q . The

most general partial order10 ‘‘,’’ that still allows for a unique

arrangement of a finite set of elements is a linear order. A linear

order , on the set Mn
q is a partial order such that, for every pair of

elements a,b[Mn
q , exactly one of the three statements

avb a~b bva

holds. Gröbner bases calculations, which are part of the LS-

algorithm, require a specific way to order the terms in a

polynomial. Such order relations are called term orders. One of

the key requirements for a term order is that it must be consistent

with the algebraic operations performed with polynomials. In

particular, the term order relation must be preserved after

multiplication with an arbitrary term. Additionally, it has to be

possible to always determine which is the smallest element among

a set of arbitrary terms. Since every term in a polynomial in n

indeterminates is uniquely determined by the exponents appearing

in it, the order relation can as well be defined on the set N0ð Þn of

tuples of non negative integer exponents. As stated above, in the

context of polynomial functions in n variables over the finite field

Fq, the degrees are bounded above and therefore we only need to

consider the order relation on the set Mn
q . Let us consider a simple

example in the case n = 1 and p = 5. The terms x1,x2,x3 could be

ordered according to a linear order . as

x2
wx3

wx1

This order cannot be a term order. If it was a term order, then we

could multiply both sides of the expression x2
wx1 (which holds by

transitivity) by x1 to obtain x3
wx2. This result contradicts the

order relation established above.

Essentially, the standard orthonormalization consists of two

steps

1) Gaussian elimination (see [15]) on the coordinate vectors with

respect to the basis gnqa

� �
a[Mn

q
of a basis of ker W~XX

� �
.

2) Extension of the basis according to the columns in which no

pivot element could be found during the Gaussian elimina-

tion in step 1).

The precise definition of the standard orthonormalization

procedure together with an example is provided in Subsection

4.4 of the Appendix S1. The standard orthonormalization process

depends on the way the elements of the basis gnqa

� �
a[Mn

q
of

fundamental monomial functions are ordered. If they are ordered

according to a term order, the calculation of the orthogonal

solution of (4)11 yields precisely the same result as the LS-

algorithm. If more general linear orders are allowed, a more

general algorithm emerges that is not restricted to the use of term

orders. This algorithm can be seen as a generalization of the LS-

algorithm. We call it the term-order-free reverse engineering method. In the

next subsection we meticulously present the steps of the term-

order-free reverse engineering method. It is pertinent to emphasize

that although the term-order-free reverse engineering method

generates the same solution as the LS-algorithm (provided we use

a term order to order the elements of the basis gnqa

� �
a[Mn

q
), the two

algorithms differ significantly in their steps. The steps of the LS-

algorithm are defined in an algebraic framework that makes use of

Gröbner bases calculations. This algebraic framework imposes

restrictions on the type of order relations that can be used. Our

method is defined in a geometric and linear algebraic framework

that is not subjected to those restrictions. As a consequence, our

method represents a generalization of the LS-algorithm in terms of

the ‘‘spectrum’’ of solutions it can produce for a given input data

set. Moreover, the fact that our method is capable of reproducing

the input-output behavior of the LS-algorithm, allows us to study

this behavior of the LS-algorithm within our, in our opinion, more

tractable framework. In Section 1 of the Appendix S1 we present

an illustrative example in which every step of the term-order-free

reverse engineering method is carried out explicitly.

As we will show in the Results section, the monomial functions

usz1, . . . ,ud generated by the standard orthonormalization

procedure to extend the basis u1, . . . ,usð Þ of ker W~XX

� �
to a basis

u1, . . . ,us,usz1, . . . ,udð Þ of the whole space Fn Fq

� �
constitute the

pool of candidate monomials for the construction of the orthogonal

solution. In other words, the orthogonal solution is a linear

combination of the usz1, . . . ,ud .

The use of term orders is a requirement imposed by the algebraic

approach used in the LS-algorithm. However, it arbitrarily restricts

the ways the basis u1, . . . ,usð Þ of ker W~XX

� �
can be extended to a basis

u1, . . . ,us,usz1, . . . ,udð Þ by virtue of the standard orthonormaliza-

tion procedure. For instance, the constant function

1 : Fn
q?Fq

~xx.1

is always part of the extension usz1, . . . ,ud when term orders are

used. This follows from the fact that for any term order . the

property

aw 0, . . . ,0ð ÞVa[N0ð Þn

always holds (see Chapter 2, 14, Corollary 6 in [8]). Furthermore, if

an optimal data set (to be defined below) is used, some high degree

monomials will never be among the candidates . Thus, a function f

displaying such high degree terms could never be reverse engineered

by the LS-algorithm, if fed with an optimal data set.

It will also become apparent in the Results section, that the use

of term orders makes it difficult to analyze the performance of the

LS-algorithm.

As a consequence, we tried to circumvent the issues related to

the use of term orders by proposing the term order free reverse

engineering method, a generalization of the LS-algorithm that

does not depend on the choice of a term order.

The term-order-free reverse engineering method
Let d:~qn. The input of the term-order-free reverse engineer-

ing algorithm is a set X(Fn
q containing mƒd different data

Reverse Engineering

PLoS ONE | www.plosone.org 5 March 2009 | Volume 4 | Issue 3 | e4939

points, a list of m interpolation conditions

~xxi.bi, ~xxi[X

and a linear order , for the elements of the basis

gnqa

� �
a[Mn

q
of Fn Fq

� �
, (i.e., the elements of the basis are ordered

decreasingly according to ,). The steps of the algorithm are as

follows

1. Calculate the entries of the matrix A:~ W~XX gnqa

� �� �
a[Mn

q

[M m|qn; Fq

� �
representing the evaluation epimorphism

W~XX of the tuple ~XX with respect to the basis gnqa

� �
a[Mn

q
of

Fn Fq

� �
and the canonical basis of Fm

q .

2. Calculate the coordinate vectors (with respect to the basis

gnqa

� �
a[Mn

q
) ~yy1, . . . ,~yys[Fd

q of a basis of Ker Að Þ.
3. Extend the basis ~yy1, . . . ,~yysð Þ to a basis ~yy1, . . . ,~yys,~yysz1, . . . ,~yyd

� �
of Fd

q using the standard orthonormalization procedure (See

Subsection 4.4 of the Appendix S1).

4. Define a generalized inner product S:,:T : Fd
q?Fq by setting

S~yyi,~yyjT:~dij V i,j[1, . . . ,df g

and calculate the entries of the matrix

Sij :~S~eei,~eejT,i,j[1, . . . ,df g

where~eej is the jth canonical unit vector of Fd
q .

5. The coordinate vector with respect to the basis gnqa

� �
a[Mn

q
of

the output function (the orthogonal solution) is obtained by

solving the following system of inhomogeneous linear equations

A~zz~~bb

~yyt
iS~zz~0, i~1, . . . ,s

The steps described above represent an intelligible description

of the algorithm and are not optimized for an actual computa-

tional implementation. In Section 1 of the Appendix S1 we present

an illustrative example in which every step of the method is carried

out explicitly.

Essentially, the steps of the term-order-free reverse engineering

comprise standard matrix and linear algebra calculations.

However, the size or dimension of the matrices involved depends

exponentially on the number n of variables and linearly on the

number m of data points, as the reader can verify based on

the dimensions of the matrices involved in the algorithm. The

complexity of basic linear algebraic calculations such as Gaussian

elimination and back substitution are well known, see, for instance,

[18]. With that in mind, we can briefly assess the complexity of our

method: In step 1, md matrix entries need to be calculated as the

evaluation of the fundamental monomial functions on the data

points. In step 2, a basis of the nullspace of A is calculated. The

number of data points m should be expressed as a proportion of

the size of the entire space Fn
q, thus, we write m~rd with a

suitable factor r[0,1ð Þ. The basis of the nullspace is calculated

using Gaussian elimination, which, neglecting the lower order

terms in d, requires r2d3 operations, and back substitution, which,

given that rank Að Þ~m, is O m2
� �

. The standard orthonormaliza-

tion procedure in step 3 is also accomplished via Gaussian

elimination on an s|d matrix. Due to s~d{m, we have

s~ 1{rð Þd , therefore, step 3 requires about 1{rð Þ2d3 operations.

The calculation of the matrix S in step 4 requires the inversion of a

matrix, whose columns are precisely the extended basis coordinate

vectors~yyi,i~1, . . . ,d . This inverted matrix is then multiplied by its

transpose. The resulting product is the matrix S (see Example 1 in

the Appendix S1 for more details). Thus, step 4 requires O d3
� �

operations. Finding the solution of the d-dimensional system of

linear equations in step 5 requires again O d3
� �

operations.

According to [7], the LS-algorithm is quadratic in the number n

of variables and exponential in the number m of data points.

The exponential complexity of this type of algorithms should

not be surprising, for it is an inherent property of even weaker

reverse engineering problems (see [19]). Therefore, a computa-

tional implementation of these algorithms should take advantage

of parallelization techniques and eventually of quantum comput-

ing.

The ill-conditioned dependency of the reverse engineering

problem on the amount of input data needed (see Results section

below) discouraged us from further elaborating on potential

algorithmic improvements (for instance, using an extension of the

Buchberger-Möller algorithm, [20], to calculate ker W~XX

� �
) for the

term-order-free reverse engineering method.

Results

Basic definitions, well known facts and some notation
For what follows recall that Mn

q :~ a[N0ð Þnf
ajvq V j[1, . . . ,nf g
�� g. Let K be an arbitrary finite field, n,q[N

natural numbers and K t1, . . . ,tn½ � the polynomial ring in n

indeterminates over K. It is a well known fact (see, for instance,

[21,22] and [8]) that the set of all polynomials of the

form

X
a[Mn

q

aata1

1 . . . ta1

1 [K t1, . . . ,tn½ �

with coefficients aa[K is a vector space over K. We denote this

set with Pn
q Kð Þ.It is not surprising (see, for instance, [21,22]

and [8]) that the vector space Pn
q Fq

� �
.is isomorphic to the

space Fn Fq

� �
of functions in n variables defined on Fq. We

denote the one-to-one mapping

Q : Pn
q Fq

� �
?Fn Fq

� �
g~

P
a[Mn

q

aata1

1 . . . ta1

1 .Q gð Þ ~xxð Þ:~
P

a[Mn
q

aa~xx
a ð60Þ

between these spaces with Q.

In order to explore the LS-algorithm, we need the notion of

‘‘Ideal’’, which is very common in commutative algebra and

algebraic geometry (see, for instance, [8]):

Definition 1 Let K be a field, n,q[N natural numbers and

K t1, . . . ,tn½ � the polynomial ring in n indeterminates over K. Furthermore,

let g1, . . . ,gm[K t1, . . . ,tn½ � be polynomials. The set

Sg1, . . . ,gmT:~ h1g1z � � �zhmgm h1, . . . ,hm[K t1, . . . ,tn½ �jf g

is called the ideal generated by g1, . . . ,gm .

For a given set X(Fn
q of data points and a given vector~bb[Fm

q ,

consider the evaluation epimorphism W~XX of the tuple ~XX and its

kernel ker W~XX

� �
. In addition, consider a fixed linear ordering , by

which the elements of the basis gnqa

� �
a[Mn

q
are ordered. In what

follows, u1, . . . ,usð Þ will be a basis of ker W~XX

� �
. This basis will be

extended to a basis u1, � � � ,us,usz1, � � � ,udð Þ of the whole space

Reverse Engineering

PLoS ONE | www.plosone.org 6 March 2009 | Volume 4 | Issue 3 | e4939

Fn Fq

� �
, according to the standard orthonormalization procedure.

The orthogonal solution of W~XX gð Þ~~bb will be defined in terms of

the generalized inner product defined by (6).

Conditions on the data set
In this subsection, by virtue of the mathematical framework

developed in the Methods section, we will address the following

two problems regarding the LS-algorithm and its generalization,

the term-order-free reverse engineering method:

Problem 2 Given a function f [Fn Fq

� �
, what are the minimal

requirements on a set X(Fn
q, such that the LS-algorithm reverse engineers f

based on the knowledge of the values that it takes on every point in the set X ?

Problem 3 Are there sets X(Fn
q that make the LS-algorithm more

likely to succeed in reverse engineering a function f [Fn Fq

� �
based only on the

knowledge of the values that it takes on every point in the set X ?

It is pertinent to emphasize that, contrary to the scenario

studied in [11], we do not necessarily assume that information

about the number of variables actually affecting f is available. We

will give further comments on this issue at the end of the

Discussion.

Definition 4 Let f [Fn Fq

� �
, be a polynomial function. The subset of

Fn
q containing all values on which the polynomial function f vanishes is denoted

by V Q{1 fð Þ
� �

, where Q is the mapping defined in equation (6’) (see

previous subsection).

The following result tells us that if we are using the LS-

algorithm to reverse engineer a nonzero function we necessarily

have to use a data set X(Fn
q containing points where the function

does not vanish.

Theorem 5 Let f [Fn Fq

� �
\ 0f g be a nonzero polynomial function.

Furthermore let

~XX :~ ~xx1, . . . ,~xxmð Þ[Fn
q

� �m

be a tuple of m different n-tuples with entries in the field Fq, ~bb[Fm
q the

vector defined by

bi:~f ~xxið Þ,i~1, . . . ,m

and v� the orthogonal solution of W~XX gð Þ~~bb. Then if v�~f , it follows12

V Q{1 fð Þ
� �c

\X=1

Proof: If V Q{1 fð Þ
� �c\X~1, then by definition of

V Q{1 fð Þ
� �

, the vector ~bb would be equal to the zero vector ~00.

From Corollary 10 in Subsection 4.2.2 of the Appendix S1, we

know that the orthogonal solution v� of W~XX gð Þ~~00 is the zero

function, thus v�=f .&

Theorem 6 Let f ,~XX and v� be as in the previous theorem. In addition,

assume V Q{1 fð Þ
� �c\X=1. Then it holds

v�~fuf [span usz1, . . . ,udð Þ

Proof: The claim follows directly from the definition of

orthogonal solution and its uniqueness (see Section 4 of the

Appendix S1 for more details).

Remark 7 From the necessary and sufficient condition

f [span usz1, . . . ,udð Þ ð7Þ

it becomes apparent, that if the function f is a linear combination of more than

d{s~m fundamental monomial functions, f can not be found as an

orthogonal solution v� of W~XX gð Þ~~bb (where bi:~f ~xxið Þ,~xxi[X). In

particular, if f is a linear combination containing all d fundamental monomial

functions in gnqa

� �
a[Mn

q
, no proper subset X5Fn

q of Fn
q will allow us to find

f as orthogonal solution of W~XX gð Þ~~bb.

Remark 8 From the condition (7) it follows that in order to reverse

engineer a monomial function appearing in f using the term-order-free reverse

engineering method or the LS-algorithm, it is necessary that the monomial

function is linearly independent of the basis vectors u1, . . . ,usð Þ of ker W~XX

� �
.

For this reason, the set X should be chosen in such a way that no fundamental

monomial function gnqa is linearly dependent on the basis vectors u1, . . . ,usð Þ
of ker W~XX

� �
. Otherwise, some of the terms appearing in f might vanish on the

set X and would not be detectable by any reverse engineering method, (as stated

in [7]). This problem introduces a more general question about the existence of

vector subspaces in ‘‘general position’’:

Definition 9 Let W be a finite dimensional vector space over a finite

field Fq with dim(W) = d.0. Furthermore, let w1, . . . ,wdð Þ be a fixed

basis of W and s[N a natural number with s,d. A vector subspace U,W

with dim(U) = s is said to be in general position with respect to the basis

w1, . . . ,wdð Þ, if for any basis v1, . . . ,vsð Þ of U and any injective mapping

p : 1, . . . , d{sð Þf g? 1, . . . ,df g

the vectors

v1, . . . ,vs,wp 1ð Þ, . . . ,wp d{sð Þ

are linearly independent

Remark 10 Note that if U is in general position with respect to the basis

w1, . . . ,wdð Þ, then, for any permutation H : 1, . . . ,df g? 1, . . . ,df g of

the elements of the basis w1, . . . ,wdð Þ, the general position of U remains

unchanged. In other words, U is in general position with respect to the permuted

basis wH 1ð Þ, . . . ,wH dð Þ
� �

.

Figure 2 shows two one-dimensional subspaces. The red

subspace is not in general position since its basis cannot be

extended to a basis of the entire space (2 dimensions) by adjoining

the first canonical unit vector (horizontal black arrow) to it.

It can be shown, that if the cardinality q of the finite field Fq is

sufficiently large, proper subspaces in general position of any

positive dimension always exist. The proof is provided in Section 3

of the Appendix S1.

Now assume that ker W~XX

� �
is in general position with respect to

the basis gnqa

� �
a[Mn

q
of Fn Fq

� �
. By the basis extension theorem

and due to the general position of ker W~XX

� �
, we can extend the

basis u1, . . . ,usð Þ of ker W~XX

� �
to a basis

u1, . . . ,us,usz1, . . . ,udð Þ

of the whole space Fn Fq

� �
, where usz1, . . . ,udf g5 gnqa

� �
a[Mn

q

can be any subset of gnqa

� �
a[Mn

q
with d-s elements. Now we can

construct a generalized inner product on Fn Fq

� �
by setting (6).

The advantage in this situation is that there is no bias imposed by

the data on the monomial functions that can be used to extend the

basis u1, . . . ,usð Þ to a basis of Fn Fq

� �
. In addition, having this

degree of freedom, it is possible to calculate the exact probability

of success of the method. This probability depends of course on the

number of fundamental monomial functions actually contained in

f. We will give an explicit probability formula in the next

Subsection. For our further analysis we need the following well

known result (for a proof, see, for instance, [8]):

Reverse Engineering

PLoS ONE | www.plosone.org 7 March 2009 | Volume 4 | Issue 3 | e4939

Lemma and Definition 11 Let Fq be a finite field and n,s[N

natural numbers with sƒdim Fn Fq

� �� �
. Furthermore, let U5Fn Fq

� ��
be

an s-dimensional subspace. Then the set

V Uð Þ:~V Q{1 u1ð Þ
� �

\V Q{1 u2ð Þ
� �

\ . . .\V Q{1 usð Þ
� �

where u1, . . . ,usð Þ is any basis of U, is independent on the choice of basis and

it is called the variety of the subspace U.

Now the following question arises: How should the set X be

chosen in order to have ker W~XX

� �
in general position with respect

to the basis gnqa

� �
a[Mn

q
? A possible approach to this issue is the

following: For a given natural number s[N with

svd:~dim Fn Fq

� �� �
, start from a basis u1, . . . ,usð Þ of an s-

dimensional vector subspace U5Fn Fq

� ��
in general position with

respect to the basis gnqa

� �
a[Mn

q
. The next step is to calculate the

variety

Y :~V Uð Þ

We assume Y=1 and order its elements arbitrarily to a tuple

~YY :~ ~yy1, . . . ,~yymð Þ[Fn
q

� �m

, where m:~ Yj j. By (5) (see also Remark

23 in Subsection 4.3.2 of the Appendix S1) we know

that

dim ker W~YY

� �� �
~dim Fn Fq

� �� �
{ Yj j~d{m

By the definitions we have in general

U(ker W~YY

� �
and therefore sƒker W~YY

� �
, i.e. mƒd{s. The ideal scenario

would be the case U~ker W~YY

� �
, i.e. m~d{s. A less optimistic

scenario is given when U5ker W~YY

� �
. In such a situation, ideally

we would wish for ker W~YY

� �
to be itself in general position with

respect to the basis gnqa

� �
a[Mn

q
. These issues raise the following

question:

When does there exist a subspace U5Fn Fq

� �
in general

position with respect to the basis gnqa

� �
a[Mn

q
with

dim Uð Þvdim Fn Fq

� �� �
that in addition satisfies

V Uð Þj j~dim Fn Fq

� �� �
{dim Uð Þ ð8Þ

This is an interesting question that requires further research. It

is related to whether the subspace U is an ideal of Fn Fq

� �
when

Fn Fq

� �
is seen as an algebra with the multiplication of polynomial

functions as the multiplicative operation. In Section 2 of the

Appendix S1 we provide examples in which two subspaces, both in

general position, show a different behavior regarding the condition

(8). We formalize this property:

Definition 12 For a given natural number svdim Fn Fq

� �� �
, let

U5Fn Fq

� �
be an s-dimensional subspace. U is said to satisfy the

codimension condition if it holds

codim Uð Þ~ V Uð Þj j

where codim Uð Þ:~dim Fn Fq

� �� �
{dim Uð Þ.

A subspace U5Fn Fq

� �
in general position with respect to the

basis gnqa

� �
a[Mn

q
that satisfies the codimension condition allows for

the construction of an optimal set for use with the LS-algorithm.

The set Y :~V Uð Þ has namely the property U~ker W~YY

� �
, i.e.

ker W~YY

� �
is in general position with respect to the basis gnqa

� �
a[Mn

q
.

In other words, subspaces in general position that satisfy the

codimension condition provide a fundamental component for a

constructive method for generating optimal data sets. More

generally we define:

Definition 13 A set X(Fn
q such that ker W~XX

� �
is in general position

with respect to the gnqa

� �
a[Mn

q
is referred to as optimal.

Remark and Definition 14 Additional study is required to prove

whether optimal data sets exist in general. (See Section 2 of the Appendix S1

for concrete examples.) However, if no optimal sets can be determined, it is still

advantageous to work with a data set X that was obtained as V Uð Þ using a

subspace U5Fn Fq

� �
in general position with respect to the basis

gnqa

� �
a[Mn

q
. In this case, at least U(ker W~XX

� �
still holds, and it might

be that the dimensional difference between U and ker W~XX

� �
is small. We call

such data sets pseudo-optimal.

Probabilities of finding the original function as the
orthogonal solution

In the previous subsection we were able to characterize optimal

data sets based on a geometric property we called general position.

The next step is to analyze the performance of the reverse

engineering algorithms when such optimal data sets are used. In

this subsection we specifically want to address the following two

problems:

Problem 15 Let a function f [Fn Fq

� �
and an optimal set X(Fn

q of

cardinality m be given. Furthermore let the values that f takes on every point in

the set X be known. If the term order used by the LS-algorithm is chosen

randomly, can the probability of successfully reconstructing f be calculated? If

the linear order used by the term-order-free method is chosen randomly, can the

probability of successfully reconstructing f be calculated?

Problem 16 What is the asymptotic behavior of the probability for a

growing number of variables n?

The next theorem provides an answer to the second question

stated in Problem 15 (regarding the term-order-free method):

Figure 2. The notion of general position. A two-dimensional
representation of the space of functions Fn Fq

� �
. Within this space, two

one-dimensional subspaces are depicted. One subspace (green) is in
general position, while the other one (red) is not.
doi:10.1371/journal.pone.0004939.g002

Reverse Engineering

PLoS ONE | www.plosone.org 8 March 2009 | Volume 4 | Issue 3 | e4939

Theorem 17 Let Fq be a finite field and n,m,t[N natural numbers

with mƒdim Fn Fq

� �� �
~:d and tƒd. Furthermore, let f [Fn Fq

� �
\ 0f g

be a nonzero polynomial function consisting of a linear combination of exactly t

fundamental monomial functions. In addition, let
~XX :~ ~xx1, . . . ,~xxmð Þ[Fn

q

� �m

be a tuple of m different n-tuples with

entries in the field Fq such that X is optimal. Further, let ~bb[Fm
q be the

vector defined by

bi:~f ~xxið Þ,i~1, . . . ,m

s:~dim ker W~XX

� �� �
, u1, . . . ,usð Þ a basis of ker W~XX

� �
and

usz1, . . . ,udf g5 gnqa

� �
a[Mn

q
an arbitrary subset containing d{s

elements. Then the probability P that the orthogonal solution v� of

W~XX gð Þ~~bb with respect to the generalized inner product

Sui,ujT:~dij V i,j[1, . . . ,df g

fulfills v�~f is given by

P~

qn{t

qn{m

	

qn

m

	
 if tƒm ð9Þ

and

P~0 if twm

Proof: Due to the definition of general position, there are

exactly

dim Fn Fq

� �� �
{s

� �
!

dim Fn Fq

� �� �
dim Fn Fq

� �� �
{s

 !
~ d{sð Þ!

d

d{s

 !

~ d{sð Þ!
qn

m

 !

different ways to extend a basis u1, . . . ,usð Þ of U to a basis of

Fn Fq

� �
using m fundamental monomial functions. If tƒm, among

such extensions, only

d{sð Þ!
d{t

d{s{t

	

~ d{sð Þ!

qn{t

s

	

~ d{sð Þ!

qn{t

qn{m

	

use the t fundamental monomial functions appearing in f. From

this, (9) follows immediately. If, on the other hand, twm, the

number of fundamental monomial functions available to extend a

basis u1, . . . ,usð Þ of U to a basis of Fn Fq

� �
is too small.&

Remark 18 If the elements in the basis gnqa

� �
a[Mn

q
are ordered

in a decreasing way according to a term order (the biggest element

is at the left end, the smallest at the right end and position y means

counting y elements from the right to the left) an analogous

probability formula would be

Number of arrangements that place the mon:functions in f after position y

Total number of arrangements
ð10Þ

where an arrangement is an order of the elements of gnqa

� �
a[Mn

q

that obeys a term order. (Two different term orders could generate

the same arrangement of the elements in the finite set gnqa

� �
a[Mn

q
)

So, for instance, if f contains a term involving the monomial

function x
q{1
1

: . . . :xq{1
n , then the above probability (10) would be

equal to zero, since every arrangement of the elements in

gnqa

� �
a[Mn

q
that obeys a term order would make this monomial

function biggest. (It is inherent to term orders to make high degree

monomial functions always biggest). In more general terms, it is

difficult to make estimates about the numbers appearing in (10).

How to calculate the above probability remains an open question.

Remark 19 Since for relatively small n and q the number

d~qn is already very large, it is obvious that one should calculate

the asymptotic behavior of the probability formula (9) for d??.

Indeed, we have with tƒm

0ƒ

d{t

d{m

	

d

m

	
 ~

d{tð Þ!
d{mð Þ! m{tð Þ!

d!

m! d{mð Þ!

~
d{tð Þ!m!

m{tð Þ!d!
ƒ

d{tð Þ!m!

d!

~
m!

d d{1ð Þ . . . d{tz1ð Þ?0 for d??

If we write the amount of data used in proportion to the size

d~qn of the space Fn
q , and the number of terms displayed by f

relative to the size qn of the basis gnqa

� �
a[Mn

q
, it becomes apparent

how quickly the probability formula converges to 0 for d??.

Accordingly, let r:~m=d and c:~d{t. Then we would have

P
rd ~

d{t

d{m

	

rd

d

m

	
 ~
d{tð Þ!m!

rd m{tð Þ!d!

~
m m{1ð Þ . . . m{tz1ð Þ
rdd d{1ð Þ . . . d{tz1ð Þ~

rd rd{1ð Þ . . . rd{tz1ð Þ
rdd d{1ð Þ . . . d{tz1ð Þ

~
rtdt 1{ 1

rd

� �
. . . 1{ t{1

rd

� �
rddt 1{ 1

d

� �
. . . 1{ t{1

d

� �~rt 1{ 1
rd

� �
. . . 1{ t{1

rd

� �
rd 1{ 1

d

� �
. . . 1{ t{1

d

� �
~

r{c 1{ 1
rd

� �
. . . 1{ t{1

rd

� �
1{ 1

d

� �
. . . 1{ t{1

d

� � ?r{c for d??

In particular, it holds

d{t

d{rd

	

d

rd

	
 &rt for big d ð11Þ

This expression shows in a straightforward way how big the

proportional amount of data should be in order to have an

acceptable confidence in the result obtained. It also shows that for t

close to d, the probability is very low and the reverse engineering

not feasible. Usually no information about t is available, so it is

advisable to work with the maximal t, namely d{1 or with an

average value for t.

Reverse Engineering

PLoS ONE | www.plosone.org 9 March 2009 | Volume 4 | Issue 3 | e4939

For example, assume that in an experiment, d is sufficiently big

and the average value for t is known and equal to t. Furthermore,

assume that one wants to reverse engineer a function

f [Fn Fq

� �
\ 0f g with a confidence d[0,1ð � that the result is correct.

The question is: How big should the cardinality m of an optimal

data set X be (besides the necessary requirement m§t)? According

to (11), the requirement would be

rt~
m

qn

	
t

~d

and therefore

m~
ffiffiffi
d

t
p

qnð Þ

With elementary calculus it can be shown13 that if d§0:37 then

ffiffiffi
d

t
p

w1{
1

t

This lower bound for the proportion converges rapidly to 1 for

increasing t. If tw1, one can easily verify that

ffiffiffi
d

2
p

ƒ

ffiffiffi
d

t
p

for d[0,1ð �

Thus, if the confidence d is to be greater or equal than 0.5, then

it holds

ffiffiffi
d

t
p

§

ffiffiffi
d

2
p

§

ffiffiffiffiffiffiffiffi
1=22

p
~

ffiffiffi
2

2
p .

2w0:7

Consequently, if d§0:5 is required, already more than 70% of

the state space Fn
q has to be sampled. Let us consider a relatively

small biochemical network involving only 25 entities, where the

concentrations of the entities can be meaningfully discretized to

Boolean values 0 or 1. In other words, n = 25 and q = 2. The

previous calculation tells us that more than 0.7 * 225<23.4 million

experiments would be required.

Example 20 We provide a simple ‘‘academic’’ example, which,

nevertheless, clearly presents the advantages of using optimal data sets and

emphatically points out the issues related to the use of term orders. Assume

n = 2 and q = 2. Thus, the space of functions we are dealing with is F2 F2ð Þ.
The task is to reverse engineer the function

f : F2 F2ð Þ?F2 F2ð Þ
~xx.x1x2zx1

Since the function f displays 2 terms, we need a data set containing at least 2

points in order to be able to completely reverse engineer f (see Theorem 6 and

Remark 7). The next step is to try to find an optimal data set of cardinality at

least 2. For this purpose, consider the basis g22að Þa[M2
2
:~ x1x2,x2,x1,1ð Þ

of F2 F2ð Þ and the one-dimensional vector subspace U :~
span x1x2zx2zx1z1ð Þ. The basis vector u1:~x1x2zx2zx1z1

has the coordinates 1,1,1,1ð Þt with respect to the basis g22að Þa[M2
2
.

Therefore, U is in general position with respect to g22að Þa[M2
2

(recall

Definition 9). It is easy to verify

V Uð Þj j~ x,yð Þ[F2
2 : xyzyzxz1~0 mod 2

� ��� ��
~ 0,1ð Þ, 1,0ð Þ, 1,1ð Þf gj j~3

~22{1~codim Uð Þ

As a consequence, the set X :~ 0,1ð Þ, 1,0ð Þ, 1,1ð Þf g constitutes an

optimal data set (see Definitions 15 and 16) to reverse engineer any function

g[F2 F2ð Þ displaying no more than 3 terms. According to (9), the probability

of reconstructing f using the data set X and the term-order-free reverse

engineering method with a randomly chosen linear order (for ordering the set

M2
2) is

P~

22{2

22{3

 !

22

3

 ! ~

2

1

	

4

3

	
~0:5

However, if the data set X is used and only term orders are allowed (for

ordering the set M2
2), i.e. the LS-algorithm is used with X as input data, the

probability of finding f would be equal to zero. This follows from the fact that

for any term order, the term x1x2 is always the biggest. Note also that the term

x1x2 does not vanish on X, in other words, that is not the reason why the LS-

algorithm is unable to reverse engineer f. This is happening even though the data

set X is relatively big, namely 75% of the entire state space F2
2. A similar

calculation (see Section 2 of the Appendix S1) shows that the reverse

engineering of the function h ~xxð Þ~x1x2 would be successful with probability

0.75 using the term-order-free reverse engineering method fed with X, whereas

the LS-algorithm (fed with X) could not find the correct function h.

Discussion

The results we have obtained in the previous section provide

guidelines on how to design experiments to generate data to be

used with the LS-algorithm for the purpose of reverse engineering

a biochemical network.

The following are minimal requirements on a set X(Fn
q, such

that the LS-algorithm reverse engineers f based on the knowledge

of the values that it takes on every point in the set X:

1. If the LS-algorithm is used to reverse engineer a nonzero

function f [Fn Fq

� �
\ 0f g, necessarily the data set X used must

contain points were the function does not vanish. In other

words, not all the interpolation conditions must be of the type

~xxi?0 (Theorem 5).

2. If the LS-algorithm is used to reverse engineer a nonzero

function f [Fn Fq

� �
\ 0f g displaying t different terms, it requires

at least t different data points to completely reverse engineer f

(Remark 7).

3. If f [Fn Fq

� �
\ 0f g is a polynomial function containing all qn

possible fundamental monomial functions, no proper subset

X5Fn
q of Fn

q will allow the LS-algorithm to find f (Remark 7).

X~Fn
q would do the job, however, as mentioned previously,

experimental data are typically sparse.

Our results also make possible the identification of optimal sets

X(Fn
q that make the LS-algorithm more likely to succeed in

reverse engineering a function f [Fn Fq

� �
based only on the

knowledge of the values that it takes on every point in the set X.

Optimal data sets X(Fn
q are characterized by the property that

ker W~XX

� �
is in general position with respect to the basis gnqa

� �
a[Mn

q

(see Definitions 16 and 12). Their advantage is given by the fact

that they do not impose constraints on the set of candidate terms

that can be used to construct a solution. Summarizing we can say:

1. Even though such sets can be constructed in particular

examples (see Section 2 of the Appendix S1), further research

is required to prove their existence in general terms.

Reverse Engineering

PLoS ONE | www.plosone.org 10 March 2009 | Volume 4 | Issue 3 | e4939

2. If no optimal sets can be determined, it is still advantageous to work

with pseudo-optimal data sets (see Remark and Definition 14).

Since the identified optimal data sets are sets X(Fn
q of

discretized vectors, in a real application, the optimal data set X has

to be transformed back (or ‘‘undiscretized’’) to a corresponding set
~XX5Rn of real vectors. This transformation can be performed

using an ‘‘inverse’’ function of the discretization mapping (1). This

‘‘inverse’’ function has to be defined by the user, given the fact that

discretization mappings are highly non-injective14 and by

definition map entire subsets Z5Rn into a single value ~zz[Fn
q.

Once the set ~XX has been established, the experimental task is to

measure how the system evolves from every state described by

every single point in the set ~XX , i.e. every point in ~XX is used as

initial conditions and the subsequent time evolution of the system

is measured. This task is what we call the design of specific

experiments. The criteria for this design are precisely the initial

conditions to be used, which are provided by the set ~XX , the

‘‘undiscretized’’ optimal data set X .

Having characterized optimal data sets, the next step in our

approach was to provide an exact formula for the probability that the

LS-algorithm will find the correct model under the assumption that

an optimal data set is used as input. As stated in Remark 18, we were

not able to find such a formula for the LS-algorithm. The biggest

difficulty we face is related to the use of term orders inherent to the

LS-algorithm. We overcome this problem by considering a

generalization of the LS-algorithm, the term-order-free reverse

engineering method. This method not only allows for the calculation

of the success probability but it also eliminates the issues and

arbitrariness linked to the use of term orders (see Remark 18 and

Example 20). In conclusion, our results on this issue are:

1. It is still an open problem how to derive a formula for the

success probability of the LS-algorithm when optimal data sets

are used as an input and the term order is chosen randomly. As

stated in Remark 18, one of the main problems here is related

to the use of term orders inherent to the LS-algorithm.

2. Let f [Fn Fq

� �
\ 0f g be a nonzero function consisting of the

linear combination of exactly t fundamental monomial

functions. If the linear order used by the term-order-free

method is chosen randomly, the probability of successfully

retrieving f using an optimal data set X of cardinality Xj j~m is

given by (see Theorem 17)

P~

qn{t

qn{m

	

qn

m

	
 if tƒm ð12Þ

and

P~0 if twm

3. Let d~qn be the cardinality of the space Fn
q. Furthermore, let

X be an optimal data set with cardinality Xj j~mvd and

r:~m=d (note that 0vrv1). Then the asymptotic behavior of

the probability formula (12) for d?? (i.e. for n??) satisfies

(see Remark 19)

d{t

d{rd

	

d

rd

	
 &rt for big d

4. Let f [Fn Fq

� �
\ 0f g be as above. To reverse engineer f using the

term-order-free method with a confidence d[0,1ð �, an optimal

data set of cardinality m~
ffiffiffi
dt
p

qnð Þ (provided m§t) is required.

Furthermore, for d~qn sufficiently big, it holds

m

qn
~

ffiffiffi
d

t
p

w1{
1

t

for the proportion of data points needed (see Remark 19).

As a consequence of the latter, we conclude that even if an

optimal data set is used and the restrictions imposed by the use of

term orders are overcome, the reverse engineering problem

remains unfeasible, unless experimentally impracticable amounts

of data are available.

At this point, it is pertinent to comment on one scenario

identified in [11]. Specifically, in Conclusion 4(a), the author of

[11] makes the assumption that the wiring diagram of each of the

underlying functions is known, i.e. the variables that actually affect

the function f are known. Under this assumption, let k be the

number of variables affecting f. If one could perform specific

experiments such that for all possible values that the k variables

can take the response of the network is measured, the function f

would be uniquely determined. In this situation, reverse

engineering f would not imply making any choices among possible

solutions. This raises the question of how many measurements are

needed and how big this data set would be in proportion to the size

qn of the space Fn
q of all possible states the network can

theoretically display. The number of measurements needed is qk

and therefore the proportion is equal to

qk

qn
~

1

qn{k

If k is small compared to n (which is generally assumed by the

author of [11]), then the proportion would be conveniently small.

In other words, in relative terms, it is worth performing the qk

specific experiments. However, performing qk measurements

might still be beyond experimental feasibility.

Reverse engineering within the modeling paradigm of time

discrete finite dynamical systems requires the assumption that the

state of the different entities modeled can be discretized in a

meaningful way. Discretization is a challenging problem, which

does not seem to have a universal solution. While discretization

could help eliminate the noise in noisy data, it is by no means clear

in general terms what should be considered noise and what a

significant variation. Therefore, the threshold between noise and

real variation has to be individually determined for every

particular experimental setting.

Also the issue of choosing the number q of different discretized

states represents a difficulty. As with any mathematical algorithmic

method based on discretization, some type of convergence as the

discretization gets finer and finer (i.e. the step size gets smaller) is

highly desirable, in the sense that after a certain degree of

resolution, the method is capable of catching essential properties

which will not vary significantly if the resolution is further

increased. We have partially explored the properties of the LS-

algorithm in this regard. However, it would go beyond the scope of

this paper to include our results here.

Since experimental measurements are discrete in time, a time

discrete modeling approach seems natural. However, it is

important to know the time scales of the different processes

observed in order to use a frequency of measurement that will not

Reverse Engineering

PLoS ONE | www.plosone.org 11 March 2009 | Volume 4 | Issue 3 | e4939

miss important changes of the system. On the other hand, a

measuring frequency that is too high could generate data that

seem to report that the system observed has already reached a

stable state.

Discretized data are also very rigid in the sense that it is not easy

to establish what the neighborhood of a point could be. It would

be namely interesting to study, how small perturbations in the

discrete input data are propagated in the LS-algorithm and how

the output model responds to those perturbations. To do this

mathematically, one would need to introduce a topological

structure in the state space Fn
q as well as in the function space

Fn Fq

� �
. Since the LS-algorithm is based on exact interpolation,

we expect the effects of perturbation in the data set to be ill-

conditioned. However, we are not able to express this sensitivity to

perturbations in the input data in a systematic way. The main

reason for this is that our explorations of this issue have not yielded

any helpful way to define a topological structure that would

capture a meaningful notion of neighborhood. This failure seems

to be closely related to the discrete character of these spaces.

In this sense, a state continuous modeling paradigm seems to be

significantly more tractable from a topological point of view.

Recent developments in applied commutative algebra and

computational algebraic geometry have proposed the use of

generalized normal forms [23] and normal forms with respect to

border bases [24,25]. These developments generalize Gröbner

bases approaches by dropping the requirement for term orders. In

the light of these developments, the question arises as to what

extent the LS-algorithm could advantageously be adapted to the

use of these more general types of normal forms. The feasibility of

such an adaption as well as its computational aspects remain to be

investigated.

Endnotes
1 A finite field is a finite nonempty set endowed with the

algebraic structure of a field, i.e. operations of addition and

multiplication of pairs of elements are defined and follow precise

rules. The simplest finite field is the Boolean field F2 which only

contains the elements 0 and 1.
2 The upper bound q for the degree results from the algebraic

fact that aq~a V a[Fq.
3 A linear operator T : Fn Fq

� �
?Fm

q is a function that preserves

the vector space structure, i.e. linear combinations are mapped

into linear combinations. Surjective means that for every ~yy[Fm
q

there is a g[Fn Fq

� �
such that T gð Þ~~yy. A surjective linear

operator is called epimorphism.

4 For a given set X(Fn
q we construct the tuple ~XX[Fn

q

� �m

by

ordering the elements of X according to a fixed arbitrary order.
5 M m|qn; Fq

� �
is the ring of m|qn matrices with entries in

Fq.
6 The kernel ker W~XX

� �
(Fn Fq

� �
of W~XX is the subspace of

Fn Fq

� �
containing all the functions g with the property W~XX gð Þ~~00.

7 A bilinear form is a mapping that takes two vectors and maps

them into the underlying field in a way such that the mapping is

linear in each of its arguments. Such a bilinear form is called

symmetric if interchanging the arguments does not alter the value

of the mapping.
8 dij is the Kronecker Delta, equal to one for equal indices and

otherwise equal to zero.
9 As an example, this is how the standard inner product in the

real vector space Rn is defined, where the basis vectors are the

canonical unit vectors~eei,i~1, . . . ,n.
10 A (strict) partial order , on a set S is a nonreflexive,

antisymmetric and transitive binary relation.
11 The vector ~bb is obtained from the measurements or

simulations.
12 If A is a set, Ac denotes its complement.
13 This follows from the fact limn?? 1{ 1

n

� �n
~e{1&0:37.

14 A function T : V?W from set V to set W is called injective if

T uð Þ~T vð Þ implies u~v.

Supporting Information

Appendix S1 Examples and technical proofs.

Found at: doi:10.1371/journal.pone.0004939.s001 (0.21 MB

PDF)

Acknowledgments

We would like to thank our colleagues and mentors at the Virginia

Bioinformatics Institute at Virginia Tech, in particular, Dr. Michael

Shapiro for very helpful comments. We thank Dr. Winfried Just for an

informative and stimulating e-mail exchange. We are grateful to Dr. Karen

Duca for her support and to Dr. David Thorley-Lawson for providing an

excellent research environment at the Pathology Department of Tufts

University, the institute where the material for this paper was conceived.

We also would like to express our gratitude to Jill Roughan, Dr. Karen

Duca and Dr. Kristen Lavallee for proofreading the manuscript.

Author Contributions

Wrote the paper: EWDE. Conceived the mathematical approach, proved

the theorems: EWDE.

References

1. De Jong H (2002) Modeling and simulation of genetic regulatory systems: A

literature review. J Comput Biol 9: 67–103.

2. D’haeseleer P, Liang S, Somogyi R (2000) Genetic network inference: From co-

expression clustering to reverse engineering. Bioinformatics 16: 707–726.

3. Gardner TS, Faith JJ (2005) Reverse-engineering transcription control networks.

Phys Life Rev 2: 65–88.

4. Markowetz F, Spang R (2007) Inferring cellular networks – a review. BMC

Bioinformatics 8: S5.

5. Lorenzo R (1998) Gröbner bases and statistics. In: Buchberger B, Winkler F, eds.

Gröbner bases and applications. Cambridge Univ. Press. pp 179–204.

6. Caboara M, Robbiano L (1997) Families of ideals in statistics. Proceedings of the

1997 international symposium on symbolic and algebraic computation. Kihei,

Maui, Hawaii, United States: ACM. pp 404–409.

7. Laubenbacher R, Stigler B (2004) A computational algebra approach to

the reverse engineering of gene regulatory networks. J Theoret Biol 229:

523–537.

8. Cox D, Little J, O’Shea D (1997) Ideals, varieties, and algorithms, An

introduction to computational algebraic geometry and commutative algebra.

New York: Springer-Verlag. pp xiv+536.

9. Kauffman SA (1993) The origins of order: Self-organization and selection in

evolution. Oxford, UK: Oxford University Press.

10. Thomas R (1991) Regulatory networks seen as asynchronous automata: A

logical description. J Theoret Biol 153: 1–23.

11. Just W (2006) Reverse engineering discrete dynamical systems from data sets

with random input vectors. J Comput Biol 13: 1435–1456 (electronic).

12. Allen EE, Fetrow JS, Daniel LW, Thomas SJ, John DJ (2006) Algebraic

dependency models of protein signal transduction networks from time-series

data. J Theoret Biol 238: 317–330.

13. Jarrah AS, Laubenbacher R, Stigler B, Stillman M (2007) Reverse-engineering

of polynomial dynamical systems. Advances in Applied Mathematics 39:

477–489.

14. Dimitrova ES, Jarrah AS, Laubenbacher R, Stigler B (2007) A Gröbner fan

method for biochemical network modeling. Proceedings of the 2007 interna-

tional symposium on symbolic and algebraic computation. Waterloo, Ontario,

Canada: ACM. pp 122–126.

15. Golan JS (2004) The linear algebra a beginning graduate student ought to know.

Dordrecht, The Netherlands: Kluwer Academic Publishers.

16. Dimitrova ES, McGee JJ, Laubenbacher RC (2005) Discretization of time series

data.

17. Ljung L (1999) System identification: theory for the user. Upper Saddle River,

New Jersey: Prentice Hall PTR. pp xxii+609.

18. Gentle JE (2007) Matrix algebra. New York: Springer. pp xxii+528.

Reverse Engineering

PLoS ONE | www.plosone.org 12 March 2009 | Volume 4 | Issue 3 | e4939

19. Krupa B (2002) On the number of experiments required to find the causal

structure of complex systems. J Theoret Biol 219: 257–267.
20. Möller HM, Buchberger B (1982) The construction of multivariate polynomials

with preassigned zeros. Computer algebra (Marseille, 1982). Berlin: Springer. pp

24–31.
21. Meyberg K (1975) Algebra. Teil 1, Mathematische Grundlagen für Mathema-

tiker, Physiker und Ingenieure. Munich: Carl Hanser Verlag. 192 p.
22. Meyberg K (1975) Algebra. Teil 2, Mathematische Grundlagen für Mathema-

tiker, Physiker und Ingenieure. Munich: Carl Hanser Verlag. 192 p.

23. Bernard M, Philippe T (2005) Generalized normal forms and polynomial system

solving. Proceedings of the 2005 international symposium on Symbolic and

algebraic computation. Beijing, China: ACM.

24. Kehrein A, Kreuzer M, Robbiano L (2005) An algebraist’s view on border bases.

In: Dickenstein A, Emiris I, eds. Solving polynomial equations. Berlin,

Heidelberg: Springer. pp 169–202.

25. Kehrein A, Kreuzer M (2005) Characterizations of border bases. Journal of Pure

and Applied Algebra 196: 251–270.

Reverse Engineering

PLoS ONE | www.plosone.org 13 March 2009 | Volume 4 | Issue 3 | e4939

