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Simple Summary: Follicular lymphoma represents the major subtype of indolent B-cell non-Hodgkin
lymphomas, ranging from about 20 to 30% of all B-NHLs cases in western countries. Yet, the global
proteome profile of follicular lymphoma remains largely undocumented; thus, we aimed to employ
for the first time a comprehensive proteomic analysis to outline its molecular landscape. A total of
15 lymphoma fine-needle aspiration biopsy samples and 14 controls were evaluated by label-free
quantitative proteomics. Among the 7673 proteins identified in our dataset, 1186 proteins were differ-
entially expressed between lymphoma and control samples. Importantly, dysregulated proteins were
enriched in biological processes such as B-cell receptor signaling pathway, cellular adhesion molecules
pathway, or membrane trafficking. Additionally, we identified several novel hub proteins related to
lymphomagenesis. To summarize, we have determined the molecular characteristics of follicular
lymphoma and discovered proteins which may hold potential for biomarkers or therapeutic targets.

Abstract: Follicular lymphoma (FL) represents the major subtype of indolent B-cell non-Hodgkin
lymphomas (B-NHLs) and results from the malignant transformation of mature B-cells in lymphoid
organs. Although gene expression and genomic studies have identified multiple disease driving
gene aberrations, only a few proteomic studies focused on the protein level. The present work
aimed to examine the proteomic profiles of follicular lymphoma vs. normal B-cells obtained by
fine-needle aspiration biopsy (FNAB) to gain deep insight into the most perturbed pathway of FL.
The cells of interest were purified by magnetic-activated cell sorting (MACS). High-throughput
proteomic profiling was performed using liquid chromatography-tandem mass spectrometry (LC-
MS/MS) and allowed to identify of 6724 proteins in at least 75% of each group of samples. The ‘Total
Protein Approach’ (TPA) was applied to the absolute quantification of proteins in this study. We
identified 1186 differentially abundant proteins (DAPs) between FL and control samples, causing an
extensive remodeling of several molecular pathways, including the B-cell receptor signaling pathway,
cellular adhesion molecules, and PPAR pathway. Additionally, the construction of protein–protein
interactions networks (PPINs) and identification of hub proteins allowed us to indicate the key player
proteins for FL pathology. Finally, ICAM1, CD9, and CD79B protein expression was validated in
an independent cohort by flow cytometry (FCM), and the results were consistent with the mass
spectrometry (MS) data.
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1. Introduction

Mature B-cell non-Hodgkin lymphomas (B-NHLs) represent the majority of diagnosed
lymphoma and are a very diverse set of malignancies, including differences in the cell of
origin, aggressiveness, and response to therapy [1–3]. The most frequent of indolent B-NHL
subtypes is follicular lymphoma (FL) [4], ranging from about 20 to 30% of all B-NHLs cases
in western countries [5]. However, our recent study confirmed a lower FL incidence rate in
Poland as compared to other European countries. FL accounted for 6.3% of all B-NHLs,
with 5.6% in the male and 6.9% in the female populations, respectively [6].

FL is generally considered a slow-growing lymphoma, often relapsing with a low
malignancy degree, and slow progression is common during the natural history of the dis-
ease [7,8]. Some cases present with the rapidly histological transformation (HT) to the more
aggressive lymphoma, mostly diffuse large B-cell lymphoma, not otherwise specified (DL-
BCL, NOS). Less frequently FL transforms to the high-grade B-cell lymphoma (HGBL) with
MYC and BCL2 and/or BCL6 gene rearrangements, also known as “double-hit” or “triple-
hit” lymphomas [9,10]. The HT rate of FL is difficult to estimate [11] and it is assumed about
2–3% per year from diagnosis [12–14]. Recently, significantly prolonged progression-free
survival was observed when treated with modern therapies [15,16], however its remains
incurable for the majority of elderly individuals [6,17,18]. Therefore, extensive “omics”
studies dealing with the molecular aspect of FL are highly recommended. Among the tech-
niques for studying proteins, proteomics is the most advanced aiming at a simultaneous
investigation of thousands of differentially abundant proteins (DAPs) in one sample and,
together with bioinformatical tools, reveal alterations in the biological pathways.

Attempts to characterize the B-NHLs by proteomic profile have been previously pro-
posed but have not yet been translated into clinical practice. Few mass spectrometry (MS)-
based proteomic studies with different designs regarding samples and analytical methods
were previously performed, mainly on diffuse large B-cell lymphoma (DLBCL) [19–22].
However, most of the above research relies on the use of lymphoma cell lines, and studies
engaging a representative set of a clinical sample are still rare. Surprisingly, there is a lack of
deep global proteomic data regarding FL resulting from an analysis of clinical samples, and
the current molecular landscape of disease bases mostly on genomic studies [23,24]. The
available data comprises only a few mass-spectrometry based research performed several
years ago, mainly on cell lines [25–27]. Additionally, a majority of previously published
works have been performed using two-dimensional gel electrophoresis protein separation
and further MS analysis of dissected spots which is a semi-quantitative method; hence, it
does not deliver information about the accurate protein concentration.

First attempts at studying the FL proteomic profile were made by Weinkauf et al. in
2007 [26]. Authors compared three FL and three mantle cell lymphoma (MCL)-derived cell
lines and identified 1600 protein spots per gel, of which 175 were found to be differentially
abundant. Additionally, authors made a comparison of proteome analysis and RNA ex-
pression array data. In 2010 Jansen et al. [27] performed MS-based protein profiling on
a large group of 239 B-NHL samples, including 63 FL cases. The lymph node biopsies
were obtained from multiple hospitals in accordance with standard pathology protocols,
not pre-isolated before MS. The authors successfully classified B-NHL subtypes using
two independent biostatistical methods; however, this study did not focus on molecular
biology and pathway analysis. More recently, Rolland et al. [28] evaluated global phospho-
proteomic signatures of B-NHLs across 11 cell lines of three distinct lymphoma subtypes,
including FL, MCL, and Burkitt lymphoma. Authors identified 1701 unique phosphory-
lated proteins and observed that phosphoproteomic signatures are associated with each
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lymphoma subtype. These data provide a detailed annotation of phosphorylated proteins
in human lymphomas. In turn, the study of Ludvigsen et al. 2015 [29] has shed some light
on the histological transformation within FL, revealing the differentially expressed protein
profiles of FL obtained from patients with diverse clinical outcomes.

Intrigued by the observation that the global proteomic profile of FL remains largely
undocumented, we first employed a comprehensive proteomic analysis of patients derived
samples vs. normal B-cells. We analyzed the global proteome of 15 follicular lymphomas
and 14 control samples using LC-MS/MS. Notably, cells of interest were obtained by FNAB,
their quantity and quality have been confirmed by flow cytometry (FCM) and cytogenetics,
and pre-sorted by magnetic beads to analyze pure B-cell population.

Using the ‘Total Protein Approach’ (TPA) [30,31], we generated precise information
about the accurate concentration of proteins in the studied samples. LC-MS/MS analysis
resulted in the identification of 6724 proteins detected in at least 75% of study groups,
of these 579 proteins have increased abundances with lymphoma/control fold change
≥2.0, while 607 proteins were down-represented with lymphoma/control fold change at
least 2-fold lower. Next, we conducted a comprehensive enrichment analysis with Perseus
and Cytoscape software and we identified several enriched pathways, including cellular
adhesion molecules’ (CAMs) interactions, which possibly perform important roles in FL.
A key signaling pathway involved in the development of B-NHL lymphomas, the B-cell
receptor (BCR) signaling pathway, was also identified as significantly changed. Notably,
numbers of hub proteins, essential for new drug development for pathway-based targeted
therapy, were identified. Our results describe, to the best of our knowledge, the largest
functional analysis of the in-depth proteome of follicular lymphoma.

2. Results
2.1. General Description of Analyzed Material

Considering the identification of only proteins with at least two peptides, we found
a minimum of 6832 and a maximum of 7383 proteins per sample. The concentration of
identified proteins ranges from about 50 fmol/mg (e.g., MAP3K1, C9orf72, SLC23A2)
to about 2.7 nmol/mg (e.g., H3F3A). A total of 7673 protein groups were identified and
quantified. Table S1 provides details of all proteins identified in this study, including
concentration values (pmol/mg) in each sample. 6724 proteins were detected in at least
75% of study groups, of these 579 proteins were overrepresented with lymphoma/control
fold change ≥2.0, while 607 proteins were downrepresented with lymphoma/control
fold change at least 2-fold lower, both in combination with a p-value ≤0.05. 201 proteins
were present at more than 4-fold higher concentrations in lymphoma samples, among
which 58 proteins with fold change ≥7. In turn, 267 proteins had at least 4-fold lower
concentration and 47 proteins exhibited fold change ≤0.1. Table S2A,B include details of
all 1168 DAPs; FL/C ratios, and Student’s t-test statistics.

Hierarchical clustering of the top 454 DAPs identified by Student’s t-test was per-
formed in Perseus software and revealed distinct protein profiles between lymphoma and
control samples, Figure 1A. Next, Perseus was also used to generate a volcano plot, with
a fold change cutoff of 2, Figure 1B. Protein grouped in the right and left corner were
considered significantly up- and down-regulated, respectively.

2.2. Identification of DAPs

The proteins that show a differential abundance in each group may potentially un-
derscore the phenotypic shift in B-cells towards FL. The top 20 up- and downrepresented
proteins with the highest differences in concentrations among the study group are pre-
sented in Table 1.

Of the 579 overrepresented proteins, six proteins were found in at least 20-fold
higher abundance in lymphoma patients (NUCKS1, SLC14A1, GPALPP1, ADPRH, CD72,
PRDM15). Of these proteins, the NUCKS1 showed the biggest expression difference be-
tween lymphoma and normal B-cells (36.53-fold upregulation). In turn, three proteins
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(ITGAV, NT5E, and PLTP) out of 607 downrepresented proteins were found in at least
20-fold lower concentrations in FL. Notably, Search Tool for the Retrieval of Interacting
Genes/Proteins (STRING) analysis performed on the proteins with the highest abundance
decreases with lymphoma/normal ratio ≤0.01 revealed that 16 out of 32 identified proteins
interacted with each other in a protein-protein interaction network, Figure 2A.

Figure 1. (A) Heat map representing the log2 (abundances) of the 454 differentially abundant proteins (DAPs) in 15 follicular
lymphoma (FL) and 14 control samples (C). Generated by Perseus software after data normalization. The heat map was
created based on the data clustering using Euclidean distance. Each row represents a differentially represented protein
abundance and each column, a clinical sample. The color scale represents z-scores (log2 intensity). Significantly up-regulated
proteins in FL are labeled in red, while significantly down-regulated proteins are labeled in green. Grey boxes indicate that
the ratio was not assessed for a particular protein. (B) Volcano plot displays the main dysregulated proteins identified with a
p-value ≤ 0.05 and ≥ 2-fold cutoff. Proteins were graphed by fold change (difference) and significance (-log p-value) using a
false discovery rate (FDR) of 0.05 using the Perseus software (Max Planck Institute for Biochemistry, Martinsried, Germany).

Figure 2. (A) Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) analysis on the top down-regulated
proteins with lymphoma/normal ratio ≤ 0.01. Edges represent protein-protein associations and the the thickness of the
line indicates the strength of data support. Only connected nodes are shown. (B) Venn diagram illustrating the overlap
of identified hub proteins between maximal clique centrality (MCC), maximum neighborhood component (MNC), and
Degree analysis methods of cytoHubba. (C) Protein-protein interaction networks (PPINs) of the top 20 hub proteins
selected from 1186 dysregulated proteins according to Degree algorithm from cytoHubba. Down-regulated proteins with
fold change ≤ 0.5 are marked in green, while up-regulated proteins (fold change ≥ 2.0) are plotted in red, (p ≤ 0.05).
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To illustrate the interaction of all 1186 dysregulated proteins, a PPIN was constructed
using the STRING database. 1139 nodes and 7543 interactions between them were found..
Next, the hub proteins were selected from the PPIN. Here, we used the cytoHubba plugin
based on Cytoscape software for ranking proteins in a network by their network fea-
tures [32]. In line with the previous study [33], three topological methods were used to find
out the hub proteins, including maximal clique centrality (MCC), maximum neighborhood
component (MNC), and Degree algorithm. Venn diagrams were used to show the shared
sets of proteins. The overlapping proteins were considered to be more reliable. The results
showed that four of the 20 hub proteins were shared between three methods, including
three up-regulated proteins (TGOLN2, CBL, SH3KBP1) and one down-regulated protein;
RPS27A, Figure 2B. In turn, Figure 2C shows the PPIN of the top 20 hub proteins selected
from all DAPs according to the Degree algorithm. Notable, 6 of the 20 hub proteins were
engaged in adhesion processes: FN1, CTNNB1, CDH1, ITGB1, ICAM1, and ITGAV. Among
these proteins, ITGAV exhibited the most significant difference between the lymphoma
and control samples.

Table 1. The top 20 (A) up- and (B) downrepresented proteins in follicular lymphoma (FL). Table S2A,B includes details of
all 1168 differentially abundant proteins (DAPs), FL/control ratios, and Student’s t-test statistics.

(A)

Gene Name Protein Name Accession Fold Change −Log p-Value

NUCKS1 Nuclear ubiquitous casein and cyclin-dependent kinase substrate 1 Q9H1E3 36.535 4.47
SLC14A1 Urea transporter 1 Q13336 34.949 3.37
GPALPP1 GPALPP motifs-containing protein 1 Q8IXQ4 24.970 1.69
ADPRH [Protein ADP-ribosylarginine] hydrolase P54922 21.681 3.80

CD72 B-cell differentiation antigen CD72 P21854 21.000 2.29
PRDM15 PR domain zinc finger protein 15 P57071 20.148 1.71
HMGN1 Non-histone chromosomal protein HMG-14 P05114 19.527 3.59
MEF2B Myocyte-specific enhancer factor 2B Q02080-2 19.051 5.72

PLEKHG2 Pleckstrin homology domain-containing family G member 2 Q9H7P9 16.283 2.01
DBNL Drebrin-like protein Q9UJU6-2 14.342 1.61

NAGPA N-acetylglucosamine-1-phosphodiester alpha-N-acetylglucosaminidase Q9UK23 14.081 1.84
SPTY2D1 Protein SPT2 homolog Q68D10 13.958 1.81
SEMA4A Semaphorin-4A Q9H3S1 13.311 3.33
CCDC43 Coiled-coil domain-containing protein 43 Q96MW1 12.680 3.75
ARPP19 cAMP-regulated phosphoprotein 19 P56211 12.429 1.83

RASGRP3 Ras guanyl-releasing protein 3 Q8IV61 11.771 3.17
DDT D-dopachrome decarboxylase;D-dopachrome decarboxylase-like protein P30046 11.570 2.49
SP100 Nuclear autoantigen Sp-100 P23497 11.558 3.38

GGACT Gamma-glutamylaminecyclotransferase Q9BVM4 11.222 3.47
RRM2B Ribonucleoside-diphosphate reductase subunit M2 B Q7LG56 11.201 3.67

(B)

Gene Name Protein Name Accession Fold Change −Log p-Value

ITGAV Integrin alpha-V P06756 0.045 3.46
NT5E 5-nucleotidase P21589 0.047 2.93
PLTP Phospholipid transfer protein P55058 0.048 1.81

CNTN1 Contactin-1 Q12860 0.053 2.14
CD163 Soluble CD163 Q86VB7 0.056 6.11
CLDN3 Claudin-3 O15551 0.059 4.36
CD14 Monocyte differentiation antigen CD14 P08571 0.063 4.02
CD9 CD9 antigen P21926 0.066 3.96

CRAT Carnitine O-acetyltransferase P43155 0.066 1.77
STAB1 Stabilin-1 Q9NY15 0.067 4.27

MYO1B Unconventional myosin-Ib O437 0.068 4.28
TMEM119 Transmembrane protein 119 Q4V9L6 0.070 1.84
PTGFRN Prostaglandin F2 receptor negative regulator Q9P2B2 0.070 5.26

SERPING1 Plasma protease C1 inhibitor P05155 0.071 4.23
MACROD1 O-acetyl-ADP-ribose deacetylase MACROD1 Q9BQ69 0.075 5.54

RAB34 Ras-related protein Rab-34 Q9BZG1 0.077 2.58
ACE Angiotensin-converting enzyme P12821 0.078 2.72

ENTPD5 Ectonucleoside triphosphate diphosphohydrolase 5 O75356 0.080 2.77
ENG Endoglin P17813 0.081 3.03

IGHG3 Ig gamma-3 chain C region A0A087WXL8 0.081 3.76
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2.3. KEEG Pathway Analysis

Through the use of Perseus, all identified confidential proteins were annotated for
Kyoto Encyclopedia of Genes and Genomes (KEGG) and the number of DAPs involved in
selected pathways was calculated, Figure 3. Surprisingly, the most significantly changed
pathways were those associated with adhesion, including ECM-receptor interaction, cell
adhesion molecules, GAP junctions, focal adhesion, and adherence junctions. Furthermore,
the results revealed that the DAPs in FL were associated with several key pathways
constituting no less than 25% of the identified proteins, including B-cell receptor signaling
pathway, leukocyte transendothelial migration, phosphatidylinositol signaling system,
Notch signaling pathway, and PPAR signaling pathway. Signaling through these pathways
during the development of FL has been extensively discussed in the literature [34,35].
Moreover, the percentage of proteins involved in apoptosis and glycolysis/gluconeogenesis
was also relevant. In turn, the percentage of DAPs in the metabolic pathway related to
oxidative phosphorylation, DNA replication, basal transcription factors, and cell cycle
was below 10%. These observations could explain the relatively low proliferation rate
endurance of indolent FL cells in comparison to more aggressive B-NHLs.

Figure 3. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis for differentially abundant
proteins (DAPs) in the quantified proteomes of FL. Down-regulated proteins with fold change ≤ 0.5 and up-regulated
proteins with fold change ≥ 2.0 were used for the enrichment analyses of the KEGG pathways. The red and grey bars
indicate the number of DAPs and all the identified proteins classified into different signaling pathways, and cellular
processes, respectively. Performed in Perseus software, (p ≤ 0.05).

2.4. Protein-Protein Interaction Networks and Hub Proteins in FL

Four pathways (BCR signaling, CAMs pathway, PPAR signaling pathway, and path-
way in cancer), closely related to B-cell functions, were investigated in more detail using
the online STRING database. Next, a protein interaction relationship network table was
downloaded and visualized using the STRING plugin of Cytoscape software, Figure 4A–C.
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Figure 4. Functional networks of proteins involved in the following pathways: (A) B-cell receptor (BCR) signaling pathway
(hsa04662), (B) cellular adhesion molecules (CAMs) pathway (hsa04514), (C) PPAR signaling pathway (hsa03320). Proteins
identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS) were qualified to certain pathways according
to KEGG. Colored tags indicated the abundance increase (red) and decrease (green) in FL compared to normal B-cells.
Integration of the PPIN was generated with Cytoscape. PPIN enrichment p-value was < 1.0 × 10−16 for all the networks.

2.4.1. The DAPs in BCR Pathway

BCR is the surface receptor for antigens in mature B-cell and BCR signaling is essential
for normal B-cell development and maturation [36]. In this study, 57 proteins related to
the B-cell receptor pathway were identified by LC-MS/MS, of these 55 were found to be
functionally connected according to the STRING database, Figure 4A. 580 functional links
between proteins were found. Regarding the t-test data from Perseus, 18 (31.5%) of the
proteins were found to be up-regulated (red), while only PIK3CA was found to be down-
regulated (green). Furthermore, RASGRP3, BLNK, and CD79B were found to be close to



Cancers 2021, 13, 630 8 of 21

the center of the network with high fold changes of 11.78, 5.22, and 4.25, respectively. Next,
we used the MCC, MNC, and Degree algorithms of cytoHubba to identify the top 10 hub
proteins from all proteins enriched in the B-cell receptor pathway, Figure S1A. Overlapping
hub proteins, which were found to be significantly changed in FL are VAV1, LYN, BTK,
and PIK3CA.

2.4.2. The DAPs in CAMs Pathway

The network made of 51 proteins involved in cellular adhesion with 403 links was
found within our dataset. Figure 4B shows an interaction network between 51 cellular
CAMs identified in this experiment. Five of them had increased abundance in FL (ICAM1,
ICAM3, NCAM1, CD22, and CD86), whereas 12 were underrepresented (CDH1, PTPRF,
ITGAV, ITGA6, ITGB1, CNTN1, F11R, MPZL1, SIGLEC1, CLDN3, SDC4, and CD8A).
Importantly, several of DAPs identified in this study were well-known key players in the
cell-cell and cell-ECM interactions, including ITGB1, CDH1, CNTN1, and ICAM1. Most
of the DAPs are located peripherally and usually create less than 10 interactions. The
exception is ICAM1, which is functionally connected with 27 other CAMs, and CD86,
which interacts with 25 proteins. CDH1, ITGAV, and ICAM3 are functionally connected
with the other 18 proteins. The cytoHubba analysis of hub proteins indicated that ICAM 1
and CD86 proteins performed a central role in the CAMs protein network, Figure S1B.

2.4.3. The DAPs in PPAR Signaling Pathway

Peroxisome proliferator-activated receptors (PPARs) are a family of nuclear receptors
that regulate lipid metabolism [31,37]. In our investigations, the PPAR pathway is repre-
sented by 30 proteins. Of these, 24 were found to be functionally related with 140 links,
Figure 4C. Interestingly, eight network belonging proteins (30%) were found to be signifi-
cantly down-regulated, including PLTP and PCK2 with the highest underrepresentation
of 0.05 and 0.18, respectively. Regarding the analysis performed with cytoHubba, three
down-regulated proteins (ACOX1, ACSL3, and SLC27A1) were found to be key players in
the PPAR pathway, Figure S1C.

2.4.4. Pathway in Cancer Analysis

Pathway in cancer (hsa05200) was found to be the top identified pathway dysregulated
in FL amongst our dataset. KEGG pathway results showed that 142 proteins were mainly
enriched in the pathway in cancer. Thus, this pathway was the most enriched in this
study, and we decided to analyze it in more detail. We uploaded all identified proteins to
STRING to generate the PPIN. 138 of 142 proteins were found to be functionally linked by
2393 connections, Figure 5A.

In this group, we found 30 significantly overrepresented proteins and 25 underrep-
resented proteins that together yield a high percentage of 55/142 (38%) of differentially
expressed proteins. Importantly, the group of up-regulated proteins comprises the well-
known key player proteins in cancer biology, e.g., WNT (fold change = 10.79), TRAF5
(fold change = 6.75), MAP2K1 (fold change = 5.51), (BRAF, fold change = 4.25), and cas-
pase 9, caspase 3 and caspase 8 with fold changes of 4.69, 4.22, and 3.31, respectively. In
Figure 5A, we marked the proteins belonging to the mTOR signaling pathway, MAPK
signaling pathway, and chemokine signaling pathway. Next, in accordance with the Degree
algorithm of cytoHubba, we identified the hub proteins in pathway in cancer within all
identified proteins (Figure S2A), and among the DAPs (Figure S2B). Figure 5B,C illustrates
the functional network of identified hub proteins in pathway in cancer.
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Figure 5. (A) Selected network of 138 proteins that were found in a functional screen for proteins involved in the pathway
in cancer (KEGG: hsa05200). The network was created with the use of the STRING database. Edges connecting proteins
represent interactions between two proteins, and the line thickness indicates the strength of data support. Red, blue,
and green nodes represent the mTOR signaling pathway, MAPK signaling pathway, and chemokine signaling pathway,
respectively. The overlapping areas indicate the shared proteins of any two or three groups. (B) Top 20 proteins with the
highest degree of connectivity belonging to the pathway in cancer in the entire experiment. (C) Top 20 DAPs with the
highest degree of connectivity. Colored tags indicated the abundance increase (red) and decrease (green) in FL compared to
normal B-cells.
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2.5. Pathway Enrichment Analysis by ClueGO
2.5.1. Up-Regulated Proteins in FL

The up-regulated and down-regulated proteins in FL were uploaded to the ClueGO
application of Cytoscape and analyzed separately. KEGG, Reactome, and WikiPathways
databases were selected with statistical criteria set at p ≤ 0.05, and the pathway terms were
ranked based on the fold enrichment. Pathway enrichment of 579 significantly up-regulated
proteins revealed that they were classified into 28 pathways within the seven function
cluster groups and involved mainly in the B-cell receptor signaling pathway, signaling by
interleukins, membrane trafficking, and immune system, Figure 6A and Figure S3.

Figure 6. Network view for (A) up-regulated and (B) down-regulated protein pathways in FL. Functional interaction
network analysis was performed using ClueGO Cytoscape App. The DAPs were mapped to REACTOME, KEGG, and
WikiPathways (all updated 18.05.2020). Nodes (circles) indicate the pathway function groups, while edges represent
connections between the nodes. The node size represents the term enrichment significance. The length of each edge is linked
with relevancy between two processes. Each node color indicates each class that they belong to, p ≤ 0.05. The overlapping
areas indicate the shared pathways of any two or three groups. The up- and down-regulated proteins, which contributed to
the enriched pathways are listed in Table S3A,B, respectively.

The most abundant group of pathways functionally enriched in this study includes
those related to BCR signaling. Data visualization showed that 16 up-regulated pro-
teins were assigned to the BCR signaling in accordance with KEEG (KEGG:04662), while
24 proteins following Reactome (R-HSA:983705) and WikiPathways (WP:23). In turn, the
most abundant pathways functionally enriched in this study included those related to mem-
brane trafficking (R-HSA:199991) and counted 46 proteins, Table S3A. Besides, 22, 7, and 14,
proteins overrepresented in FL were associated with EGFR signaling pathways (WP:437),
signaling by erythropoietin (R-HSA:9006335) and dectin-1 signaling (R-HSA:5607764), re-
spectively. The complete list of up-regulated proteins, which contributed to the all enriched
pathway, are listed in Table S3A.

2.5.2. Down-Regulated Proteins in FL

ClueGO Cytoscape application assigned the 607 down-regulated proteins in this study
to the 21 functional annotation groups with 61 pathways, of which six functional groups
were represented by three or more pathways, and 15 main groups were represented by
one or two pathways, Figure 6B and Figure S4. The enrichment of proteins with decreased
abundances in our dataset mainly affected non-integrin membrane-ECM interactions,



Cancers 2021, 13, 630 11 of 21

regulation of complement cascade, cell-cell communication, protein localization, interleukin
signaling pathway, and extracellular matrix organization. The downrepresented proteins,
which contributed to the all enriched pathways are listed in Supplementary Table S3B.
The most abundant functional group contains 12 terms related to non-integrin membrane
ECM-interactions, Figure S4.

2.6. Flow Cytometric Validation of CD9, ICAM1 and CD79B Expression

FCM was used to analyze the expression of the selected proteins: CD9, ICAM1 (CD54),
and CD79B, which were differentially abundant in our proteomic study. One representative
example of FNAB/FCM analysis is presented in the Figure S5A. In general, the expression
level of CD9, CD79B, and ICAM1 validated by FCM was in line with the results obtained
by LC-MS/MS, Figure S5B and Table S5.

3. Discussion

Proteins interact with each other creating functional pathways. In general, the degree
of connectivity of a certain protein influences the entire cell proteome and may lead to
system failure when the protein changes. Protein-protein interactions and the resulting
networks perform a pivotal role in the biological processes, including the development of
B-NHLs. There is increasing evidence that deregulation of signaling pathways underlies
the pathogenesis of hematological and lymphoid malignancies [38]. However, the extent
to which differentially expressed proteins may be involved in FL pathogenesis is still
fragmentary. Investigation of lymphoma-related proteins in the human PPIN network
performed in this work would, therefore, provide valuable information for elucidating
the molecular mechanisms of lymphomagenesis. In addition, the important benefit of
networking is the ability to select essential proteins in PPIN, the so-called hubs or hub
proteins which are defined as the most highly connected central proteins.

During the last decade, there was increasing evidence that BCR signaling has emerged
as a central oncogenic pathway that directly regulates growth, survival, and proliferative
signals in normal and malignant B-cells [39–41] what make this pathway a valuable target
for the treatment of B-NHLs. The abovementioned studies indicated that chronic BCR
signaling in B-NHLs might partially result from mutations in genes encoding BTK and
CARD11. Mutations in BTK and CARD11 were reported in 30% of FL patients [8]. Impor-
tantly, both proteins were overrepresented in our dataset. BTK is distinctively expressed in
B-cells and is involved in the differentiation and activation of B-cells [36]. It is crucial to the
function of BCR signaling pathway, where signals from SYK are received and transduced
to initiate downstream signaling pathway [42]. Furthermore, BTK is involved in activating
Fc-receptors, thus the upregulation of BTK results in the upregulation of Fc epsilon recep-
tor (FCER) signaling [43], what was also reflected in our work by ClueGO analysis. The
exact mechanism of this process needs to be investigated; however, our results show the
central role of BTK and SYK in BRC signaling pathway according to an analysis performed
with cytoHubba.

On the other hand, B-NHLs frequently harbor genetic mutations leading to abnor-
mal activation of canonical nuclear factor-κB (NF-κB), which is a hallmark of different
lymphoma subtypes. It is widely accepted that BCRs activate NF-κB by harboring re-
ceptor mutations in CD79A or CD79B, along with mutations of kinase LYN or effector
CARD11 [44,45]. CARD11 is the most widely studied signal integrator that translates BCR
and TCR triggering the activation of the canonical nuclear factor- κB (NF-κB), and mTOR
pathways [46,47]. Importantly, Phelan et al. [48] reported the CARD11, CD79A, and CD79B
genes overexpression in 574 DLBCL biopsies. In turn, Myklebust et al. [49] confirmed
the elevated CD79B expression in FL cells and its strong correlation with BCR-induced
signaling. Of notice, all the protein products of the above genes were found to be overrep-
resented in our dataset, and the central role of LYN in BCR signaling was established. The
expression of CD79B protein was also verified using FCM and results were consistent with
the MS data.
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Another hub protein identified in this study is VAV1, with a crucial role in recep-
tor tyrosine kinase (RTK) pathway [50]. Interestingly, the VAV1 expression is limited to
the hematopoietic system during normal development [51] and at the same time, VAV1
remains overexpressed in hematological and lymphoid malignancies, including chronic
lymphocytic leukemia (CLL) [52], acute myeloid leukemia (AML), and DLBCL [53], what is
in line with our proteomic results. An expression profiling study on DLBCL cell lines [53]
also demonstrated an association between increased VAV1 expression and a higher prolif-
erative activity of lymphoma cells. Importantly, several other proteins belonging to the
BCR pathway with a fold change ≥5.0 were also identified, including MAP4K1, BLNK,
RAPGEF1, VAV2, MAP2K1, MAP3K7, DAPP1, and SH3KBP1.

PIK3CA is the only protein classified as a hub protein and down-regulated at the
same time, while other phosphoinositide 3-kinases (PI3Ks) were frequently overexpressed.
PIK3CA encodes the p110α catalytic subunit of PI3K and regulates signaling pathways
associated with cell adhesion, proliferation, and survival [54]. The PI3K pathway is
considered to perform an important role in lymphomagenesis. The presence of several
PIK3CA oncogenic mutations has been reported in DLBCL patients [55], as well as PIK3CA
has been investigated for its clinicopathological significance; however, no data have been
reported in indolent B-NHLs. Thus, the observed here downregulation of PIK3CA in
relevance to its biological role has to be confirmed and then explored on a larger set of
clinical samples. Taken together, these proteomic data are in line with widely accepted
evidences that the elevated expression of proteins belonging to the B-cell receptor pathway
is closely associated with the follicular lymphomagenesis. Moreover, the independent
enrichment analysis performed in ClueGO additionally confirmed the extensive remodeling
of BCR signaling pathway in FL. Concurrently, we found a number of new hub proteins
which were not previously implicated in follicular lymphomagenesis, and visualized for
the first time the complex interaction network between them.

The role of cellular adhesion molecules in lymphomagenesis was partially revealed
3 decades ago, with the observations that B-NHL growth and clinical aggressiveness may
be related to the adhesive capacities of the tumor cells [56]. Meanwhile, our knowledge
about the cancer cell adhesion and ECM-receptor interactions has dramatically increased,
however still little is known about CAMs expression in B-NHLs and many reports re-
main unclear. The value of CAMs expression in FL is fragmentary, and the biological
significance of their expression in hematological malignancies controversial, which may
partially arise from a poor reproducibility of immunohistochemical staining. The ma-
jor finding of our study is strong evidence that the CAMs pathway contributes to the
follicular lymphomagenesis.

ICAM1, which is a hub protein for lymphoma trafficking, has been shown to be
overrepresented in several carcinomas, including breast carcinoma [57,58]. ICAM1, also
known as CD54, is established to mediate the adhesion of malignant epithelial cells to
the lymphatic endothelium and, therefore, promote the tumor spread in regional lymph
nodes [59]. Over 20 years ago, Terol et al. observed that lower expression of ICAM1
in aggressive B-NHL correlates with a more advanced stage of the disease, higher bone
marrow infiltration, and worse prognosis [60], however, Schniederjan et al. demonstrated
a decreased ICAM1 expression in aggressive BL compared to DLBCL [61].

In line with our reports, the high-throughput sequencing and bioinformatics analyses
of several tumors have revealed that CAMs are frequently identified as hub genes based
on a PPIN analysis [62–64]. These recent studies underline the particular importance of
CAMs in tumor development and progression. Lately, Peng with colleagues suggested that
cell adhesion might play a crucial part in the malignant progression of multiple myeloma
(MM) [62]. They identified 12 hub genes, including ITGB1, FN1, ITGA5, and CDH1, which
protein product were identified as hub proteins in our dataset. Additionally, the authors
demonstrated that numbers of CAMs are valuable biomarkers for the diagnosis of MM.
CD86 is a ligand for the costimulatory receptor CD28 and the coinhibitory receptor CTLA-4
that activate T-cells against antigens presented by antigen-presenting cells [65]. It was
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suggested that downregulation of CD86 helps cancer cells to escape from the immune
attack [66]; however, its higher expression in malignant cells compared to corresponding
control cells was observed in some malignancies, such as pancreatic carcinoma [67] and
FL. The upregulation of CD86 observed in FL was associated with increased APC activity
and enhanced triggered T-cell responses [68]. In turn, Wang et al. confirmed that elevated
CD86 expression was associated with a better DLBCL prognosis [69].

Interestingly, in the entire dataset, the ITGAV was the most down-regulated protein.
ITGAV is a member of the integrin alpha chain family, which could connect with integrin
beta subunits to form αvβ1, αvβ3, αvβ5, αvβ6, and αvβ8 integrin receptors [70]. ITGAV is
implicated in tumor migration and invasion; thus, its overexpression has been reported in
several epithelial tumors including gastrointestinal tract, prostate, and breast cancer [71–74].
For breast cancer with high ITGAV expression, it has been recently suggested as a potential
drug target [74]. More recent study reported ITGAV upregulation in extranodal DLBCL
cells compared to nodal DLBCL, suggesting its role in dissemination and other routes of
spread of both DLBCL subtypes [75]. The underlying cause for ITAGAV downregulation
confirmed in our dataset is not known. According to Human Protein Atlas [76], 3 out
of 6 normal lymph nodes exhibit low ITGAV expression, while 11 out of 12 lymphoma
samples were negative. The role of ITGAV definitely needs to be further elucidated and
a future study should be carried out to evaluate the expression level of ITGAV and its
clinicopathological and prognostic significance in FL patients. However, we speculate
that the downregulation of alpha V integrin on the surface of FL cells may reflect the less
tumorigenic phenotype of this lymphoma. The other downrepresented cell surface protein
is CD9 antigen belonging to the family of tetraspanin. Notably, data validation performed
with FCM exhibited overall weaker CD9 expression in FL cells compared to normal B
lymphocytes. The previous study had reported the loss of CD9 protein expression in
B-NHLs and suggested that CD9 inactivation may perform an important role in B-NHLs
transformation [77]. In line with our results, the study of Dong et al. confirmed the
downregulation of CD9 compared with normal controls [78]. Moreover, authors suggested
that CD9 expression negatively correlated with FL prognostic outcomes and attributed to
FL progression.

Above all, these results indicated that the CAMs and ECM-receptor interaction path-
way, which were hitherto overshadowed by well-known canonical pathways involved in
lymphomagenesis, are taking on greater importance in FL. Indeed, the results obtained in
our study indicate the dual activity of CAMs and downregulation of certain cell adhesion
molecules can be explained as a lymphoma cell strategy to prevent their recognition by
the immune system, as was recently suggested [66]. To the best of our knowledge, a
comprehensive analysis of CAMs expression and their networking in B-NHLs has not been
undertaken, particularly in FL. In our dataset, the numerous CAMs, rather than a single
molecule, were found to be both down- and up-regulated, and the combined function of
these molecules may affect the general adhesive properties, what is in accordance with
the recent research. However, the exact roles of selected hub CAMs in FL remains to
be established.

Previous studies have demonstrated close interactions between FL cells and the
surrounding microenvironment [79]. Notably, FL primary cells were observed to have
impaired adhesive properties to both: stromal cells and Matrigel than normal B-cells in our
previously published optical tweezers study [80]. Enrichment analysis of down-regulated
proteins performed with ClueGO strongly supports their implication in ECM-receptor
interaction related processes.

Dysregulated PPAR signaling in many carcinomas is associated with disturbances in
multiple metabolic processes [81,82]. Increasing evidence has shown the tumor-suppressive
effect of PPAR agonists in several cancer, suggesting that the activation of PPARs could
serve as a potential strategy for therapeutic treatment of, e.g., bladder cancer [83]. How-
ever, the biological roles and the underlying mechanisms regulated by PPAR signaling
pathway in normal and neoplastic B-cell development are not well understood. Recently,
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an extensive analysis of PPAR pathway genes using integrated genomic, transcriptomic,
and clinical data from 18.484 patients involving 21 cancer types was performed [84]. The
authors confirmed the downregulation of several genes in at least 7 cancer types, including
ACOX3, PKC2, SLC27A4, and SLC27A2. Consistent with this notion, the protein products
of all the above genes were found to be significantly down-regulated in our work. Re-
garding B-cell lymphoma, the PPAR gamma pathway was found to be down-regulated in
primary diffuse large B-cell lymphoma of the central nervous system (CNS DLBCL) [85].

In this work we identified several proteins processing in classical developmental
signaling pathways as being differentially regulated, which were not discussed in this
manuscript. Apart from well-known markers in B-NHLs, many of these proteins may
function as key molecules in follicular lymphomagenesis. Thus, we strongly encourage the
reader to analyze the data included in Supplementary Tables for further information on
the abundance changes and function of the proteins of interest.

4. Materials and Methods
4.1. Collection of FNAB Samples and Clinical Information

All FL cases were diagnosed and graded (grade 1, 2, and 3A) by a hematopathologist
using histopathological and immunohistochemical examinations according to the current
2017 WHO classification [15]. Pre-therapeutic lymphoma samples as cellular suspensions
were also obtained by the same hematopathologist by FNAB/ultrasound-guided FNAB
from the involved lymph nodes or tumors of patients diagnosed at Maria Sklodowska-
Curie National Research Institute of Oncology between 2016 and 2017. Each case, obtained
by FNAB, was also followed by detailed FCM immunophenotyping, assessment of %
of pathological cells, and cytogenetics analysis as previously described [86]. Subjects
submitted for lymphadenopathy screening and with reactive histopathological findings
served as controls. Reactive lymph nodes are suitable comparison material for studies
of tumor-involved lymph nodes and follicular lymphoma, as previously described [87].
In total, 15 samples from FL and 14 samples obtained from controls were included in
high-throughput proteomic analysis. Table S4 shows the clinical characteristics of FL
patients and controls. Fine needle aspiration biopsies were collected to a collection tube
filled with 10 mL of cold phosphate-buffered saline (PBS) and immediately transferred to
K2EDTA tubes (EDTA 7.2 mg, Becton Dickinson, Heidelberg, Germany) for 20 min. Next,
the FNAB biopsies were snap-frozen in a cryotube in the presence of 30% fetal bovine
serum (FBS, Thermo Fisher Scientific, Waltham, MA, USA) and 10% dimethyl sulfoxide
(DMSO, Sigma-Aldrich, Steinheim am Albuch, Germany) for further studies. Samples
were transported and stored in liquid nitrogen.

4.2. Magnetic Isolation

Prior to the sample preparation for mass spectrometry, biopsy specimens were thawed,
centrifuged at 2000 RCF for 10 min, and resuspended in RPMI-1640 medium (Thermo Fisher
Scientific) with 1% Primocin (InvivoGen, Toulouse, France). Cells were kept in suspension
overnight at 37 ◦C in 5% CO2 and then purified with Ficoll-Paque (Sigma-Aldrich). Cells
were washed in PBS by centrifugation. Cell debris was removed from the sample by the
use of Dead Cell Removal Kit (Miltenyi Biotech, Bergisch Gladbach, Germany) according to
the manufacturer’s recommendations. Between each step, cells were washed with cold PBS.
Next, B-cells were isolated from mononuclear cells by positive selection using the Miltenyi
CD19 Positive Isolation Kit (Miltenyi Biotech), as previously described [88]. Ultimately, the
sample purity was consistently over 95% of CD19 positive B-cells exhibiting malignant
phenotype and over 98% for normal B-cells what was confirmed by FCM for selected
samples. After purification, cells were washed three times with cold PBS, centrifuged at
1200 rpm for 5 min at 4 ◦C and resuspended in lysis buffer (100 mM Tris hydrochloride
(Tris-HCl) pH 8; 50 mM dithiothreitol (DTT); 2% sodium dodecyl sulfate (SDS)) for 5 min
at 99 ◦C followed by sonication on the water at room temperature for 2 min. The magnetic
beads, remaining in the lysate after cell isolation, were removed by centrifugation at
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10,000× g RCF for 10 min and transferring supernatant to the new tubes. This step was
repeated three times. Finally, the total protein concentration was measured using the
Tryptophan Fluorescence (WF)-Based Assay [89].

4.3. MED FASP

Sample aliquots containing 70 µg of total protein were processed using the Multi-
Enzyme Digestion Filter Aided Sample Preparation (MED FASP) method [90] with some
recent modifications [91]. Briefly, proteins were consecutively digested overnight with
endoproteinase LysC (Wako Chemicals, Neuss, Germany) and then with trypsin (Promega,
Madison, WI, USA) 3 h. The enzyme to protein ratio was 1:50. Aliquots containing 10 µg of
total peptides were desalted on C18-StageTips [92] and concentrated to a volume of ~5µL
and were stored frozen at −20 ◦C until MS analysis.

4.4. LC-MS/MS

Analysis of peptide mixtures was performed using a QExactive HF Mass Spec-
trometer (Thermo-Fisher Scientific). Aliquots containing a 5 µg of total peptides were
chromatographed on a 50 cm column with 75 µm inner diameter packed C18 mate-
rial (Dr. Maisch GmbH, Ammerbuch, Germany). Peptide separation was carried out
at 300 nL/min for 90 min using two-step acetonitrile (ACN) gradient of 5–60% over the
first 75 min and 60–95% for the following 15 min. The temperature of the column oven
was 60 ◦C. The mass spectrometer operated in data-dependent mode with survey scans
acquired at a resolution of 50,000 at m/z 400 (transient time 256 ms). Up to the top 15, most
abundant isotope patterns with charge ≥ +2 from the survey scan (300–1650 m/z) were
selected with an isolation window of 1.6 m/z and fragmented by HCD with normalized
collision energies of 25. The maximum ion injection times for the survey scan and the
MS/MS scans were 20 and 60 ms, respectively. The ion target value for MS1 and MS2
scan modes was set to 3 × 106 and 105, respectively. The dynamic exclusion was 25 s
and 10 ppm. The mass spectrometry data have been deposited to the ProteomeXchange
Consortium via the PRIDE partner repository [93] with the dataset identifier:PXD011683.

4.5. MS/MS Data Analysis

The spectra were searched using MaxQuant software (Max Planck Institute, Martin-
sried, Germany). A maximum of two missed cleavages was allowed. Carbamidomethy-
lation of cysteines was set as a fixed modification. The minimum peptide length was
specified to be seven amino acids. The initial maximal mass tolerance in MS mode was
set to 7 ppm, whereas fragment mass tolerance was set to 20 ppm for HCD data. The
maximum false peptide and protein discovery rate was specified as 0.01. Specific protein
concentrations were calculated by the TPA [94] using raw intensity MQ output. Statistical
analysis of proteomic data was conducted by Perseus software v.1.6.10.45 (Max Planck
Institute for Biochemistry) [95]. FL samples were first grouped as follows: G1 vs. G3a,
low-grade lymphoma (G1 and G2) vs. high-grade lymphoma (G3a), and high Ki-67 (range,
80% to 95%) vs. low Ki-67 (range, 25% to 60%). Next, samples were filtered for 100%
of valid values in each group and Student’s t-tests were performed. As there were no
significant differences in the protein abundances between the above-mentioned groups,
all cases were assigned to the FL and further analyzed in comparison with the control
group of normal B-cells. After further filtering for proteins detected in at least 75% of each
group, 6724 proteins remained for further analysis. The absolute protein concentration
was log2-transformed, and the separate values for each sample were compared with a
two-sample T-test. Benjamini-Hochberg FDR procedure was used to calculate p-values, and
p ≤ 0.05 was considered statistically significant. The cutoff values of 2-fold for up-regulated
and 0.5- fold for down-regulated proteins (with p-value ≤ 0.05) between FL and normal
samples were established. The fold change was calculated by dividing the mean TPA
values of the lymphoma group with the mean TPA values of the control group.
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4.6. Bioinformatic Analysis

The differentially abundant proteins with a p-value ≤ 0.05 were analyzed by open-
source bioinformatics software platform Cytoscape version 3.8.0 [96] Functional interaction
network analysis was performed using ClueGO (version 2.5.7), STRING, and cytoHubba
Cytoscape plugins [97,98]. The DAPs were analyzed and visualized by ClueGO against
KEGG, Reactome, and Wiki pathways (all updated on 8 May, 2020). For the enrichment
of pathways, the two-sided hypergeometric test was used, showing only pathways with
p-value ≤ 0.05. Bonferroni was selected as a statistical method. The Kappa-statistic score
threshold was set to 0.4. GO tree intervals were set min level 2—max level 8, the number of
associated proteins for the cluster was 3. The Venn diagrams were created with the web
tool created by the Bioinformatics and Evolutionary Genomics group [99].

4.7. Flow Cytometry

Cells of interest were obtained by FNAB from 35 FL patients. Cells were incubated
with monoclonal antibodies, Table S6. Antigen expression was quantified by FACSCal-
ibur and FACSCanto II cytometers (Becton Dickinson, Franklin Lakes, NJ, USA). Table
S5 shows the results of CD9, CD79B, and ICAM1 validation with clinical characteristics
of FL patients. Expression was categorized according to the percentages of positive cells
into four groups, as followed: (−)—no expression (<20% of neoplastic cells); (+/−)—an
antigen with weaker expression in FL cells compared to normal B- or T-lymphocytes in
>20% to <100% of cells; (+)—highly expressed antigen in FL cells compared to normal B-
or T-lymphocytes in 100% of cells; (+ˆ)—very highly expressed antigen in FL cells com-
pared to normal B- or T-lymphocytes in 100% of cells. All cases expressed pan-B anti-
gens: CD19, CD20, and CD22, with median fluorescence intensity (MFI) of CD20 always
higher than that of CD19. According to the results, the most common FCM immunopheno-
type of FL was as follows: CD45(+)weaker/CD20(+)higher/CD19(+)weaker/CD22(+)/CD10(+)/
CD81(+)higher/BCL2(+)higher/BCL6(+)/CD44(+/−)weaker/dim/CD38(+)/λ(+)/IgD(−),
IgM(+),IgG(−)/FMC7(+)weaker/CD5(−)/CD11c(−)/ CD23(−)/CD25(−)/CD43(−)/CD62L(+)/
HLADR(+)weaker/dim/CD52(+)/CD49d(+)/CD200(−)/ CD305(−), and CD9(+/−)/ CD79B(+)/
CD54(+)higher.

5. Conclusions

We presented the first report on the use of large scale proteomics-based analyses to
describe the FL associated proteome at the level of thousands of proteins. A total of 1186
differentially abundant proteins, including 579 overrepresented proteins and 607 down-
represented proteins, were identified within the 29 clinical samples. We used the ClueGO
App for Cytoscape to generate protein pathways and to create the network of pathways
based on the KEGG, Reactome, and WikiPathways databases. Bioinformatic analyses
identified several biological pathways as being particularly perturbed compared to normal
B-cells. Overrepresented proteins were mainly related to the B-cell receptor signaling
pathway and signaling by interleukins, which is in line with previously published studies.
In turn, increased abundances were enriched in ECM-receptor interactions, regulation of
complement cascade, and cell-cell communication.

To the best of our knowledge, the present study was the first aiming to determine
the candidate proteins and pathways associated with FL using proteomics and bioinfor-
matics analysis. Our dataset complemented previous findings substantially and revealed
underappreciated numbers of proteins within larger networks that could lay the ground-
work for therapeutic strategies as well as future studies on lymphoma adhesion and
ECM-interactions. In the current era of personalized medicine and targeted therapies,
the dysregulated signaling pathways and their hub proteins are quickly becoming main-
stream in translational cancer research. Collectively, our work demonstrates a global view
of follicular lymphoma related changes and provides novel insight into the molecular
mechanisms of this malignancy, however the current data need to be validated in an
independent dataset.
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Supplementary Materials: The following are available online at https://www.mdpi.com/2072-669
4/13/4/630/s1, Figure S1: The top 10 hub proteins identified by three algorithms: maximal clique
centrality (MCC), maximum neighborhood component (MNC), and Degree of cytoHubba from all
proteins reported in the (A) BCR pathway, (B) CAMs pathway, and (C) PPAR signaling pathway.
Down-regulated proteins with fold change ≤0.5 are marked in green, while up-regulated proteins
(fold change ≥ 2.0 ) are plotted in red, Figure S2: (A) The top 20 hub proteins identified by three
algorithms (MCC, MNC, and Degree) of cytoHubba from all proteins reported in the pathway in
cancer. (B) The top 10 proteins identified by three algorithms of cytoHubba from all dysregulated
proteins reported in the pathway in cancer. Down-regulated proteins with fold change ≤0.5 are
marked in green, while up-regulated proteins (fold change ≥ 2.0 ) are plotted in red, Figure S3:
Enriched pathways of up-regulated proteins visualized in ClueGO, Figure S4: Enriched pathways
of down-regulated proteins visualized in ClueGO, Figure S5: (A) Fine needle aspiration biopsy
(FNAB)/flow cytometry (FCM) analysis of Case no. 6; (B) CD9, CD79B, and ICAM1 validation by
FCM, Table S1: All proteins identified in the LC-MS/MS study, Table S2A: The list of up-regulated
proteins with FL/C fold change ≥2, Table S2B: The list of down-regulated proteins with FL/C fold
change ≤0.5, Table S3A: The enriched networks identified by ClueGO in FL patients vs. controls
based on up-regulated proteins, Table S3B: The enriched networks identified by ClueGO in FL
patients vs. controls based on down-regulated proteins, Table S4: Clinical characteristics of FL
patients and controls used in LC-MS/MS, Table S5: CD9, CD79B, and ICAM1 validation datasets
with clinical characteristics of FL patients, Table S6: Antibodies panel used for FCM.
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94. Wiśniewski, J.R.; Rakus, D. Multi-enzyme digestion FASP and the ‘Total Protein Approach’-based absolute quantification of the
Escherichia coli proteome. J. Proteom. 2014, 109, 322–331. [CrossRef] [PubMed]

95. Tyanova, S.; Cox, J. Perseus: A Bioinformatics Platform for Integrative Analysis of Proteomics Data in Cancer Research.
Methods Mol. Biol. 2018, 1711, 133–148.

96. Cytoscape. Available online: https://cytoscape.org, (accessed on 7 May 2020).
97. Mlecnik, B.; Galon, J.; Bindea, G. Comprehensive functional analysis of large lists of genes and proteins. J. Proteom. 2018, 171,

2–10. [CrossRef] [PubMed]
98. Bindea, G.; Mlecnik, B.; Hackl, H.; Charoentong, P.; Tosolini, M.; Kirilovsky, A.; Fridman, W.H.; Pagès, F.; Trajanoski, Z.; Galon, J.

ClueGO: A Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics
2009, 25, 1091–1093. [CrossRef] [PubMed]

99. Bioinformatics and Evolutionary Genomics Group. Available online: http://bioinformatics.psb.ugent.be/webtools/Venn/
(accessed on 4 November 2020).

http://www.ncbi.nlm.nih.gov/pubmed/23271353
http://doi.org/10.3390/ijms19071880
http://doi.org/10.1038/cr.2010.13
http://www.ncbi.nlm.nih.gov/pubmed/20101262
http://doi.org/10.3390/ijms19071907
http://doi.org/10.1186/s12885-019-5426-6
http://doi.org/10.1111/nyas.14170
http://www.ncbi.nlm.nih.gov/pubmed/31215667
http://doi.org/10.21775/cimb.031.001
http://www.ncbi.nlm.nih.gov/pubmed/30647194
http://doi.org/10.1111/ijlh.13222
http://doi.org/10.1002/cyto.b.21498
http://doi.org/10.1371/journal.pone.0213832
http://doi.org/10.1021/ac504689z
http://doi.org/10.1021/acs.analchem.6b00859
http://www.ncbi.nlm.nih.gov/pubmed/27119963
http://doi.org/10.1016/S0021-9673(02)01402-4
http://doi.org/10.1038/nbt.2839
http://doi.org/10.1016/j.jprot.2014.07.012
http://www.ncbi.nlm.nih.gov/pubmed/25063446
https://cytoscape.org,
http://doi.org/10.1016/j.jprot.2017.03.016
http://www.ncbi.nlm.nih.gov/pubmed/28343001
http://doi.org/10.1093/bioinformatics/btp101
http://www.ncbi.nlm.nih.gov/pubmed/19237447
http://bioinformatics.psb.ugent.be/webtools/Venn/

	Introduction 
	Results 
	General Description of Analyzed Material 
	Identification of DAPs 
	KEEG Pathway Analysis 
	Protein-Protein Interaction Networks and Hub Proteins in FL 
	The DAPs in BCR Pathway 
	The DAPs in CAMs Pathway 
	The DAPs in PPAR Signaling Pathway 
	Pathway in Cancer Analysis 

	Pathway Enrichment Analysis by ClueGO 
	Up-Regulated Proteins in FL 
	Down-Regulated Proteins in FL 

	Flow Cytometric Validation of CD9, ICAM1 and CD79B Expression 

	Discussion 
	Materials and Methods 
	Collection of FNAB Samples and Clinical Information 
	Magnetic Isolation 
	MED FASP 
	LC-MS/MS 
	MS/MS Data Analysis 
	Bioinformatic Analysis 
	Flow Cytometry 

	Conclusions 
	References

