
RESEARCH ARTICLE Open Access

Evolution of the apomixis transmitting
chromosome in Pennisetum
Yukio Akiyama1†, Shailendra Goel1†, Joann A Conner1, Wayne W Hanna2, Hitomi Yamada-Akiyama3 and
Peggy Ozias-Akins1*

Abstract

Background: Apomixis is an intriguing trait in plants that results in maternal clones through seed reproduction.
Apomixis is an elusive, but potentially revolutionary, trait for plant breeding and hybrid seed production. Recent
studies arguing that apomicts are not evolutionary dead ends have generated further interest in the evolution of
asexual flowering plants.

Results: In the present study, we investigate karyotypic variation in a single chromosome responsible for
transmitting apomixis, the Apospory-Specific Genomic Region carrier chromosome, in relation to species phylogeny
in the genera Pennisetum and Cenchrus. A 1 kb region from the 3’ end of the ndhF gene and a 900 bp region from
trnL-F were sequenced from 12 apomictic and eight sexual species in the genus Pennisetum and allied genus
Cenchrus. An 800 bp region from the Apospory-Specific Genomic Region also was sequenced from the 12
apomicts. Molecular cytological analysis was conducted in sixteen Pennisetum and two Cenchrus species. Our
results indicate that the Apospory-Specific Genomic Region is shared by all apomictic species while it is absent
from all sexual species or cytotypes. Contrary to our previous observations in Pennisetum squamulatum and
Cenchrus ciliaris, retrotransposon sequences of the Opie-2-like family were not closely associated with the
Apospory-Specific Genomic Region in all apomictic species, suggesting that they may have been accumulated after
the Apospory-Specific Genomic Region originated.

Conclusions: Given that phylogenetic analysis merged Cenchrus and newly investigated Pennisetum species into a
single clade containing a terminal cluster of Cenchrus apomicts, the presumed monophyletic origin of Cenchrus is
supported. The Apospory-Specific Genomic Region likely preceded speciation in Cenchrus and its lateral transfer
through hybridization and subsequent chromosome repatterning may have contributed to further speciation in the
two genera.

Background
Apomixis is an intriguing trait in plants that allows mul-
tiplication of maternal clones through seed reproduction
[1]. Besides the potential for apomixis to be a powerful
plant breeding tool due to the circumvention of genetic
segregation and maintenance of heterosis in hybrid pro-
genies, the trait is also compelling in terms of evolution-
ary studies. Apomicts have long been regarded as
evolutionary dead ends [2] mainly because of their pre-
sumed lack of genetic variation in the absence of

recombination and intermating, although various studies
have shown high levels of chromosomal and morpholo-
gical variation within agamic complexes [3,4]. More
recently, levels of genetic diversity among asexual popu-
lations were found to be higher than expected when
compared to those in sexually reproducing populations
[5-9]. Apomicts can outcross when they produce viable
pollen, through the occasional reduced egg, or by fertili-
zation of unreduced eggs, and can thus act as bridges
for introgressive hybridization between otherwise repro-
ductively isolated taxa [10-14]. Hybrid lineages can be
stabilized by apomixis, allopolyploidy and recombina-
tional speciation [15]. Apomixis does, however, reduce
the rate of chromosomal recombination in the female,
thereby diminishing the opportunity for unequal
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crossing over to reduce repetitive element copy number
[16], allowing instead an accumulation of transposons in
the genome and an increase in genome size, at least in
relatively recent lineages [17]. Recombination is further
constrained during male meiosis in apomicts in the
chromosomal region transmitting the trait to progeny
[18,19]. The fundamental importance of recombination
and the paradox of sex [20,21] have inspired interest in
deciphering the evolution of asexual organisms [14,22].
The Pennisetum/Cenchrus branch of the monophyletic

bristle clade of grasses [23] contains a major crop spe-
cies, sexual pearl millet or Pennisetum glaucum (L.) R.
Br., and at least 17 aposporous species [18]. Relation-
ships have been inferred among some of these species
using basic chromosome numbers, ITS (the internal
transcribed spacers of ribosomal RNA genes) DNA data
[24] and sequences from chloroplast genes such as ndhF
(F subunit of NADH dehydrogenase) [25], ndhF and
trnL-F [26], trnL-F and rpl16 [27]. Chemisquy [26] also
used a nuclear gene (knotted) to study the phylogeny in
Cenchrus, Pennisetum and related genera.
ITS sequences provide limited resolution to estimate

genetic similarities of hybrids and their parents due to
concerted evolution [28]. Though chloroplast DNA is
maternally inherited, and therefore can be criticized for
its inability to assess biparental contribution to the gen-
ome, it can provide sequences from specific genes or
intergenic regions that are phylogenetically informative.
The tobacco (Nicotiana tabacum) ndhF gene is 2223 bp
in length and has a nucleotide substitution rate [29]
which is, for example, two times greater than that of
rbcL, a second extensively studied chloroplast gene [30].
More recent studies have also demonstrated that the
3’end of ndhF is more variable than the 5’ region [31].
For the present study, we chose to sequence two chloro-
plast gene regions (a 1131-1155 bp fragment from the
3’end of ndhF and 811-872 bp region from trnL-F) and
a 792-799 bp segment from the ASGR-BBM-like gene,
also located within the p208 BAC used in fluorescence
in situ hybridization (FISH) analysis. We furthermore
report molecular cytogenetic analysis of the genomic
region associated with apomixis, the apospory-specific
genomic region (ASGR) that was previously identified in
P. squamulatum, C. ciliaris and now in 16 Pennisetum
and one additional Cenchrus species.
The ASGR is conserved between P. squamulatum and

C. ciliaris based on high sequence similarity between
putative orthologous genes within this region; syntenic
relationships between chromosomal sequences identified
by BAC probes; shared cytological features of hemizyg-
osity, the heterochromatic nature of the ASGR, and a
region of low copy DNA flanked by high copy sequences
[32-37]. Nevertheless, there are distinct structural differ-
ences in the ASGR-carrier chromosomes of these two

species. These previous observations suggested that a
conserved ASGR haplotype may occur in different chro-
mosomal contexts among species. We now compare the
extent of conservation and variation in the ASGR and
ASGR-carrier chromosome in parallel with a Pennisetum
and Cenchrus species phylogeny constructed with
sequence data from chloroplast genes, ndhF and trnL-F.
Variability observed in chromosomal context should
enable a more precise delineation of the ASGR.

Results
Phylogenetic analysis based on ndhF and trnL-F
sequences
All species (Table 1) generated a 3’ ndhF sequence of
1134 bp except for P. hohenackeri (PS156) and P. poly-
stachion (PS19). PS156 had an insertion of 21 bp while
PS19 showed a 3 bp deletion. For the trnL-F region, size
varied from 863 bp to 872 bp except in the case of P.
polystachion, P. pedicillatum and P. subangustum which
showed a length of 811 bp. ndhF and trnL-F produced
an aligned matrix of 1155 and 901 nucleotide positions
respectively thus giving a total aligned matrix of 2056
characters. The matrix had 1913 constant, 76 parsimony
uninformative and 67 parsimony informative characters.
A partition homogeneity test was done for 100 repli-
cates, although the test was aborted during the 78th

replicate due to time constraints (655:46 hr). The test
gave a P-value of 0.86 supporting the combination of
data sets for analysis.
A simple heuristic search of the aligned matrix using Phy-

logenetic Analysis Using Parsimony (PAUP) retained 28
trees. All trees were 166 steps in length and had a consis-
tency index (CI) of 0.875, retention index (RI) of 0.895 and
rescaled consistency index (RC) of 0.775. The log likelihood
of all the trees ranged from 3974.04078 to 3971.98984. To
account for homoplasy generated by gaps, the gap creating
regions were ignored (accounting for ~97 characters of
aligned matrix). After exclusion, a heuristic search gener-
ated 9 trees each showing a length of 152 steps with CI of
0.875, RI of 0.914 and RC of 0.799. The log likelihood for
all the trees ranged from 3755.09184 to 3757.65531.
Phylogenetic trees with similar topologies were gener-

ated by Bayesian and maximum parsimony (MP) meth-
ods. Overall five groups emerged in the present
phylogenetic study (Figure 1A and 1B, Table 2). All
major groups showed good bootstrap support except
that the group of P. ramosum, P. nervosum and P.
mezianum showed low support in the Bayesian-based
analysis. These species also showed variation with
respect to their position in the two trees (Bayesian and
Maximum Parsimony). Subgroups I, II, and V contain
apomictic and obligately sexual species whereas sub-
groups III and IV contain apomictic species with sexual
cytotypes or facultative apomixis.
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A recent paper [26] also used ndhF and trnL-F
sequences to understand the relationship among Penni-
setum and Cenchrus species. To compare their analysis
with that of the present study, the sequence alignment
was downloaded from TreeBase http://purl.org/phylo/
treebase/phylows/study/TB2:S10252. The resultant
matrix was too large to be analyzed by PAUP, hence it
was only analyzed by Mr. Bayes (Figure 2). Seven
sequences were removed from the analysis due to sub-
stantial amounts of missing data. The taxa used in the
present study are shown in blue while those shown in
red are from Chemisquy [26] whose grouping does not
entirely agree with that generated in the present study.

Phylogenetic analysis based on sequence from the ASGR
region
Eight primer pairs, previously identified as ASGR-linked
in F1 populations where P. squamulatum and C. ciliaris

were the apomictic parents, were tested on all species
used in this study (Additional File 1). Only the primer
pair p779/p780 which amplifies a portion of the ASGR-
BBM-like gene resulted in amplification of all the apo-
mictic species but none of the sexual species. Primers
p779/p780 are located in the 4th and 7th exons of
ASGR-BBM-like2 (EU559277) and amplify a region
including 3 introns of 95 bp, 266 bp, and 154 bp. Based
on ASGR-linked BAC clone sequencing, P. squamula-
tum and C. ciliaris have duplicated ASGR-BBM-like
genes [38]. The p779/p780 primers amplify both copies,
although polymorphism between copies cannot be
detected in P. squamulatum while polymorphism is
detectable in C. ciliaris. The present analysis could dif-
ferentiate two copies of the ASGR-BBM-like gene in C.
setigerus, P. orientale, P. mezianum and C. ciliaris. In P.
orientale, accession PS12 did not show two copies while
PS15 did. Among the two types of sequences obtained

Table 1 Plant materials

Species Primary ID Secondary ID Reported Chromosome No. Ploidy Reported MOR

C. ciliaris PS185 ’LLANO’ 36 4x A

C. ciliaris PS186 ’NUECES’ 36 4x A

C. setigerus PS16 PI266185 36 4x A

P. alopecuroides PS938 9064-3 18 2x S

P. basedowii PS2 PI257782 54 6x S

P. flaccidum PS32 PI271601 18,36,45 2x,4x,5x S,A

P. flaccidum PS95 TIMOTHY C79I3 18,36,45 2x,4x,5x S,A

P. glaucum 23BE - 14 2x S

P. hohenackeri PS156 ICRISAT 18 2x S

P. massaicum PS680 IBPCR 36 4x A

P. massaicum PS953 WIPFF 87A11508 36 4x A

P. mezianum PS9 PI365021 16, 32 2x,4x S,A

P. nervosum PS187 #7-82 36,72 4x,8x S

P. nervosum PS38 PI316421 36,72 4x,8x S

P. orientale PS12 PI315867 18,27,36,45,54 2x-6x S,A

P. orientale PS13 PI218097 18,27,36,45,54 2x-6x S,A

P. pedicillatum PS304 HARLAN 682 36,54 4x,6x A

P. polystachion PS19 PI189347 36,54,63 4x,6x,7x A

P. purpureum N109 - 28 4x S

P. purpureum N168 - 28 4x S

P. ramosum PS29 PI331699 10 2x S

P. ramosum PS63 DEWET1641 10 2x S

P. schweinfurthii PS243 PI489685 14 2x S

P. setaceum PS22 PI300087 27,54 3x,6x A

P. setaceum PS25 PI364994 27,54 3x,6x A

P. squamulatum PS158 ICRISAT 54 6x A

P. squamulatum PS24 PI248534 54 6x A

P. subangustum PS163 IBADAN#2 36,54 4x,6x A

P. villosum PS249 TEL AVIV 18,27,36,45,54 2x-6x S,A

Setaria viridis GI:758770 - 18 2x S

List of Cenchrus and Pennisetum species with corresponding identifiers, mode of reproduction and chromosome data. Reported chromosome numbers are from
Jauhar [57], Dujardin and Hanna [57] and the Kew C-value database (http://data.kew.org/cvalues/). MOR = Mode of Reproduction; A = apomictic; S = sexual.
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in C. ciliaris and C. setigerus, one showed similarity with
P. squamulatum while the other sequence grouped with
the other copy from Cenchrus (Figure 3).
The ASGR-BBM-like sequence ranged in size from 792-
799 bp. Alignment provided a matrix of 800 bp with
785 constant, 4 uninformative and 11 informative char-
acters. Heuristic search retained only one tree. This tree
was only 15 steps in length with trichotomies and a log
likelihood score of 1206.32388 (Figure 3).

Detection of the ASGR-carrier chromosome in apomictic
Pennisetum species
The results of FISH with ASGR-linked BACs are sum-
marized in Table 2 and Figs. 4 and 5. No sexual spe-
cies showed discrete signals from hybridization of the
ASGR-linked BACs P001, P109 or P208. BAC P208
showed weak signal on the centromeres of not only
aposporous, but also sexual species. In aposporous spe-
cies, the ASGR-linked BACs were detected as strong
signals on a single chromosome (Figure 4a, c-j) with
one exception (Figure 4b). In P. orientale (PS12), a 54-

chromosome accession, two ASGR-carrier chromo-
somes were observed (Figure 4b). The BACs some-
times showed strong and spatially distinct signals
within the ASGR indicating duplicated loci or repeti-
tive sequences.

Localization of 25S rDNA on the ASGR-carrier
chromosome
The rDNA probe was used as a cytological marker to
test whether the ASGR in species other than C. ciliaris
[34,37] was associated with a 25S rDNA locus. Only two
other species, C. setigerus (PS16) and P. massaicum
(PS680) showed rDNA signals on the ASGR-carrier
chromosome. The ASGR-carrier chromosome in C. seti-
gerus was indistinguishable from C. ciliaris in the posi-
tion of the rDNA locus, i.e., terminal on the short arm
of the ASGR-carrier chromosome (Figure 4l), in addi-
tion to other characters (Figure 5). In P. massaicum, a
rDNA locus was distally located on the short arm of the
ASGR-carrier chromosome whereas the ASGR was
terminal on the long arm (Figure 4k).
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Figure 1 Maximum Parsimony and Bayesian tree based on ndhF and trnL-F. Maximum parsimony (MP) and Bayesian trees based on the
ndhF+trnLF sequence alignments generated in the present study. Numbers at the nodes show bootstrap values obtained.
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Characteristics of the ASGR-carrier chromosome in
Pennisetum species
FISH experiments revealed that morphologies of the
mitotic ASGR-carrier chromosomes among the species
were different; therefore, image analysis was carried out
to quantify the differences (Table 2, Figure 5). Threshold
values of gray and black levels in the ideograms were
assigned to display differences in chromatin density
between chromosome regions. The lengths of ASGR-

carrier chromosomes ranged from 3.37 μm in P. orien-
tale (PS12) to 7.20 μm in P. setaceum (PS25). The
ASGR position was estimated based on the mid-point of
the P208 signal and was always shown to be in or near
a moderately to highly condensed region, again with the
exception of P. massaicum.
Lengths and arm ratios of the two ASGR-carrier chro-

mosomes in PS12 were compared to each other by a
paired t-test, which showed a significant difference for

Table 2 Species clusters and cytological characteristics

Group
No. in
MP Tree

Group No
in Bayesian
Tree

Species
Name

Primary
ID

MOR Number of
chromo-somes
observed

Number
of ASGR

25S rDNA on
ASGR-carrier
chromosome

Opie-2
around
ASGR

Opie-2
in
genome

Enzyme
treatment (min)/
Denature (sec)

I I P. glaucum 23BE S 14 0 - - low 80/70

I I P. purpureum N109 S - - - - - -

I I P. purpureum N168 S - - - - - -

I I P.
schweinfurthii

PS243 S 14 0 - - high 80/90

I I P. setaceum PS22 A - - - - - -

I I P. setaceum PS25 A 27 1 no no mid 80/90

I I P.
squamulatum

PS158 A 56 1 no high low Ref. [50]

I I P.
squamulatum

PS24 A 56 1 no high low 120/90

II II P.
alopecuroides

PS938 S 18 0 - - low 80/90

II II P.
hohenackeri

PS156 S - - - - - -

II II P. villosum PS249 A 45 1 no no mid 80/90

III III P. flaccidum PS32 A 36 - - - - -

III III P. flaccidum PS95 A 36 1 no low low 100/90

III III P. orientale PS12 A 54 2 no low low 120/45

III III P. orientale PS13 A - - - - - -

IV IV C. ciliaris B12-9 A 36 1 yes (same arm) high high Ref. [37]

IV IV C. ciliaris Higgins A 36 1 yes (same arm) high high Ref. [37]

IV IV C. ciliaris PS185 A - - - - - -

IV IV C. ciliaris PS186 A - - - - - -

IV IV C. setigerus PS16 A 36 1 yes (same arm) high high 80/90

IV IV P. massaicum PS680 A 35 1 yes (diff arm) no high (on
27/35
chr)

90/50

IV IV P. massaicum PS953 A 35 - - - - -

IV IV P.
pedicillatum

PS304 A 36 1 no high high 80/90

IV IV P.
polystachion

PS19 A 54 1 no mid mid 105/70

IV IV P.
subangustum

PS163 A 54 1 no high high 60/90

V V P. mezianum PS9 A 32 1 no high low 80/90

V V P. nervosum PS187 S 54 0 - - high 100/90

V V P. nervosum PS38 S - - - - - -

none V P. ramosum PS29 S - - - - - -

none V P. ramosum PS63 S 10 0 - - low 80/50

none none P. basedowii PS2 S 54 0 - - low 80/50

Phylogenetic (ndhF) and cytological (ASGR and Opie-2 retrotransposon) analyses of Pennisetum and Cenchrus species.
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chromosome length (t = 3.16 P < 0.01) but not for arm
ratio (t = 0.39, P = 0.70). The DNA distribution on the
two ASGR-carrier chromosomes of PS12 showed differ-
ent patterns as measured by DAPI staining intensity
(Figure 5). The ASGR-carrier chromosome PS12a had a

highly condensed heterochromatic region on the long
arm that was confined to the pericentromeric area of
PS12b. The ASGR itself was located on the distal end of
the short arm in both ASGR-carrier chromosomes.
Based on mitotic chromosome characteristics, the two
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Figure 2 Comparative Bayesian tree. Bayesian tree based on ndhF+trnLF sequence alignments generated from combined analysis of
sequence matrix generated in present study and Chemisquy et al. [26].
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Figure 4 Physical mapping with ASGR-linked BACs on chromosome spreads from various Pennisetum and Cenchrus species. a-j, Color-
merged images of FISH signals and inverted DAPI-stained chromosomes; red and green arrows indicate P001 and P208, respectively; insets
show enlarged, pseudo-colored ASGR-carrier chromosome. k-m, Images of dual-labeled FISH on DAPI-stained chromosomes. a, m: P. mezianum
(PS9); b: P. orientale (PS12); c: C. setigerus (PS16); d: P. polystachion (PS19); e: P. setaceum (PS25); f: P. flaccidum (PS95); g: P. subangustum (PS163); h:
P. villosum (PS249); i: P. pedicillatum (PS304); j: P. massaicum; k: P. massaicum spread in panel j stripped and rehybridized with rDNA and P602
(red); green arrows and signals indicate rDNA; outlined chromosomes did not hybridize with P602. l: C. setigerus hybridized with rDNA and P208;
green signals are rDNA and red arrow indicates P208 signal. m: P. mezianum (PS9) hybridized with P208 (red arrow) and P602 (green signal). Bars
correspond to 10 μm.
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ASGR-carrier chromosomes in PS12 were hetero-
morphic and suspected to be homeologous rather than
homologous chromosomes. However, physical mapping
of paired chromosomes at the pachytene stage of meio-
sis using BACs P001 and P208 showed that the two
ASGR-carrier chromosomes formed bivalents with one
another as would be expected of homologs (Figure 6). A
heterochromatic knob was observed in the ASGR.
Morphology of the ASGR-carrier chromosome in C.

setigerus was similar to that of C. ciliaris (Figure 5)
(data from [37]) and a t-test showed no significant dif-
ference in chromosome length (t = 0.18 P = 0.85), arm
ratio (t = 0.87, P = 0.38), or signal position of P208 (t =

Cluster Species  

I P. setaceum

 P. squamulatum

II P. villosum

III P. flaccidum

 P. orientale A

 P. orientale B 

IV C. ciliaris

 C. setigerus

 P. massaicum

 P. pedicillatum

 P. polystachion 

 P. subangustum 

V P. mezianum

ASGR-Carrier Chromosome
Ideograms

BAC P208 signal

45S rDNA signal

Chromatin density

Opie-2 signal intensity

Gap in Opie-2 signal

High Mid Low

High Mid Low

Figure 5 ASGR-carrier chromosome ideograms for apomictic
Pennisetum and Cenchrus species clustered according to the
phylogenetic analysis. In ideograms, dark, medium and light blue
indicate chromatin condensation pattern (regions of high, middle
and low condensation, respectively). Red and yellow circles indicate
BAC P208 and 25S rDNA, respectively. Opie-2 distribution, as
determined by P602 signal, is indicated as bars below each
ideogram and intensity of shading represents the approximate
intensity of P602 signal. Asterisks indicate the position of
discontinuous P602 signal. Bar corresponds to 1 μm. The data of P.

Figure 6 Physical mapping of BAC clones on pachytene
chromosomes of P. orientale (PS12). Upper image: Color-merged
images of DAPI and FISH signals. Red and green signals are P001
and P208, respectively. Lower image: inverted DAPI image. Arrow
indicates knob in the ASGR. Bar corresponds to 10 μm.

squamulatum and C. ciliaris are from Akiyama et al. (2004) and
Akiyama et al. (2005), respectively.
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1.08, P = 0.28). The signal position of C101, an ortholog
of P208 was used in C. ciliaris.
The ASGR-carrier chromosome in P. massaicum

(PS680) showed unique morphology among the species
with a highly condensed region in the middle of the
long arm (Figure 5). PS953, another P. massaicum
accession, showed the same ASGR-carrier chromosome
characteristics as PS680. The morphology of the ASGR-
carrier chromosome was also sufficiently unique within
this species such that it sometimes could be distin-
guished under phase contrast without Giemsa staining
or FISH (Figure 4j, Figure 7). Comparison of the
Giemsa-stained chromosomes having rDNA indicated
that morphology was different among them (Figure 7).

Distribution of Opie-2 like retrotransposons
BAC P602 contains an Opie-2-like retrotransposon
abundant only in the ASGR of P. squamulatum, but
occurring throughout the genome of C. ciliaris [37].
The distribution of this repetitive sequence was clearly
different in two species that often are grouped as one, P.
mezianum (PS9) and P. massaicum (PS680) [26]. In P.
mezianum with 32 chromosomes, only the ASGR-carrier

chromosome showed signal from hybridization of P602
(Figure 4m), whereas in P. massaicum, 27 out of 35
chromosomes, including the ASGR-carrier chromosome,
showed intense signal with this BAC (Figure 4k). This
retrotransposon family is present at varying copy num-
bers in different species within each cluster, regardless
of mode of reproduction (Table 2). For example, in
clade V it is abundant in P. nervosum but barely detect-
able in P. ramosum, both sexual species. Mainly two
patterns emerged in the apomicts, repeats detectable
flanking the ASGR plus either distributed throughout
the genome (buffelgrass pattern) or confined to the
ASGR-carrier chromosome (P. squamulatum pattern).
The latter pattern occurred in only two other species, P.
setaceum and P. mezianum. The Opie-2-like repeat was
of low abundance flanking the ASGR in P. setaceum, P.
villosum, and P. massaicum.

Phylogenetic reconstruction based on reproductive and
cytological features
Reconstruction of ancestral states was done by Mes-
quite. Four characters viz mode of reproduction, basic
chromosome number, distribution of Opie-2 on gen-
omes, and distribution of Opie-2 on the ASGR (Table 2)
were used for reconstruction of ancestral states using
the tree generated by Bayesian method (Figure 8).

Discussion
Phylogenetic analysis
Earlier attempts to resolve phylogenetic relationships
among different species in the genus Pennisetum or
higher taxonomic levels including Pennisetum were
based on multiple approaches such as genome size var-
iation [39], molecular markers [40,41], and DNA
sequence information from a) the internal transcribed
spacer region of ribosomal DNA [24], b) the nuclear
gene knotted [42,26], and c) the chloroplast genes ndhF
[25,26,42-44], rpoC2 [45], and rpl16/trnL-F [26,27]. The
present study, focused on apomixis, included twelve
apomicts and eight sexual species. The sequence data
obtained was carefully analyzed and resulted in a robust
tree with clear groupings which can be attributed to
quality sequence data. Our results show congruence
with earlier studies of these genera, but also emphasize
a few notable exceptions.
Chemisquy [26] recently used trnL-F and ndhF for

conducting a phylogenetic analysis. A combined analysis
of their sequences along with the sequences used in this
study generated a tree presented in Figure 2. Combined
analysis did not show any variation from the individual
analysis of the two datasets. The tree from the com-
bined analysis did show discrepancies in the placement
of a few species from the present analysis as compared
to the one from Chemisquy [26]. These discrepancies

Figure 7 Ordered chromosomes based on Giemsa- and DAPI-
stained chromosomes of P. massaicum (PS680). These
chromosomes are from the spreads of Figure 1j and k and were
sorted according to their lengths. The bottom two rows of
chromosomes are the eight that did not hybridize with BAC P602.
Black and white arrow heads indicate ASGR and rDNA, respectively.
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could be due to errors in species identification or DNA
sequence.
Previous studies of nuclear and chloroplast gene

sequences suggested that, within the bristle clade of
grasses, the genus Cenchrus was monophyletic and
embedded in a polyphyletic Pennisetum [42]. Polyphyly
in Cenchrus was supported by additional chloroplast
sequence data and taxon sampling [27]. Our data sup-
port the placement of Cenchrus within Pennisetum, but
are incongruent with the result of Donadio [27] and
Chemisquy [26] that showed a close relationship
between one accession of P. purpureum, P. setaceum,
and Cenchrus spp. In the ITS-based phylogeny of Martel
[24], P. setaceum and P. villosum grouped with species
from section Brevivalvula in a clade that included Cen-
chrus ciliaris; therefore, their placement of P. setaceum,
but not P. villosum, was more consistent with Donadio
[27]. According to Chemisquy [26], P. villosum grouped
away from Cenchrus species and Brevivalvula section. In
contrast, results from the present study place P. seta-
ceum as a member of a large clade that included the
cultivated species P. glaucum and excluded species from
section Brevivalvula while P. villosum grouped with P.
hohenackeri and P. alopecuroides. Doust and Kellogg
[23] also found P. setaceum to be closely related to P.

glaucum. Section Brevivalvula is considered more homo-
geneous compared with other sections in the genus Pen-
nisetum [8] and morphologically is well differentiated
from the other sections [46]. The non-concordance
between relationships inferred from ITS and cpDNA
data sets could be due to a number of factors. First, the
ITS is part of a genomic region known to be affected by
the process of concerted evolution [47]. As with incom-
plete lineage sorting, concerted evolution can lead to
the phylogenetic association of lineages that did not
share a most recent common ancestor. In contrast to
the ITS, ndhF is a chloroplast gene and thus likely not
susceptible to the process of concerted evolution,
although nuclear capture of chloroplast DNA is possible
[48] but untested in this case.
The placement of P. setaceum in the P. glaucum clade

is supported by the current and prior [23] chloroplast
phylogeny and crossability studies [49]. This clade also
includes P. purpureum, P. squamulatum, and P.
schweinfurthii. P. squamulatum, recently proposed by
Akiyama et al. [50] to be a member of the secondary
gene pool (i.e., the group of biological species that will
cross with the crop species [51]), has strong support
from ndhF and cytological [50] data for a close relation-
ship with P. glaucum (the primary gene pool) and P.

x=5 
x=7 
x=8 
x=9 

Low 
High 

High 
Low 

Sexual 
Apomictic

1A – Basic chromosome number 

1B – Presence of Opie2 in the ASGR 

1C – Presence of Opie2 in genome 

1D – Mode of reproduction 

Figure 8 Ancestral states for different characters. Bayesian trees based on the ndhF+trnL-F sequence showing the ancestral state for different
characters. A. Chromosome number, B. Presence of Opie-2 at ASGR, C. Opie-2 distribution on genome, D. Mode of reproduction
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purpureum (secondary gene pool). Since revision of the
basic chromosome number of P. squamulatum from x =
9 to x = 7 [50], all species in clade I, except for P. seta-
ceum, have a basic chromosome number of x = 7 and
all (including P. setaceum) can be crossed with P. glau-
cum [52-55]. The accessions of P. purpureum we inves-
tigated were strongly supported as sister to P. glaucum,
confirming placement of this species in the secondary
gene pool of Pennisetum [56]. Natural hybrids have
been reported between P. glaucum and P. purpureum,
and one genome of P. purpureum has been suggested to
be homologous with pearl millet [57].
Based upon the ndhF data, the apomictic pentaploid P.

villosum is most closely related to the sexual diploids, P.
hohenackeri and P. alopecuroides. P. hohenackeri and P.
alopecuroides also grouped together in an ITS-based
phylogeny [24], while P. alopecuroides grouped with P.
villosum based on EST-microsatellites [41] and the
knotted-1 gene sequence [42], further supporting a close
phylogenetic relationship between all three species. In
contrast, P. alopecuroides was more closely related to P.
glaucum than P. villosum based on the chloroplast
sequence data of Donadio [27]. Significantly, meiotic
chromosome configurations in pentaploid P. villosum
are also consistent with its derivation through hybridiza-
tion [57], and incongruence between studies could result
from multiple hybrid origins or ploidy level differences
among accessions.
A third group in the dendrogram consisted of two

apomictic species, P. orientale and P. flaccidum. P.
orientale and P. flaccidum were also closely related
based upon EST- microsatellite data, even though the P.
orientale cytotype examined was 2n = 2x = 18 and likely
sexual [41], as opposed to the 6x apomictic cytotypes
that we studied. The position of P. basedowii is uncer-
tain. While Bayesian analysis places P. basedowii basal
to subgroups IV and V, MP analysis shows it as sister to
subgroups III, and IV/V. No previous phylogenetic stu-
dies have incorporated P. basedowii except for Chemis-
quy [26] where it grouped with P. glaucocladum, a
species not included in the present analysis, and to
which P. flaccidum was basal. Neither does our com-
bined analysis (Figure 2) put the accession used by Che-
misquy [26] with the one used in present study. In the
combined analysis, the position of the P. basedowii
accession used in this present study is consistent with
that of our Bayesian analysis.
Clade IV included 1) all three Pennisetum species

from section Brevivalvula (P. polystachion, P. pedicilla-
tum, P. subangustum), 2) Pennisetum species from out-
side this section, P. massaicum, and 3) the Cenchrus
species. The close relationship between P. polystachion
and P. pedicillatum of section Brevivalvula was also
indicated by ITS and SSR data [24,41]. Furthermore,

intermediate morphotypes and shared chloroplast haplo-
types suggest considerable gene flow between species of
this section [58]. All species in clade IV contain apomic-
tic cytotypes and have basic chromosome numbers of x
= 9, except for P. massaicum where the basic chromo-
some number is unclear. P. massaicum, with 35 chro-
mosomes, 8 of which do not hybridize to the Opie-2-
like repeat, may be an aneuploid (4x-1) as the number
of rDNA loci suggests that it is tetraploid or it may
have been produced by interspecific hybridization
between species with basic chromosome numbers of x =
8 (low Opie-2 abundance, e.g., P. mezianum) and x = 9
(high Opie-2 abundance; e.g. Cenchrus). Another x = 8
species, P. montanum, falls outside of the Cenchrus
clade [27], but was not included in our study. All species
in clade IV contain apomictic cytotypes, predicting some
degree of asexual reproduction in all lineages. Hybridiza-
tion between the largely asexual apomicts is possible
through rare fertilization of reduced or unreduced eggs
[59]. One accession of P. orientale used in the present
study uniquely showed two ASGR-carrier chromosomes,
each with a different morphology but able to pair at
meiosis, and may have resulted from fertilization of an
unreduced egg with reduced pollen, both carrying an
ASGR. In the case of the derivation of the apomictic P.
massaicum, such hybridization would have necessarily
involved at least one parental apomictic lineage that
contributed the ASGR-carrier chromosome. Pollen ferti-
lity in Pennisetum apomictic lineages is required for
pseudogamous apomixis, in which the endosperm devel-
ops only after fertilization of the central cell. Normal
male meiosis, giving rise to reduced pollen is typical,
but irregular segregation of genomes through aberrant
meioses also occurs. Either interspecific or intergeneric
hybridization may have precipitated speciation of P.
massaicum. Genomic in situ hybridization (GISH) stu-
dies could provide valuable insights regarding the puta-
tive hybrid origin of this species.
The fifth cluster contains sexual P. ramosum, P. nervo-

sum and apomictic P. mezianum with divergent basic
chromosome numbers (x = 5, x = 8 and x = 9, respec-
tively). Apomictic P. mezianum did show deviation in its
grouping among MP and Bayesian trees. The two sexual
species in this group differ in their distribution of Opie-
2-like repeats, abundant throughout the genome of P.
nervosum, but barely detectable by FISH in P. ramosum.
Even though P. ramosum has the smallest number of
chromosomes of any Pennisetum species (2n = 2x = 10),
it has one of the highest DNA contents estimated per
haploid genome (2.02 pg [39]) and the highest per chro-
mosome (0.4 pg). Genome expansion through repetitive
DNA amplification is the most likely explanation,
although our results indicate that Opie-2-like repeats
probably played a minor role. These two species were
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positioned in separate clades based on the analysis of
Donadio [27]. Analysis based on trnL-F and ndhF did
put P. mezianum with P. ramosum but away from P.
nervosum [26].

Evolution of the ASGR-carrier Chromosome
Ancestral analysis shows x = 9 as the ancestral condition
and the other three basic chromosome numbers (x = 5,
x = 7, and x = 8) as derived states which originated
independently of each other (Additional File 1 Figure
S1A), which is in congruence with earlier studies
[26,27]. Ancestral analysis based on reproductive beha-
vior (Additional File 1 Figure S1D) did not resolve sexu-
ality or apomixis as being plesiomorphic. From the
sequence information generated from the ASGR and the
fact that the low copy BACs are shared by all the apo-
mictic species, it is more likely that apomixis is the
result of a single event as suggested earlier [18] which
spread to other species through hybridization.
The three low-copy ASGR-linked BACs used in the

present study produced a discrete signal only in apos-
porous species confirming that these BAC sequences
have conserved homology in all aposporous species of
the genus Pennisetum and the closely related genus,
Cenchrus. By definition, therefore, all aposporous Penni-
setum species/cytotypes possess an ASGR, while sexual
species/cytotypes of the genus lack an ASGR. These
results are consistent with our previous report for C.
ciliaris, where an ASGR, existing as a heterochromatic,
largely hemizygous chromosomal region on a hetero-
morphic chromosome, was observed in only aposporous
and not in sexual cytotypes [37]. Interestingly, the mor-
phology of the ASGR-carrier chromosome and the posi-
tion of the ASGR on the chromosome differ among the
species, indicating that the ASGR-carrier chromosome
has undergone rearrangement. Location of the ASGR in
a telomeric and condensed region of the chromosome
occurs in all clades containing apomictic cytotypes and
may thus be the ancestral state. In all Pennisetum spe-
cies, the ASGR is located near the telomere of the chro-
mosome, while it is interstitial in Cenchrus species and
inverted relative to P. squamulatum [34,35]. Given that
the intercalary position and linkage with rDNA on the
same chromosome arm are unique characters in Cen-
chrus, this is more likely to be a derived state. Addi-
tional data concerning the orientation of the ASGR, as
ascertained using FISH on the pachytene chromosomes
of all species are needed to test this hypothesis.
As explained earlier, an 800 bp region was amplified

from the ASGR and analyzed to further understand the
evolution of ASGR. This region was previously known
to be duplicated at the ASGR in P. squamulatum and C.
ciliaris [38]. The present investigation could detect two
copies in some species but not all the species

investigated. Additional sequencing from the locus
could help to discover whether the locus is also dupli-
cated in these species. This region of ASGR duplication
is recent and happened before the ASGR was trans-
ferred between Pennisetum and Cenchrus as one of the
copies from Cenchrus shows high similarity with Penni-
setum. Among the species where duplication could not
be detected are the three species in section Brevivalvula,
which also group together based on the sequence from
the ASGR suggesting that they may contain the more
ancient form of the ASGR. Overall, variation assessed in
this region of the ASGR is very low. Although it is pos-
sible that there is an inconstant rate of evolution
between different regions of the ASGR, the level of var-
iation detected suggests a recent origin of the ASGR.
Because of the low level of variation, the tree obtained
is of very low resolution (Figure 3). However, the tree
could still discriminate section Brevivalvula from other
species in the Pennisetum-Cenchrus complex.
Opie-2-like sequences were found to be abundant in

P. squamulatum only at the ASGR [36]. In contrast,
these sequences were associated with the centromeric
regions of all chromosomes in C. ciliaris [37]. In both
species, a repeat-poor portion of the ASGR is flanked by
Opie-2-rich regions [18]. Since this repeat now has been
detected as part of the ASGR in seven out of 12 apos-
porous species (exceptions include P. setaceum and P.
villosum of clades I and II, P. orientale and P. flaccidum
of clade III and P. massaicum of clade IV), we speculate
that the association of this repeat with the ASGR was
derived by either 1) translocation of the repeat-poor
portion of the ASGR into a repeat-rich region of the
genome or 2) transposition and accumulation of retro-
transposons in proximity to the ASGR. Ancestral stage
analysis (Additional File 1 Figure S1C) did not show
either of the two (low and high) patterns of Opie-2 dis-
tribution on the genome as plesiomorphic, although
interestingly, low abundance of Opie-2 on the ASGR
(Additional File 1 Figure S1b) might be plesiomorphic.
Low abundance of this transposon repeat in the ASGR
species mentioned above could also be due to transpo-
son elimination, although genome reduction seems less
likely than genome expansion for recently derived asex-
ual taxa where recombination is suppressed [17]. Para-
doxically, ancient, strictly asexual taxa such as bdelloid
rotifers are devoid of retrotransposons [60], and genome
expansion in strictly sexual Pennisetum species often has
exceeded that of the apomicts surveyed [39]. Transposa-
ble elements can spread more efficiently in sexually
reproducing populations, although sex also affords a
mechanism for purging the genome of deleterious muta-
tions [61].
Deciphering the complex relationship between trans-

posable element dynamics and mode of reproduction is
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further complicated by events of hybridization (intra- or
inter-specific) involving apomicts in diploid-polyploid-
dihaploid cycles [10]. Hybridization can elicit gene
expression, epigenome, and genome structural changes
[62] some of which have been documented in apomictic
Boechera [63]. One explanation for a pattern of Opie-2-
like repeats as identified in P. squamulatum and P.
mezianum, where repeats are clustered in the ASGR but
are of low abundance in the remainder of the genome,
is hybridization and introgression of the ASGR from an
Opie-2-rich genome to an Opie-2- poor genome. An
alternative explanation is local expansion of Opie-2-rich
repeats. The unique features of the ASGR-carrier chro-
mosome in P. massaicum, the species most closely
related to Cenchrus, may reflect chromosome restructur-
ing, perhaps as a consequence of hybridization, to dis-
tance the ASGR from either heterochromatin or an
Opie-2-rich region yet retain its linkage to rDNA as in
C. ciliaris and C. setigerus, albeit on the opposite chro-
mosome arm compared with Cenchrus species.
The ASGR is present only in apomictic cytotypes of

Pennisetum species that either have diploid or higher
ploidy sexual cytotypes [57] or are closely related to
other species with only sexual cytotypes. The coexis-
tence of sexual cytotypes, diversity of ASGR-carrier
chromosome structure, and yet phenotypic similarities
in the apomixis mechanism and conservation of the
ASGR argue for apomixis as a character that predates
speciation thus has been subject to repeated transfer via
introgressive hybridization.

Conclusions
The present investigation provides interesting insights
not only on the phylogeny of genus Pennisetum and
Cenchrus, but also on the origin and evolution of the
ASGR. FISH results reveal structural similarity within
the ASGR across Pennisetum and Cenchrus apomictic
species. This similarity is further supported by an ~800
base pair sequence generated from the ASGR. The fact
that apomictic species cluster with sexual species in the
chloroplast sequence-based phylogeny supports the view
that apomixis probably originated once and then spread
through repeated hybridization between the species. The
presence of different morphologies for the ASGR-carrier
chromosome in different species and variation in linkage
with rDNA infers that the ASGR can be translocated
within the genome and those genomes can support
gross chromosomal aberrations as a consequence. Poly-
ploidy associated with apomixis likely increases toler-
ance of the genome to mutation and chromosomal
aberrations. It has often been speculated that apomicts
cannot be sustained in nature for a long period of time
due to their propensity for accumulating mutations in
the absence of sexual reproduction. Low rates of

sequence variation at the ASGR, therefore, suggest that
the ASGR might be of recent origin.
Earlier studies from P. squamulatum and C. ciliaris

have shown association of high-copy Opie-2-like
sequences with the ASGR. Various species within the
present investigation have an ASGR containing fewer
copies of Opie-2-like sequences, from which we infer
that association of the Opie-2 sequence with the ASGR
is only a genome specific feature rather than a unique
feature associated with apomixis. Ancestral state analysis
suggests that the ASGR might have originated in a gen-
ome with low abundance of Opie-2 and was transferred
to a high Opie-2-copy genome while independent dupli-
cation of low-copy regions within the ASGR also
occurred. P. massaicum, which groups with Cenchrus
spp. and section Brevivalvula species, is a species where
genomes with low Opie-2 at the ASGR and high abun-
dance of Opie-2 across the chromosome complement
coexist, and most likely were merged by hybridization.
Section Brevivalvula shows variation in distribution of
Opie-2 on the ASGR and throughout the genome with
P. polystachion displaying lower Opie-2 signal than the
other two species examined. These observations warrant
investigation into other species from the section. Addi-
tional sequence data from the ASGR also could resolve
the extent of gene duplication in this region.
In conclusion, the present investigations have provided

new insights into structure of the ASGR and its evolu-
tion based on experimental evidence. Further studies in
this direction can lead to information which can help in
deciphering the intrigues of apomixis.

Methods
Plant materials
Plant materials and their origins are listed in Table 1.
All species were grown in a greenhouse on the Tifton
Campus of the University of Georgia. For pachytene
chromosome preparation, immature panicles were col-
lected and fixed in 3:1 ethanol:acetic acid for 2 days at
room temperature. The fixed material was stored at 4°C
and used within one year. For mitotic chromosome pre-
paration, root tips of all species were collected and pre-
treated for 3 h by soaking in a saturated solution of a-
bromonaphthalene on ice before fixation in 3:1 ethanol:
acetic acid.

Cytological analysis
Fluorescence in situ hybridization was carried out
according to Akiyama [36]. Enzymatic maceration of
root tips and anthers for chromosome spreads and
denaturation for probe hybridization were conducted
using the indicated times for each species (Table 2).
ASGR-linked bacterial artificial chromosome (BAC)
clones (P001 - containing SCAR A14M; P109 - SCAR
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Q8M; P208 - SCAR UGT197) have been described pre-
viously [35,38,64]. A BAC (P602) containing SCAR mar-
ker X18 and a large amount of repetitive DNA was
isolated by PCR screening of pooled BAC DNAs [36].
The BAC clones were labeled with Biotin-16-dUTP
(Roche, Indianapolis, IN) or digoxigenin-11-dUTP,
alkali-stable (Roche) by nick translation. Ribosomal loci
were detected using a 25S rDNA probe from rice [65]
cloned in pCR 2.1-TOPO (Invitrogen, Carlsbad, CA).
The pCR 2.1-TOPO insert was labeled using PCR
amplification with M13 primers. Denatured chromo-
somes were incubated with 10 μl denatured hybridiza-
tion mixture consisting of approximately 5 ng/μl biotin-
or digoxigenin-labeled probe, 5% dextran sulfate, and
50% formamide in 2X SSC in a humidified chamber at
37°C overnight. After hybridization, the digoxigenin-
labeled probes were detected with fluorescein using a
fluorescent antibody enhancer set (Roche). Biotin-
labeled probes were detected with Texas-red streptavi-
din (Vector Laboratories, Burlingame, CA) and biotiny-
lated anti-streptavidin (Vector Laboratories) for a
second layer of Texas-red streptavidin. After detection,
the slides were mounted in Vectashield (Vector Labora-
tories) containing 1.5 μg/ml DAPI and observed under a
fluorescence microscope, Olympus BX50. Images of
chromosomes were captured by a Sensys CCD camera
(Sensys Photometrics, Tucson, AZ) and Image Pro ver
4.1 software (Media Cybernetics, Silver Spring, MD).
Image analysis was performed with Object-Image 2.08
(http://simon.bio.uva.nl/object-image.html) and modified
CHIAS3 [66]. The statistical analysis was carried out by
Microsoft Excel 98 (Microsoft, Redmond, WA).

Amplification and sequencing of chloroplast NADH
dehydrogenase, ndhF, trnL-F and ASGR BBM-like genes
Total DNA was extracted from fresh leaves using the
procedure of Tai and Tanksley [67] or following the
protocol from the DNAeasy Plant Mini Kit (Qiagen,
Valencia, CA). All PCR amplifications were carried out
in a GeneAmp® PCR system 9700 thermal cycler
(Applied Biosystems, Carlsbad, CA). The 3’ end of the
ndhF gene was amplified using the primers 972 and
2110R [29]. Amplification was carried out in 50 μl reac-
tions containing 1X reaction buffer supplied by the
manufacturer plus 2.5 μM MgCl2, 0.2 mM dNTPs, 1.5
U Taq polymerase, and 0.2 μM of each primer. Cycling
conditions were denaturation at 94°C for 5 min followed
by 35 cycles of 94°C for 1 min, 55°C for 1 min, 72°C for
1.5 min, and a final extension for 7 min at 72°C. The
amplified products were purified using the Qiaquick
PCR purification kit (Qiagen, Valencia, CA). The puri-
fied products were sequenced using primers 972, 1603,
1603R and 2110R. In a few species, primers 1318,
1318R, 1955 and 1955R were used to complete the

sequencing of amplified fragments. Sequencing was car-
ried out on a Beckman CEQ8000 (Beckman Coulter,
Fullerton, CA) according to the manufacturer’s instruc-
tions. The trnL-F region was amplified using the pri-
mers trnL-F_c and trnL-F_f as per [68]. The ASGR-
BBM-like region was amplified using the primers p779/
p780. These primers amplify only apomicts from segre-
gating F1 populations of both Pennisetum and Cenchrus
(unpublished results) and showed amplification only in
apomictic and not the sexual species in the present
study. Amplification was carried out in 50 μl reactions
containing 50-75 ng template DNA, 1X iProof GC buf-
fer, 200 μm each dNTP, 0.5 μM each of trnL-F or
ASGR-BBM-like primers and 0.02 U/μl iProof DNA
polymerase (Bio-Rad Laboratories, Hercules, CA). The
cycling conditions were one cycle of 98°C for 30 s fol-
lowed by 30 cycles of 98°C for 8 s, 60°C (trnL-F)/52°C
(ASGR-BBM like) for 20 s, 72°C for 25 s with a final 72°
C extension for 10 min. The amplified products were
ligated with the pCR®-BluntII-TOPO® vector (Invitro-
gen) and transformed into NEB E. coli DH5a following
the manufacturer’s instructions (New England BioLabs,
Ipswich, MA). For each trnL-F DNA template 3 clones
were fully sequenced. Sequencing was performed by the
Georgia Genomics Facility, (Athens, GA) using M13
Forward and Reverse primers. For each ASGR-BBM-like
DNA template 5 clones were sequenced using M13 For-
ward primer.

Phylogenetic Analysis
The nucleotide sequences generated were aligned by
Clustal X ver 1.81 [69]. The aligned sequences were
translated and compared with protein information for
ndhF available from the whole chloroplast genome
sequence in Nicotiana tabacum (Accn. No. Z00044
S54304). Sequence chromatograms were cross-checked
at positions where mutations were predicted. The cor-
rected alignment was used for phylogenetic analysis.
The analysis was done by PAUP 4.0 beta 10 for win-
dows [70] and Mr. Bayes 3.1.2 [71]. Mr. Model test V2
[72] was used to decide the best-fit model for parsimony
and Bayesian analysis. Parsimony analysis was done by
PAUP with 100 replicates being used for bootstrap ana-
lysis. For Bayesian analysis, Mr. Bayes was used and the
analysis continued until standard deviation of split fre-
quencies became less than 0.01. For analysis of 29 taxa
analyzed in this study, analysis was run for 400,000 gen-
erations while for the combined analysis of sequences
with sequences from present investigation and Chemis-
quy et al. [26], analysis was run for 3,200,000 genera-
tions to achieve the desired standard deviation of split
frequencies. All trees were viewed by the program Tree
View ver 1.6.1 [73]. Mesquite ver 2.74 [74] was used to
alter the tree or to do phylogenetic reconstruction based
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on a character to identify the ancestral state for that
character.

Additional material

Additional file 1: Name and sequence of ASGR primers tested on
the species.
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