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ABSTRACT
Human longevity has a strong familial and genetic component. Dynamic characteristics of the gut 
microbiome during aging associated with longevity, neural, and immune function remained 
unknown. Here, we aim to reveal the synergistic changes in gut microbiome associated with decline 
in neural and immune system with aging and further obtain insights into the establishment of 
microbiome homeostasis that can benefit human longevity. Based on 16S rRNA and metagenomics 
sequencing data for 32 longevity families including three generations, centenarians, elderly, and 
young groups, we found centenarians showed increased diversity of gut microbiota, severely 
damaged connection among bacteria, depleted in microbial-associated essential amino acid func-
tion, and increased abundance of anti-inflammatory bacteria in comparison to young and elderly 
groups. Some potential probiotic species, such as Desulfovibrio piger, Gordonibacter pamelaeae, 
Odoribacter splanchnicus, and Ruminococcaceae bacterium D5 were enriched with aging, which 
might possibly support health maintenance. The level of Amyloid-β (Aβ) and brain-derived neuro-
trophic factor (BDNF) related to neural function showed increased and decreased with aging, 
respectively. The elevated level of inflammatory factors was observed in centenarians compared 
with young and elderly groups. The enriched Bacteroides fragilis in centenarians might promote 
longevity through up-regulating anti-inflammatory factor IL-10 expression to mediate the critical 
balance between health and disease. Impressively, the associated analysis for gut microbiota with 
the level of Aβ, BDNF, and inflammatory factors suggests Bifidobacterium pseudocatenulatum could 
be a particularly beneficial bacteria in the improvement of impaired neural and immune function. 
Our results provide a rationale for targeting the gut microbiome in future clinical applications of 
aging-related diseases and extending life span.

Abbreviations: 16S rRNA: 16S ribosomal RNA; MAGs: Metagenome-assembled genomes; ASVs: 
Amplicon sequence variants; DNA: Deoxyribonucleic acid; FDR: False discovery rate: KEGG: Kyoto 
Encyclopedia of Genes and Genomes; PCoA: Principal coordinates analysis; PCR: Polymerase chain 
reaction; PICRUSt: Phylogenetic Investigation of Communities by Reconstruction of Unobserved 
States; Aβ: Amyloid-β (Aβ); BDNF: Brain-derived neurotrophic factor
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Introduction

Gut microbiota and its metabolites play important 
roles in host’s physiological activities, such as diges-
tion, metabolism, and immunity1. In a few regions, 
centenarians showed specific characteristics of the 
gut microbiome associated with longevity.2–5 For 
example, the diversity and abundance of gut micro-
biota in Italian centenarians were significantly 

higher than in younger group.6 Several studies 
from different countries and regions reported that 
healthy centenarians showed higher abundance of 
short-chain fatty acid-producing bacteria.6,7 Short- 
chain fatty acids provide the main energy source for 
colonic epithelial cells and have anti-inflammatory 
properties.8 The enrichment of these short-chain 
fatty acid-producing bacteria in centenarians may
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improve centenarians’ immune function. 
Consistent with this, a probiotic, Lactobacillus fer-
mentum PL9988 was found to have a significant 
advantage in enhancing host immunity, and that 
has anti-inflammatory and antioxidants effects 
were most abundant in healthy centenarians in 
Koran.9 Taken together, these studies suggested 
that increased microbiota diversity and an elevated 
abundance of anti-inflammatory bacteria may par-
tially contribute to healthy longevity.

Emerging evidences suggest that gut bacteria 
collaborate with their animal hosts to modulate 
the immune, metabolic and nervous systems 
through dynamic bidirectional communication 
along the “gut-brain axis”.10 Changes in the micro-
bial community have been linked to neurological 
disorders, such as autism, Alzheimer’s disease, and 
Parkinson’s disease.11 Nevertheless, little evidence 
has been reported on whether microbial commu-
nity characteristics in long-lived families are asso-
ciated with changes in immune factors and 
cognitive function.

Recently, using two disease models of aging in 
Caenorhabditis elegans, reproductive tumor and 
Alzheimer’s disease, Meng Wang’s group con-
ducted genome-wide screening of Escherichia coli 
mutants and systematically revealed the relation-
ship between individual genes of E. coli and host 
lifespan. The authors found that more than ten 
probiotic bacterial mutants can not only prolong 
the lifespan of the host body but also fight against 
these two different aging-related diseases, and inhi-
bit tumor cell invasion and expansion and amyloid 
deposition in the host.12 In agreement with this 
study, by following up the gut microbiome, 51 
human phenotypes and plasma levels of 1,183 
metabolites of 338 individuals for 4 years, Chen 
et al. characterized microbial stability and variation 
in relation to host physiology.13 However, whether 
microbial gene variations serve as microbial signa-
tures of longevity and suggest potential targets to 
promote healthy aging remains unknown.

At present, the United Nations has awarded ten 
towns in China for longevity, but only the bacterial 
community characteristics of the long-lived people in 
Xinjiang have been primarily reported in Chinese.14 

Several studies about the gut microbiota of longevity 
people lack detailed analysis on gut microbiota com-
position, gene variation of bacterial strains, and 

association with host healthy status.6,7 The samples 
showed few genetic homogeneity and lifestyle consis-
tency. Rugao City of Jiangsu Province is one of the ten 
longevity regions, but the characteristics of gut micro-
biota associated with longevity have not been investi-
gated in this area. To determine globally gut 
microbiome signatures associated with longevity 
families, we collected feces and blood samples from 
32 families including centenarians, elderly and young 
people in Baipu Village. Based on 16S rRNA sequen-
cing and metagenomics data for the cohorts, we first 
outlined the landscapes of the gut ecosystem in long- 
lived families in terms of the diversity, microbiome 
relationship, altered bacteria abundance trajectory 
along aging, single nucleotide polymorphisms, and 
function landscape in the gut microbiome along 
aging. Combined the level of immune inflammatory 
factors, Amyloid-β (Aβ), brain-derived neurotrophic 
factor (BDNF) in blood serum across young, elderly 
and centenarians, we characterized the synergistic 
changes in gut microbiome associated with decline 
in neural and immune system with aging.

Results

Information of the cohort

A total of 32 centenarians (G1), 30 elderly people 
(G2) and 11 young people (G3) were recruited. 
Characteristics of study participants for 16S rRNA 
analysis were shown in Table S1A. Statistically sig-
nificant differences in age, sex, body mass index 
(BMI), and smoking status were found among 
three groups (Table S1A). No significant differences 
for food preference and diseases among three 
groups were observed in 16S rRNA sequencing 
(Table S1A). Characteristics of study participants 
for metagenomics sequencing were listed in table 
S1B. No significant differences for food Preference, 
BMI, smoking, and disease status among three 
groups were observed in metagenomics samples 
(Table S1B). Elderly group in both 16S rRNA and 
metagenomics analysis showed significantly 
increased alcohol consumption in comparison to 
young and centenarian groups (Table S1A and 
Table S1B). The detailed characteristics, including 
the diseases, food preference, smoking status, tak-
ing probiotics or not and alcohol consumption for 
all samples are shown in Table S2.

e2107288-2 J. WANG ET AL.



Centenarians (G1) displayed alterations in gut 
microbiota compared with elderly people (G2) and 
young people (G3) based on 16S rRNA data

After selecting the effective reads, each fecal sample 
produced 80,268 to 99,917 effective reads. 
Rarefaction curve analysis reached a stable level, 
indicating that the sequencing depth had covered 
new rare phylotypes and most of the diversity 
(Figure S1A). As shown in Figure 1a, the Venn 
diagram displayed 380 unique amplicon sequence 
variants (ASVs) in the G1 group, 216 unique ASVs 
in the G2 group, and 46 unique ASVs in the G3 
group; furthermore, 684 ASVs were shared by the 
three groups. Estimates of richness and Shannon 
index were calculated to quantify bacterial alpha 
diversity. No statistical difference between G1 and 
G2 was found, but the G3 group showed signifi-
cantly lower estimate of richness than the G1 group 
(Figure 1b, c). A principal coordinates analysis 
(PCoA) analysis showed three groups displaying 
similar microbiota composition (Figure 1d and 
Figure. S1B). The top 10 phyla in the relative abun-
dance of gut microbiota were shown as histograms 
(Figure 1e). At the phylum level, we observed 
a moderate significant enrichment of 
Verrucomicrobia in G1 compared with G3 
(Figure 1e and Table S3). As the Firmicutes/ 
Bacteroidetes ratio is often used as an index for 
the structure of gut microbiota, we compared the 
ratio in three groups. The relative abundance of 
Firmicutes was higher in subjects of elderly than 
in the young and centenarian group, whereas the 
proportion of Bacteroidetes was lower in elderly 
group, accordingly, we found a higher Firmicutes/ 
Bacteroidetes ratio in the elderly than in the young 
and centenarians (Figure 1f).

To reconstruct the microbiota changed trajec-
tory along aging, the relative abundances of the 
genera with significant differences between any 
two groups were displayed in Figure 1g (Table 
S4). The commensal genera Odoribacter, 
Ruminococcaceae UCG−003, and Desulfovibrio 
enriched with aging (Figure 1g). Some opportunis-
tic bacteria, e.g., Parabacteroides, Butyricimonas, 
and Alistipes only enriched in centenarian group. 
According to the previous report, rejuvenation sig-
nature included genera whose abundance was simi-
lar in younger and centenarian, but distinct from 

the elderly group.15 Howardella and Rikenellaceae 
RC9 genera were included in rejuvenation signa-
ture and specifically enriched in G1 group 
(Figure 1h), and the absolute abundance of these 
two genera was also found to be increased in G1 
group (Figure S1C), indicating these genera may 
have potential role in preservation of youth or 
reversing aging. Centenarian signature included 
centenarian-specific genera whose abundance was 
similar in G3 and G2 groups but distinct from the 
G1 group per previous definition.15 We found the 
absolute abundance of Desulfovibrio and 
Pseudomonas genera were included in the cente-
narian signature and specifically enriched in G1 
group (Figure. S1D). Notably, Parabacteroides and 
Odoribacter, which were enriched in the G1 group, 
are known to resist inflammation and contribute to 
gut health.16,17 Functional analysis showed that the 
activities of vitamin B6 metabolism and thiamine 
metabolism were lower in G1, whereas retinol 
metabolism and tryptophan metabolism were 
higher in G1 group (Figure. S1E, F).

Given that bacteria act as interdependent functional 
groups (guilds) in the gut ecosystem,18,19 synergistic 
changes of bacteria in guilds may help identify bacteria 
that play an important role in long-lived families. 
Hence, we further constructed a co-abundance net-
work at the ASV level. A total of 462 ASVs were shared 
by at least 20% of the samples and clustered into 46 
guilds based on SparCC correlation coefficients (Table 
S5). Only 21 guilds with ASVs whose absolute value of 
correlation coefficient was greater than 0.70 were 
shown in Figure 2a and Table S6. According to the 
Kruskal–Wallis test, group level abundance analysis 
showed that six guilds showed significant differences 
among the three groups. Notably, guild2 showed 
decreased abundance in G1 compared with G3, and 
the guild contained the genera, Dialister, 
Parasutterella, and Acidaminococcus which showed 
decreased abundance in G1 group. In addition, 
guild34 and guild46 were enriched in G1 relative to 
G3, and the two guilds contained the genera, Alistipes, 
Ruminococcaceae UCG-005, and Faecalitalea which 
showed elevated abundance in G1 group (Figure 2b). 
To describe the potential relationships occurring 
among bacteria within the gut microbial communities, 
we further constructed co-occurrence networks of 
genera from each group based on Spearman correla-
tions. G3, G2, and G1 groups mainly featured three
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Figure 1. Comparison of the gut microbiota between G3, G2 and G1 groups according to the 16S rRNA data. (a). Venn diagram of the 
observed ASVs in G3 (n = 11, aged 16 to 52 years [mean age, 37.1 years]), G2 (n = 30, aged 52 to 83 years [mean age, 71 years]) and G1 
(n = 32, aged 100 to 108 years, [mean age, 101.7 years]) groups. (b-c). Alpha diversity indices of genera between three groups according to 
Estimate of richness (b), Shannon index (c). *p < .05; Wilcoxon rank-sum test. ns, not significant. (d). Principal coordinate analysis (PCoA) of the 
microbiota based on the Bray-Curtis distance between three groups. ANOSIM, R = 0.033, p = .175. (e). Bar plots showing the relative 
abundance of microbiota of three groups of individuals at phylum level, with different colors correspond to different phyla. (f). Bar plots 
showing the relative abundance of Firmicutes and Bacteroidetes in three groups. (g). Heat map showing the relative abundance of three 
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co-occurrence networks with scattered genera from 
four primary phyla (Firmicutes, Bacteroidetes, 
Proteobacteria, and Actinobacteria) (Figure 2c-e). 
The correlation between the genera in G1 was dis-
tinctly decreased compared with that in G2 and G3. 
To quantify such differences, we counted the number 
of edges (connections) and the centrality of nodes 
(genera) in the two microbial networks. As shown in 
Figure S1G, the three groups shared four overlapped 
edges, whereas 36, 172, and 500 of the edges were 
specific to the G1, G2 and G3, respectively. The close-
ness and eigenvector of the shared genera in G3 were 
also quite different from those in G2 and G1 
(Figure 2f). In general, the above analysis suggested 
that the microbial ecosystem in G1 was quite different 
from that in G2 and G3, and that the microbial rela-
tionship tended to be homogeneous with aging.

Metagenomic sequencing revealed significant 
differences in terms of gut microbiota composition 
and gene function among the three groups

To further explore the role of bacterial species and 
function in long-lived families, we performed metage-
nomics sequencing for the three groups. The Shannon 
index was calculated to quantify the alpha diversity 
among the three groups at the species level. As shown 
in Figure 3a, the alpha diversity was significantly 
higher in G1 than in G2 and G3, but no difference 
was found between the G2 and G3. According to the 
dynamic changes across different age stages (Figure 3b 
and Table S7), the enrichment prevalence of health 
associated bacteria, e.g., Gordonibacter pamelaeae, 
Odoribacter splanchnicus, Ruthenibacterium lactati-
formans, Intestinimonas butyriciproducens, 
Butyricimonas virosa, and Bacteroides fragilis are 
increased in centenarians. Some potential probiotic 
bacteria, e.g., Bifidobacterium pseudocatenulatum, 
Megamonas funiformis and Megamonas hypermegale 
are decreased during aging. Bacterial functional ana-
lysis based on MetaCyc pathways and gut-brain mod-
ules (GBMs) database were shown in Figure 3c-d 
(Table S8). Impressively, we observed significantly 

decreased enrichment of the L− lysine biosynthesis 
VI, flavin biosynthesis I and arginine degradation IV 
pathways in G1 compared with G2 and G3 group, as 
well as increased enrichment anaerobic energy meta-
bolism and glycine degradation.

To identify the function of specific strain linked to 
longevity, we performed an analysis of individual draft 
genomes (bins) through MetaWRAP.20 A total of 261 
acceptable bins (completion greater than 70% and 
contamination less than 10%) were generated for 
further analysis (Figure S2a,b and Table S9). 
A phylogenetic tree of the 261 bins is presented in 
Figure S2C. The tree is dominated by large numbers of 
genomes from the Firmicutes and Bacteroidetes phyla. 
Given that the relative abundance of O. splanchnicus 
was significantly increased in the centenarians in our 
study and O. splanchnicus strains have been reported 
to play an important role in centenarians by partici-
pating in specific bile acid metabolic activity,15 we 
reassembled the strain genome. As shown in 
Figure 3e, the O. splanchnicus genome consists of 
a single circular chromosome of 3,788,833 bp contain-
ing 182 contigs, an N50 length of 304,00 bp, and a GC 
content of 43.5%. The genome was near complete 
(96.77%) and had low evidence of possible contam-
ination (1.08%). The genome encoded a total of 3,622 
genes, of which 3,575 genes (98.7%) were protein- 
coding and 47 genes were RNA-coding. Functional 
analysis of the O. splanchnicus genome showed that it 
was enriched in the essential amino acid metabolism, 
protein biosynthesis pathway, and ribosome LSU bac-
terial pathway (Figure 3f and Figure S2D). 
Impressively, the relationship between 
O. splanchnicus and other microbes in centenarians 
and young showed a simpler and similar microbial 
network, however, the elderly group showed 
a substantially more complicated microbial network 
(Figure 4a-d), which implies that O. splanchnicus 
might play an important role in maintaining younger- 
like equilibrium of the gut ecosystem in centenarians.

Antibiotics overuse is a global public health pro-
blem, with the danger of accelerating the spread of 
drug-resistant bacteria.21 We analyzed the

groups of individuals at genus level. Only the significantly different genera between any two groups were displayed. Based on the different 
genera obtained by Wilcoxon rank sum test (Benjamini–Hochberg-corrected P value < .05), 10 samples were randomly returned from each 
group to form self-help samples. The average difference statistics of relative genus abundance were calculated and repeated 1000 times to 
determine whether the difference was significant according to 90% confidence interval. (h). Changes in the relative abundance of genera 
between G3, G2, and G1 subjects grouped according to the rejuvenation signature.
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antibiotic resistance genes (ARGs) of longevity 
family members, as shown in Figure 3g-i, no dif-
ference in the total ARGs and their subtypes was 
found, but G1 showed decreased aminoglycosides 
and vancomycin genes compared with G3 
(Figure 3j-k), which implicated that the gut micro-
biota of centenarians was relatively less contami-
nated with antibiotics.

Gut microbiota–based prediction of three groups

Next, to test whether potential diagnostic biomar-
kers can be used to predict age groups, we con-
structed a random forest model based on significant 
differential genera and MetaCyc pathways. The top 
20 significantly differential genera between the G1 
and G3 individuals were used as biomarkers to 
distinguish centenarians from young adults 
(Figure 5a, b). The area under the curve (AUC) 
displayed good predictive power for longevity in 
our set (AUC = 0.902). Another Chinese dataset22 

as an external validation set also showed great pre-
diction ability (AUC = 0.826). Similarly, the top 20 
significantly different MetaCyc pathways between 
G1 and G3 showed great discriminatory power to 
distinguish centenarians from young adults (The 
current cohort, AUC = 0.92; Sardinian cohort,5 

AUC = 0.745) (Figure 5c, d). Meanwhile, the con-
stituted random forest model based on the differ-
ential genera between G1 and G2 cannot perform 
well discriminatory power to predict longevity sta-
tus, but the discriminant ability based on differen-
tial MetaCyc function pathways (acetyl−CoA 
fermentation to butanoate II, L− isoleucine bio-
synthesis IV, gluconeogenesis III, pyruvate fermen-
tation to acetone, L− lysine fermentation to acetate 
and butanoate, and S− adenosyl−L− methionine 

cycle) still showed great prediction ability (the cur-
rent cohort, AUC = 0.92; Sardinian cohort, 
AUC = 0.729; Figure 5e-h), which implicating dif-
ferent bacteria may evolve similar metabolic func-
tion to involve in aging process.

Enriched species in centenarians associated with 
decline of immune system, amino acid metabolic 
activity, and cognitive function

The gut microbiota is increasingly recognized as an 
important regulator of host immunity and brain 
health.11 The preservation of host-microbes home-
ostasis can counteract inflammation, intestinal per-
meability, and decline in bone and cognitive 
health.2 To investigate the association between gut 
microbiota and inflammatory factors in longevity 
families, we first analyzed the expression levels of 
inflammatory cytokines in the blood samples of the 
three age groups (Table S10). As shown in 
Figure 6a, we observed the expression of seven 
cytokines, including IL-6, TGF-β, IL-17, TNF-α, 
IL-12, IL-33, and IL-1β, showed the highest level 
in G1 and lowest in G3. However, the expression of 
anti-inflammatory cytokine, IL-10, was higher in 
G1 than in G2 and no significant difference 
between G1 and G3. Notably, an elevated IL-10 
expression in centenarians was observed compared 
with young and elderly people.

Recent studies have shown that the development 
of neurons is closely related to the development of 
gut microbiota.23 BDNF may take part in regulating 
neuronal survival and synaptic plasticity to present 
anti-oxidant effects, suppressing ROS and protect-
ing the mitochondria.24 Furthermore, Aβ is 
thought to be a marker of neurological degenera-
tion in the brain.25 To assess the correction of

Figure 2. Bacterial correlation analysis based on relative abundance between G3, G2 and G1 groups. (a). Co-abundance groups 
interaction network. Node size represents the average abundance of each ASV. Lines between nodes represent correlations of each 
other, with the line width representing the correlation magnitude. The red ones represent positive correlations, and the blue ones 
represent negative correlations. Only lines whose absolute value of correlation coefficient greater than 0.70 were drawn, and 
unconnected nodes were omitted. (b). Group-level abundance differentiation of guilds. Data are visualized by boxplot. Box represents 
the interquartile range. The line inside the box represents the median. And whiskers denote the minimum and maximum value. 
*p < .05; **p < .01; Wilcoxon rank-sum test. ns, not significant. (c-e). Network plots describing co-occurrence of bacterial genera in the 
gut microbiota of G3, G2, and G1 group based on the Spearman correlation algorithms (r ≥ 0.7, FDR < 0.05). Bacterial genera with at 
least 0.1% of relative abundance in at least 20% of the samples in each group were plotted. Each node presents a bacterial genus. The 
node size indicates the relative abundance of each genus per group, and the density of the dashed line represents the Spearman 
coefficient. Red links stand for positive interactions between nodes, and green links stand for negative interactions. (f). Discrepancies of 
the genera co-occurrence networks between three groups based on the 16S rRNA data. Centralities (rank of the closeness) and 
discrepancies of nodes in G3, G2 and G1 co-occurrence networks were counted, respectively.
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cognitive function of long-lived people, we ana-
lyzed the expression of BDNF and Aβ in the 
blood of long-lived families. As shown in 
Figure 6b, the expression of Aβ gradually increased 
with age. Nevertheless, BDNF expression showed 
no significant changes between G1 and G2. The 
correlation analysis of the significantly different 
species and immune cytokines showed the abun-
dance of Bifidobacterium pseudocatenulatum in G1 
was negatively correlated with IL-6, TGF-β, IL-1β, 
IL-17, TNF-a, IL-12, and Aβ level and positively 
associated with BDNF level. Furthermore, we 
found that the enrichment of O. splanchnicus, 
Desulfovibrio piger and Victivallis vadensis in G1 
was positively associated with IL-17, TNF-a and IL- 
12 levels, implicating that these species may be core 
bacteria that play essential roles in stimulating an 
increase in these immune factors with aging 
(Figure 6c). To explore the links among metabolic 
pathways, species, and immune cytokines, we cal-
culated the correlation between two of them. 
Interestingly, we found that anaerobic energy meta-
bolism and L− isoleucine biosynthesis IV were 
positively correlated with most immune factors 
and species, and the level of IL-17, TGF-β, IL-6, 
IL-12 and Aβ were associated with almost all meta-
bolic pathways (Figure 6d, e), indicating alteration 
of gut microbiota with aging matches metabolic 
and immune variations. Most of significantly 
increased species in G1 relative to G2 showed posi-
tive correlation with essential amino acids fermen-
tation pathway. Interestingly, the enriched 
Bacteroides fragilis in G1 had no correlation with 
all of metabolism activity (Figure 6f and Figure 
S2E), in contrast, it showed strong positively corre-
lated with level of anti-inflammatory IL-10 
(Figure 6f).

The above results further support that gut micro-
biota might play an essential role in decline of 
immune system, metabolic activity, and cognitive 
function during aging.

Identification of stable species in long-lived families

To further understand the importance of 
changes in microbial strains to phenotypic 
changes of host individuals, it is crucial to exam-
ine the stable and variable genetic components 
of gut microbiota over time.13As human long-
evity has a strong familial and genetic 
component,26 we then hypothesized that long-
evity families in Bapu village may have core 
and stable species that do not change with 
aging. . To investigate the presence of a stable 
inheritance of bacteria strains in longevity 
families, we compared the presence of species 
in 26 longevity families with at least two genera-
tions. Only species that exist in at least half of 
long-lived families and had no significant differ-
ence in relative abundance between G3, G2, and 
G1 groups were defined as stable genetic bac-
teria. A total of 18 stable species in long-lived 
families were identified in our study (Figure 7a), 
indicating that these stable species might be 
involved in the establishment of a new home-
ostasis with host, thus contributing to longevity. 
We further compared the relative abundance 
differences of the 18 species in unrelated young 
people, elderly people, and centenarians in 
another Chinese longevity dataset.22 We found 
that Parabacteroides distasonis, Lachnospiraceae 
bacterium TF01 − 11, Eubacterium Ramulus, 
Bacteroides stercoris ATCC 43183 and 
Bacteroides plebeius showed significant

Figure 3. Comparison of the gut microbiota and gene functions between G3, G2, and G1 based on the metagenomic 
sequencing data. (a). Alpha diversity indices of species between three groups according to Shannon index. *p < .05; Wilcoxon rank- 
sum test. ns, not significant. (b). Heat map showing the relative abundance of individuals at different age stages at species level. Only 
the significantly differential genera were shown between any two groups in G3, G2, and G1 groups were displayed. Benjamini– 
Hochberg-corrected P value < .05; Wilcoxon rank-sum test. (c). Bar plot showing the relative abundance difference in MetaCyc 
pathways between three groups. Only the significantly differential pathways were shown between G3 and G1 individuals. (d). Bar plot 
showing the relative abundance difference in GBMs between three groups. Only the significantly different GBMs were shown between 
G3 and G1 individuals. (e). Genomic features of Odoribacter splanchnicus. The 3,788,833 bp genome containing 182 contigs, a N50 
length of 30400 bp, a GC content of 43.5%. From the outer circle to the inner, it represents the length of contigs, coding sequences 
(CDS) on forward and reverse strands, tRNA, rRNA, tmRNA, CAZy annotation, GC content and GC skew curve, respectively. (f) Pie charts 
showing the function of Odoribacter splanchnicus genome at subcategory level based on RAST annotation. (g). The overview of ARGs in 
three groups. (h). Comparison of the number of ARGs between three groups. (i). Comparison of the number of ARG subtypes between 
three groups. (j-k). Abundance of significantly different ARG types between G3 and G1 individuals.
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differences among these unrelated three groups 
(Figure 7b). Impressively, we observed 
Eubacterium Ramulus in another Chinese long-
evity database showed rejuvenation signature 
whose abundance was similar in the young and 
centenarian group and higher than that in the 
elderly group. Through applying probiotic-based 
adjunctive treatment for ulcerative colitis (UC) 
patients, Chen et al. found the gut mucosal 
microbiota of the probiotic-receivers had signifi-
cantly more beneficial bacteria E. ramulus and 
suggested that the bacteria might alleviate UC 
symptoms.27 As changes in single nucleotides 
can also lead to large changes in the function 
and pathogenic behavior of bacteria,28 we 
further analyzed the changes in bacterial strain 
level in the three generations of long-lived 

families, and thus found that more common 
bacterial strains were shared by individuals of 
G1 than individuals of G2 and G3 (Figure 7c- 
f). At the phylum level, the total nucleotide 
diversity in Firmicutes was higher in G1 and 
G2 than that of G3 (Figure 7g), implicating 
that the bacteria belonging to Firmicutes in the 
centenarians were more prone to producing bac-
teria genome mutations. Impressively, the stably 
inherited bacteria shown in Figure 6b such as 
Parabacteroides distasonis, Bacteroides stercoris, 
and Bacteroides plebeius showed no significant 
differences in nucleotide diversity among the 
three groups (Figure 7h). Taken together, the 
unique stable species in the long-lived families 
from Baipu village combined its’ validation in 
another longevity cohorts further suggested that

a b

c d

Figure 4. Odoribacter_splanchnicus correlations with other species at different age stages. (a-d). Correlations of Odoribacter 
splanchnicus with other species in 21–40, 41–60, 61–80 and 100–110 y old respectively. Spearman correlation algorithms (r ≥ 0.5, 
FDR<0.05). Red links stand for positive interactions between nodes, and green links stand for negative interactions.
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Figure 5. Classifiers for distinguishing G3 from G1 group and G2 from G1 group. (a). Receiver operating characteristic (ROC) 
curves for the G3 and G1 group were assessed by R Random Forest package. Only the top 20 significantly different genera between G3 
and G1 individuals was used as predictors based on the 16S rRNA data. Another Chinese dataset as external validation set. Chinese 
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long-lived families in Bapu village might have 
a specific unchanged microbiota contributing to 
their longevity.

Discussion

Microbiota studies involving long-lived families 
across different age based on families is limited. 
Our study is unique in that the microbiota samples 
across three age stages were collected from long- 
lived families in the same village, and these families 
have almost similar diet structure, which reduced 
the interference brought by different environments 
and diets. We outlined the landscapes of the gut 
ecosystem in long-lived families from multiple 
levels including microbial composition, function, 
relationship profiles, the stable inherited bacteria, 
single nucleotide polymorphisms of microbial spe-
cies, and specific bacteria associated with inflam-
matory factors, BDNF, and Aβ levels. Furthermore, 
we identified and independently validated bacteria 
and bacteria-associated function markers that 
could distinguish centenarians from young and 
elderly subjects with high accuracy. Taken together, 
the present microbiome study based on long-lived 
families provides preliminary insights on aging and 
longevity associated features including microbiota, 
neural and immune function.

Previous studies have highlighted mutualistic 
changes in the composition and diversity of the 
gut ecosystem of centenarians.29 For example, 
Biagi et al. reported the four age groups including 
semi-supercentenarians (105–109), adults (22– 
48), and elderly (66–78) showed a good separation 
on a principal coordinates analysis (PCoA),2 how-
ever, our present study showed three age groups 
have no significant change, indicating long-lived 
families might share much similar core microbiota 

composition independent on aging process. 
Santoro et al. reported that young adults and 70- 
y-olds maintain a highly similar diversity of gut 
microbiota, which markedly changes in 
centenarians.30 Consistent with this study, we 
also observed increased species α-diversity in cen-
tenarians compared with young adults and elderly 
people but no significant difference between the 
elderly and young adults. The result further sup-
ports the previous assumption that the diversity of 
gut microbiota seems to rest in a stable state from 
G3 to G2, while after 100 y of symbiotic associa-
tion with the human host, it shows a profound, 
and possibly adaptive, remodeling.30 However, 
due to the present G2 lack of the age gap between 
80 and 100 y of age, further analyses are still 
needed to fill in the age gap and dissect the age- 
related rebuilding of gut microbiota. In addition, 
we noted that centenarians showed signs of 
a typical senile connection between bacteria. 
Firmicutes are very successful competitors in the 
gut ecosystem.31 However, the co-occurrence 
microbial network around genera from 
Firmicutes in centenarians showed signs of 
a typical senile connection of bacteria compared 
with the young and elderly groups, indicating that 
the connection of other bacteria from Firmicutes 
in aging processes may be affected by the loss of 
bacteria gene function due to the variability 
caused by single nucleotides mutation in specific 
bacterial genes.

Kim et al. reported that Akkermansia and 
Christensenellaceae are well-known health- 
associated genera whose abundance increased in 
centenarians.32 Biagi et al. suggested that 
Christensenellaceae may represent a signature of 
the ecosystem of extremely longevity people.2 

However, in the present study, no significant

young (n = 38) and centenarians (n = 48) from the SRA database under accession no. SRP107602. b. In order of importance, the genera 
used for predicting G3 and G1 groups were listed. (c). ROC curves for the G3 and G1 groups were assessed by R Random Forest 
package. Only the top 20 significantly different MetaCyc pathways between G3 and G1 individuals are used as predictors based on the 
metagenomic sequencing data. Sardinian dataset as external validation set. Sardinian young (n = 17) and centenarians (n = 19) from 
the European Nucleotide Archive (accession number PRJEB25514). (d). The MetaCyc pathways were ranked in order of importance for 
predicting G3 and G1 groups. (e). ROC curves for the G2 and G1 groups assessed by R Random Forest package. Using only the top 20 
significantly different genera between G3 and G1 individuals as predictors based on the 16S rRNA data. Another Chinese dataset as 
external validation set. (f). Genera used to predict G2 and G1 groups were ranked in order of importance. (g). ROC curves for the G2 and 
G1 groups were assessed by R Random Forest package. Using only the top 20 significantly different MetaCyc pathways between G3 
and G1 individuals as predictors based on the metagenomic sequencing data. Sardinian dataset as external validation set. (h). The 
MetaCyc pathways were ranked in order of importance for predicting G3 and G1 groups.
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increase in Akkermansia and Christensenellaceae 
were observed in centenarians. Several butyrate 
produced bacteria (Ruthenibacterium lactatifor-
mans, Intestinimonas butyriciproducens, 
Butyricimonas virosa, Eubacterium ramulus and 
Bacteroides fragilis) are increased in centenarians, 
indicating that our current cohort might possesses 
bacteria associated with longevity. A recent study 
provided evidence that O. splanchnicus strains 
which are increased in centenarians can efficiently 
synthesize isoalloLCA,15 a specific bile acid that can 
resist many infections such as Clostridium difficile 
and Enterococcus faecalis, thereby reducing the risk 
of infection and assisting in maintaining intestinal 
homeostasis. In agreement with the report, we 
observed centenarians showed increased 
O. splanchnicus and younger-like relationship 
between O. splanchnicus and other bacteria. 
Moreover, our present study showed that 
O. splanchnicus could produce essential amino 
acids and a positive correlation with L− isoleucine 
biosynthesis, which indicating O. splanchnicus may 
partially compensated for the decline of essential 
amino acids caused by aging. Future study based on 
animal experiments is needed to clarify whether 
O. splanchnicus contribute longevity partially 
through supplementing essential amino acid.

Age-related dysbiosis is responsible for the age- 
related increase in systemic inflammation.33,34 

Consistent with this, the present study showed that 
the alteration in gut microbiota observed in centenar-
ians correlate with an increase in most pro- 
inflammatory cytokines in the peripheral blood com-
pared with G2 and G3. Significantly, all differential 
microbial gene function related to essential amino 
acid biosynthesis in centenarians were depleted and 
showed negative association with pro-inflammatory 
factor IL-17 and IL-12. Increasing studies from animal 
models have shown that a change in the composition 
and diversity of the microbiota contributes to human 
health and fitness by modulating the immune 

inflammation response and vice versa.35 

Impressively, we observed that an increase of anti- 
inflammatory factor, IL-10 in centenarians compared 
with the elderly, was associated with an increased 
abundance of B. fragilis. B. fragilis strains can induce 
the induction of regulatory CD4+ and CD8 + T cells 
secreting IL-10 to control innate inflammatory 
responses and mediate beneficial anti-inflammatory 
effects on inflammatory bowel disease.36,37 Taken 
together, the result indicated enriched B. fragilis in 
centenarians might promote longevity through mod-
ulating anti-inflammatory factor IL-10 expression to 
mediate the critical balance between health and dis-
ease. Moreover, the data indicated that the host 
immune system may evolve with microbiome to 
develop complicated mechanisms to modulate the 
composition of gut microbiota of longevity.

Age-related changes in microbiota composition 
have been shown to play a role in development of 
neurodegenerative disorders, including Parkinson’s 
disease and Alzheimer’s disease.38,39 Normal brain 
aging is usually associated with changes in neural 
activity, deposition of Aβ and accumulation of tau 
proteins, leading to gradual cognitive decline in nor-
mal older adults.40 Gut microbiota interacts bidirec-
tionally with the central nervous system through the 
immune, endocrine, and neural systems generally 
referred to as the microbiota-gut-brain axis.41 In our 
study, we observed a decreased abundance of 
B. pseudocatenulatum in centenarians associated 
with increased levels of Aβ and pro-inflammatory 
cytokines such as IL-12, TNF-a, IL-1β, TGF-β, IL-6, 
and IL-17. Moya-Pérez et al. reported that 
B. pseudocatenulatum can beneficially modulate the 
consequences of chronic stress on the hypothalamic– 
pituitary–adrenal axis, particularly response produced 
by maternal separation mice model.42 On the other 
hand, a growing amount of evidence has pinpointed 
the availability and metabolism of the essential amino 
acid, vitamins, and minerals nutrient pattern moder-
ates the effect of brain structure on cognitive function

Figure 6. Associations between species, immune cytokines and pathways. (a-b). Analysis of the level of eight immune cytokines, 
Aβ, and BDNF in G3, G2 and G1 groups. Serum of all subjects was collected and detected by ELISA. The differences were calculated by 
t-test (*p < .05, **P < 0 .01, ***P < .005, ****P < .001). (c). Heatmap of associations between species and cytokines. (d). Heatmap of 
associations between MetaCyc pathways and cytokines. (e). Heatmap of associations between species and MetaCyc pathways. (f). 
Correlation between species, serum cytokines and MetaCyc pathways based on the Spearman correlation algorithms according to the 
metagenomic sequencing data (Benjamini–Hochberg-corrected P value < .05). Only the top 20 significantly different species and 
pathways between G2 and G1 individuals were used to calculate the correlation. In (c-e), only the top 20 significantly different species 
and MetaCyc pathways between G3 and G1 individuals were used to calculate correlation according to the metagenomic sequencing 
data. Spearman correlation, *p-value<0.05, **p-value<0.01.

e2107288-14 J. WANG ET AL.



GUT MICROBES e2107288-15



in old age.43 It is interesting to note that 
B. pseudocatenulatum showed positively associated 
with essential amino acid pathways such as L− isoleu-
cine biosynthesis I (from threonine) L− valine bio-
synthesis L− lysine biosynthesis VI. The above 
information suggests that B. pseudocatenulatum can 
be a particular beneficial bacterium in the improve-
ment of brain function through modulating the avail-
ability and metabolism of the essential amino acid as 
a key regulator of the gut-brain axis.

Notably, IL-17 and Aβ showed the same trend 
of negative correlation with microbe-related meta-
bolic activity, such as, peptidoglycan maturation, 
CDP−diacylglycerol biosynthesis, and L− histidine 
biosynthesis. Increasing evidences showed ele-
vated pro-inflammatory IL-17 were involved in 
the procession of Aβ accumulation.44–46 Based 
on the information, the present study may provide 
important clues to reveal which bacterial meta-
bolic activity is involved in the underlying 
mechanisms of the cross-talk between IL-17 and 
Aβ accumulation. Overall, these findings suggest 
that longevity may be characterized by a balance 
among core bacteria and between pro-and anti- 
inflammatory activity.

Conclusion

Our findings provide a rationale for the estab-
lishment of new homeostasis of gut microbiota 
that thus contributes to improving neural and 
immune function as well as extending life span. 
Given the impossibility of performing 
a longitudinal longevity cohort in human, 
further studies based on animal experiments 
are needed to understand whether the interac-
tion of immune response, amino acid metabolic 
activity, and candidate bacteria involved in the 
establishment of a new homeostasis with aging 
that thus promoting human longevity.

Methods

Study population recruitment and statical analysis

32 centenarians (G1, aged 100 to 108 years), 30 
elderly (G2, aged 52 to 83 years) and 11 young people 
(G3, aged 16 to 52 years) were recruited from 
July 2019 to August 2019 in the Rugao, Nantong, 
Jiangsu. All participants, who had taken antibiotics, 
microbial agents, serious diseases or underwent 
intestinal surgery within half a year before admission 
were excluded. Among the variables we included, 
classified variables were expressed as percentages, 
and continuous variables were expressed as Mean ± 
SD. We used the Chi-Square test or Fisher exact test 
to compare classified variables, and Analysis of 
Variance (ANOVA) was used to compare continu-
ous variables (SPSS25, USA). All P-values were two- 
tailed, and P < .05 was recognized as statistically 
significant.

Fecal and blood sample collection

Feces and blood were collected at subjects’ homes. 
The feces were collected in 10 mL sterile container 
and delivered immediately at low temperatures. The 
frozen feces were shipped using dry ice overnight to 
Nanjing Medical University. Once received, fecal 
samples were divided into three parts of 200 mg 
and stored at −80°C until extraction. The blood 
was used coagulation tubes to collect, and then cen-
trifuged at 4000 rpm and the supernatant serum was 
frozen and stored at −80°C until analysis.

Blood serum elisa analysis

Eight immune cytokines including IL-6, TGF-β, IL- 
10, IL-17, TNF-α, IL-12, IL-33, and IL-1β, amyloid 
β-protein (Aβ), and brain-derived neurotrophic 
factor (BDNF), following the company’s kit proce-
dures (Ruixinbio Quanzhou, China). The level of

Figure 7. Inheritance at the species level in long-lived families. (a). Species that exist in at least half of long-lived families (n = 26) 
and show no significant differences in relative abundance between G3, G2 and G1 groups according to the 16S rRNA data. (b). Relative 
abundance of species presented in Figure 6a were shown in another Chinese dataset under accession no. SRP107602. Only the 
significantly differential species were shown between China_Y, China_E and China_C. **p < .01; *p < .05; Wilcoxon rank-sum test. ns, 
not significant. (c-e). A link was drawn for each strain shared between G3 individuals, G2 individuals and G1 individuals respectively 
according to the metagenomic sequencing data. (f). Enumeration of links drawn in Figure 6c-e. (g). Comparison of nucleotide diversity 
at the phylum level presented in Figure 2c. (h). Comparison of nucleotide diversity at the species level presented in Figure 6a. In (g-h), 
***p < .001; **p < .01; *p < .05; Kruskal-Wallis with Dunn’s test. ns, not significant.
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immune cytokines in the serum of blood among 
three groups were statistically analyzed by 
GraphPad Prism software, respectively.

DNA isolation and 16S rRNA gene sequencing

In total, 0.18–0.22 g stool samples were used to 
extract total bacteria DNA following the protocol 
of the DNA extraction kit (#DP328, Tiangen 
Company, Beijing, China). The 16S rRNA V4 
regions were performed using specific primers 
515 F GTGCCAGCMGCCGCGGTAA and 806 R 
GGACTACHVGGGTWTCTAAT. Sequencing 
libraries were generated using the Illumina 
TruSeq DNA PCR-Free Library Preparation Kit 
(Illumina, USA) with following manufacturer 
recommendations, and index codes were added. 
Sequencing was performed in the Illumina 
Novaseq 6000 platform (Novogene, China).

Microbiome bioinformatics were performed 
with QIIME2 2021.4.47 Shannon index for alpha 
diversity and Bray-Curtis for beta diversity mea-
sures. Principle Coordinate Analysis (PCoA) were 
analyzed using the vegan v2.5–7 R package. 
Taxonomy was assigned to ASVs using the qiime 
feature-classifier classify-sklearn. Naive Bayes clas-
sifiers trained on Silva 138 99% OTUs from 515 F/ 
806 R region of sequences. Gene functions analysis 
were predicted as previous method.48 Predicted 
functions were calibrated for all of samples 
(n = 73) using Meta-Apo49 based on the Kyoto 
Encyclopedia of Genes and Genomes (KEGG) data-
base. Thirty paired metagenomic samples were 
used for training.

Shotgun sequencing for metagenomics

Sequence libraries were generated using NEBNext® 
Ultra™ DNA Library Prep Kit for Illumina (NEB, 
USA). The libraries were sequenced on the Illumina 
Novaseq 6000 platform (insert size 350 bp, read 
length 150 bp) at the Novogene Bioinformatics 
Technology Co., Ltd. (Tianjin, China).

Raw sequence reads were trimmed using 
Trimmomatic v0.39 to remove adapters and low- 
quality regions and then removed of contaminating 
human reads using Bowtie2 v2.4.2 (Reference data-
base: GRCh38).50 The taxonomic composition was 
profiled using the default parameters of MetaPhlAn3 

v3.0.9.51 The functional gene pathway was profiled 
using the default settings of HUMAnN3 v3.0.0. 
alpha.3.52 Functional potential profiling of microbial 
communities was performed by HUMAnN3 using 
pangenomes annotated with UniRef90 on all species 
detectable per sample with MetaPhlAn3. Functional 
annotations rely on the MetaCyc database and gut- 
brain modules (GBMs) database.

Sequence assembly and genome binning

After removal of host reads, the sequence data per 
sample were assembled individually using Megahit 
v1.1.3 included in MetaWRAP v1.3.2.20 Bowtie2 
v2.4.250 was used to map reads back to the 
assembled contigs. Then, metagenomic binning 
was applied to both single-sample assemblies and 
the co-assemblies using CONCOCT v1.0.0, 
MaxBin2 v2.2.6, and metaBAT2 v2.12.1. Next, all 
bins were aggregated and dereplicated using dRep 
v3.2.0. For the final bins, CheckM v1.0.12 was used 
to estimate the genome completeness and contam-
ination. The draft metagenome-assembled gen-
omes (MAGs) with completeness ≥70% and 
contamination ≤10% were retained for the subse-
quent analyses. The alignment results are then used 
by taxator-kt to estimate the most likely taxonomy 
of each contig. The metaWRAP::Annotate_bins 
module takes in a set of bins and quickly function-
ally annotates them with PROKKA v1.13.53 Using 
DIAMOND v0.9.24,54 all protein predictions were 
searched against the carbohydrate-active enzymes 
(CAZy) database55 using dbCAN2.56 To estimate 
the genetic relationships among all bins, 
a maximum likelihood phylogenetic tree was built 
based on a concatenated protein sequence align-
ment using the package PhyloPhlAn 3.0.60.57 The 
taxonomic and phylogenetic information were then 
combined and visualized by ggtree v2.4.2.58 Rapid 
Annotations using Subsystems Technology 
(RAST)59 was used to predict function of MAGs.

Absolute abundance analysis according to the 16S 
rRNA data

Analysis of Compositions of Microbiomes with 
Bias Correction (ANCOM-BC)60 was used to cal-
culate absolute abundance according to the 16S 
rRNA data.
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Co-occurrence microbial network analysis

To understand the correlations among different 
genera, we constructed co-occurrence network 
based on the 16S rRNA data. The bacterial correla-
tions in the G3, G2, and G1 samples were analyzed, 
respectively. Then, the co-occurrence networks were 
constructed using Spearman’s correlation coefficient 
value based on the relative abundance of each genus. 
The significant correlated genus (Benjamini– 
Hochberg-corrected P value < .05, rho ≥ 0.7) were 
visualized by Cytoscape v3.8.2. Closeness centrality 
of the shared nodes were calculated by igraph 
R package. Only genera existed in at least 20% 
sample were included in the network analysis.

Interdependent functional groups (guilds)

Bacterial species in the human gut may also survive, 
adapt, and decline as interdependent functional 
groups, which are regarded as guilds responding 
to environmental perturbations.18 Co-abundance 
analysis can help identify such groups. The ASVs 
shared by at least 20% among all the samples were 
considered as prevalent ASVs. Correlations 
between prevalent ASVs were calculated using the 
SparCC algorithm based on their abundance.61 The 
correlation values were converted to a correlation 
distance (1-correlation value), and the ASVs were 
clustered using the Ward clustering algorithm. The 
guilds were determined by dividing the cluster tree 
using permutational MANOVA (9999 permuta-
tions, P < .001). Permutational MANOVA was 
performed using vegan R package. And the guilds 
network was visualized in Cytoscape.

Random forest model prediction

RandomForest v4.6–14 R package was used to 
build classification models using profiles of genera 
or pathways with significant differences between 
G3 and G1 or between G2 and G1. The evaluation 
of the random forest classification models was 
performed by receiver operator characteristic 
(ROC) curve analysis, and the area under curve 
(AUC) was used to assess the ROC effect, the 
closer the AUC to 1, the better the model 
performance.62 Internal validation used 5-fold 

cross-validation based on our cohort. External 
validation used our cohort as training set and 
another dataset as test set. The importance of 
markers being used to build classification models 
were calculated by randomForest v4.6–14 with 
options importance = TRUE.

Correlation analysis of species, serum cytokines and 
pathways

To determine the association between species, cyto-
kines and pathways in G3, G2 and G1 groups, we 
constructed a correlation analysis using Spearman’s 
correlations (Benjamini–Hochberg-corrected 
P value < .05) in psych R package. The results 
were visualized by networkD3 and pheatmap 
R packages.

Nucleotide diversity analysis

InStrain,62 a program that uses metagenomic 
paired reads to profile intra-population genetic 
diversity (microdiversity) across whole genomes, 
was used to explore nucleotide diversity of the 
same species. InStrain considers both major and 
minor alleles during genomic comparison. The 
microdiversity-aware average nucleotide identity 
(ANI) metric is referred to as ‘population ANI 
(popANI)’ which is a new term to describe 
a unique type of ANI calculation performed by 
inStrain that considers both major and minor 
alleles. A threshold of 99.9% popANI was chosen 
as the threshold to define bacterial as the same 
strain. We run inStrain using the UHGG genome 
collection. The links drawn for each strain shared 
between G3 individuals, G2 individuals and G1 
individuals, respectively, were visualized using cir-
clize v0.4.13 R package.

Resistance gene annotations

The predicated antibiotic resistance genes (ARGs) 
were searched by ARGs-OAP v2.063 based on the 
CARD, ARDB and NCBI-NR databases. ARGs- 
OAP v2.0 improves cell number quantification by 
using the average coverage of essential single copy 
marker genes.
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Statistical analysis

All statistical analysis was conducted by using 
R version 4.0.5 and GraphPad Prism software. All 
data represented as the mean ± SEM. Bacterial 
taxonomic analyses and comparisons were con-
ducted between two groups using Wilcoxon rank 
sum test. P value was corrected with the Benjamini- 
Hochberg method;64 *P < .05, **P < .01, ***P < .001, 
****P < .0001 and n.s. indicates not significant 
(P > .05).
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