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ABSTRACT
Objective  To develop a population-specific methodology 
for estimating glycaemic control that optimises resource 
allocation for patients with diabetes in rural Sri Lanka.
Design  Cross-sectional study.
Setting  Trincomalee, Sri Lanka.
Participants  Patients with non-insulin-treated type 2 
diabetes (n=220) from three hospitals in Trincomalee, Sri 
Lanka.
Outcome measure  Cross-validation was used to build 
and validate linear regression models to identify predictors 
of haemoglobin A1c (HbA1c). Validation of models that 
regress HbA1c on known determinants of glycaemic 
control was thus the major outcome. These models were 
then used to devise an algorithm for categorising the 
patients based on estimated levels of glycaemic control.
Results  Time since last oral intake other than water and 
capillary blood glucose were the statistically significant 
predictors of HbA1c and thus included in the final models. 
In order to minimise type II error (misclassifying a high-risk 
individual as low-risk or moderate-risk), an algorithm for 
interpreting estimated glycaemic control was created. With 
this algorithm, 97.2% of the diabetic patients with HbA1c 
≥9.0% were correctly identified.
Conclusions  Our calibrated algorithm represents a highly 
sensitive approach for detecting patients with high-risk 
diabetes while optimising the allocation of HbA1c testing. 
Implementation of these methods will optimise the usage 
of resources devoted to the management of diabetes in 
Trincomalee, Sri Lanka. Further external validation with 
diverse patient populations is required before applying our 
algorithm more widely.

BACKGROUND
The global prevalence of diabetes mellitus 
has rapidly increased and diabetes is now 
one of the leading causes of morbidity and 
mortality worldwide.1 2 This growing epidemic 
is straining healthcare systems particularly in 
low- and middle-income countries (LMICs), 
where physician shortages and technolog-
ical constraints are endemic.3 4 Sri Lanka, 

an island nation southeast of India, presents 
an example of a LMIC experiencing a high 
burden of type 2 diabetes, health system 
congestion and technological shortcomings. 
Rapid, yet accessible, methods of assessing 
glycaemia are needed to facilitate diabetes 
care in such clinical settings.

Several clinically validated methods are 
routinely employed to assess glycaemic 
control in patients with type 2 diabetes, 
including haemoglobin A1c (HbA1c), self-
monitoring of capillary blood glucose (CBG) 
and assessment of fasting plasma glucose 
(FPG).5 While HbA1c testing is recognised as 
the standard of care for measuring glycaemic 
control and is becoming more widely available 

Strengths and limitations of this study

►► This study is the first to characterise type 2 diabetes 
within the population of Trincomalee, Sri Lanka, add-
ing to our collective understanding of population-
specific considerations for managing diabetes 
worldwide.

►► This study’s regression models feature population-
adjusted haemoglobin A1c (HbA1c) thresholds, time 
since last oral intake and capillary blood glucose and 
have predictive value in determining glycaemic con-
trol in patients with type 2 diabetes in Trincomalee, 
Sri Lanka.

►► The methodology described in this study can gen-
erate models which reduce the need for resource 
intensive HbA1c testing in settings where access to 
testing is limited.

►► The study has a small and homogeneous study pop-
ulation which limits the generalisability and predic-
tive value of the described algorithms. Specifically, 
this study includes only patients with type 2 diabe-
tes who are not insulin dependent and who received 
care in a community practice setting, which may 
restrict the widespread use across Sri Lanka.
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in low- and middle-income settings, patients in Sri Lanka 
still pay out-of-pocket to obtain HbA1c testing at private 
laboratory facilities. The World Bank has reported that 
in 2016, annual per capita healthcare expenditures 
in Sri Lanka were USD153. HbA1c testing, which costs 
anywhere between USD22 and USD65 per test, is thus 
associated with a substantial opportunity cost and most 
public facilities in rural Sri Lanka lack the financial and 
human resource capacity to make HbA1c a sustainable 
marker of glycaemic control.6 7 Since public subsidisation 
of diabetes focussed supplies and laboratory services are 
currently limited to a glucometer, monthly glucometer 
strips and a CBG measurement at regular appointments, 
CBG remains the most appropriate method of assessing 
glycaemic control in this population. Previous studies 
demonstrate significant concordance between HbA1c 
and CBG: both FPG and post-prandial blood glucose 
(PPBG) showed strong positive correlations with HbA1c 
in numerous clinical settings including Sri Lanka.8–12 
Thus, CBG testing may be an alternative to HbA1c to 
assess long-term glycaemic control in rural Sri Lanka.

The validity of CBG alone to predict HbA1c is, however, 
controversial, as predicting changes in HbA1c from 
changes in CBG is not computationally straightforward.13 
Linear regression models are frequently used to impute 
biomarker levels such as HbA1c from data sets that 
multidimensionally characterise disease.14 15 Yet hetero-
geneous population characteristics present major chal-
lenges to validating these models in cohorts with uneven 
parameter distributions.14 15 Cross-validation, where 
multidimensional data sets are divided into evenly sized 
subsets to train and test regression models, is a common 
method for generating and validating clinically useful 
algorithms.16 17 The results from algorithm validation are, 
however, subject to replication instability, where differ-
ential sampling uncovers large variation in predictive 
value.18 19 Despite such shortcomings, regression models 
may provide a foundation for rapid and accessible assess-
ment of glycaemia in patients with diabetes in Sri Lanka 
and other LMICs. We report here an alternative method 
for imputing and interpreting HbA1c from CBG levels 
within the Tamil population in eastern Sri Lanka that 
enables providers to rapidly risk-stratify patients with type 
2 diabetes, thus reducing the demand for HbA1c testing 
while ensuring access for high-risk patients.

MATERIALS AND METHODS
Study subjects
We previously reported the implementation of a model of 
care that leverages Tamil and Sinhala-speaking medical 
assistants to address congestion within healthcare settings 
in Trincomalee, Sri Lanka.20 For the purposes of this 
study, we expanded the skillsets of the previously trained 
medical assistants to include study participant recruit-
ment and HbA1c testing. Recruitment was restricted to 
patients who met eligibility criteria: (1) confirmed history 
of type 2 diabetes and (2) not taking insulin. Medical 

histories and medications of all study participants were 
verified using medical records and all participants 
provided written informed consent. Data were obtained 
for 220 participants across three different hospitals: Trin-
comalee General Hospital, Selvanayagapuram Hospital 
and Sampaltheevu Hospital.

Patient and public involvement
Study participants consisted of individuals who met eligi-
bility criteria as outlined above. Public involvement for 
the research was obtained primarily through informing 
the Eastern Province Health Minister of the study. Partic-
ipants were not involved in the recruitment, design, 
conduct, reporting or dissemination plans. Results will be 
disseminated via channels approved by the Eastern Prov-
ince Health Minister and presented at national and inter-
national conferences.

Data collection and sampling
Date of birth, sex, smoking history, duration of 
diabetes, current diabetes treatment regimen and 
history of recent hypoglycemic symptoms (nervousness, 
diaphoresis, tremors and loss of consciousness) were 
collected for each study participant. Each participant 
also reported the number of hours since last oral intake 
other than water. Height, weight, blood pressure and 
capillary blood specimens were collected from study 
participants. CBG was measured using a Contour Next 
Blood Glucose Monitoring System (Bayer), and HbA1c 
was measured using a DCA Vantage Analyzer (Siemens) 
imported from the USA, due to local scarcity of HbA1c 
testing resources. Quality control of both instruments 
was performed per manufacturers’ specifications. The 
Bayer Contour Next has been shown to have excellent 
analytical accuracy.21 Simple randomisation of the entire 
study population assigned each participant to either a 
development cohort (n=110) or a validation cohort 
(n=110). The demographic characteristics of each 
cohort were compared using t-tests, χ2 tests and Fisher’s 
exact tests as appropriate. All analyses were conducted 
using SAS 9.4 (SAS Institute, Cary, North Carolina) and 
reported using the TRIPOD (Transparent Reporting of 
a multivariable prediction model for Individual Prog-
nosis or Diagnosis) reporting guidelines.22

Model development and validation
HbA1c was regressed on each of its potential predictors 
within the development cohort, including capillary blood 
glucose, age, sex, body mass index, duration of diabetes 
and other variables. Capillary blood glucose was the only 
significant predictor (p<0.05) and was entered in the 
final model. Participants were stratified by last oral intake 
to generate models that would account for a patient’s 
fasting state at the time of sample collection. Two 
different stratifications were performed to account for; 
(1) postprandial glucose physiology and (2) the observed 
bimodal distribution in hours since last oral intake, 
with peaks occurring at 3 hours and 13 hours. The first 
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model stratified participants by last oral intake into three 
groups (<3 hours, 3 hours to 8 hours and >8 hours since 
last oral intake) (Model #1), in line with what is known 
physiologically about postprandial glucose levels.23 The 
second model stratified participants by last oral intake 
into two groups (<8 hours and >8 hours since last oral 
intake) (Model #2), in line with the bimodal distribution 
of last oral intake within the study population. Capillary 
blood glucose cutoffs were calculated from both models 
that corresponded to each category of last oral intake 
(see online supplementary appendix A for equations). 
These cutoffs were then used to categorise glycaemic 
control according to estimated HbA1c as follows: ‘well-
controlled’ (HbA1c ≤7.0%), ‘moderately-controlled’ 
(HbA1c >7.0 to <9.0%) and ‘poorly-controlled’ (HbA1c 
≥9.0%). The predictive value of both models was assessed 
in the validation cohort by categorising participants by 
their estimated HbA1c values and their measured HbA1c 
values and assessing the agreement of the models with 
the measured HbA1c values. The percent of participants 
correctly predicted as well as kappa values were calculated 
as quantitative measures of agreement between models 
and measured HbA1c values.

HbA1c testing algorithm
Model performance was evaluated post-validation to 
devise a strategy for identifying individuals who require 
further HbA1c testing. Our method of categorising 
participants by estimated glycaemic control necessitates 
minimising dangerous type II errors (underestimating 
an individual’s actual risk). Thus, a new HbA1c threshold 
was determined from the distribution of estimated HbA1c 
values of participants who were high-risk but miscatego-
rised as low-risk. This threshold was applied to an algo-
rithm that categorises participants according to whether 
they require further HbA1c testing. The development 
cohort and Model #2 parameters were used to calibrate 
this algorithm. The predictive value of the recalibrated 
model was subsequently validated as described above to 
determine need for further HbA1c testing.

RESULTS
Model development and validation
Table  1 describes demographic data for the combined, 
development and validation cohorts. None of the vari-
ables were significantly different between the develop-
ment data set and the validation data set. Table 2 shows 

Table 1  Demographics of combined, development and validation cohorts

Combined (n=220) Development (n=110) Validation (n=110) P value

Age (years) 60±10 59±10 61±10 0.3126

Sex  �   �   �  1.0000

 � Male 54 (25%) 27 (25%) 27 (25%)

 � Female 166 (75%) 83 (75%) 83 (75%)

Smoking (yes (%)) 5 (2%) 2 (2%) 3 (3%) 0.6510

Duration of DM (years) 6.5±5.8 5.9±5.1 7.1±6.4 0.1212

Treatment for DM  �   �   �  0.4713

 � Diet only 8 (4%) 5 (5%) 3 (3%)

 � Oral medications 212 (96%) 105 (95%) 107 (97%)

 � Metformin 183 (84%) 88 (80%) 95 (86%) 0.1093

 � Sulfonylurea 115 (53%) 54 (49%) 61 (56%) 0.2742

 � Thiazolidinediones 5 (2%) 2 (2%) 3 (3%) 0.6803

 � Dipeptidyl peptidase 4 inhibitors 1 (1%) 1 (1%) 0 (0%) 1.0000

Hypoglycemic symptoms (Yes (%)) 112 (51%) 57 (52%) 55 (51%) 0.8952

BMI (kg/m2) 26±5 26±5 26±4 0.9482

Systolic blood pressure (mm Hg) 134±21 133±20 134±22 0.2434

Diastolic blood pressure (mm Hg) 80±11 81±11 80±11 0.6873

Last oral intake (hours) 7.8±5.2 7.8±5.2 7.9±5.3 0.8978

Last oral intake  �   �   �  0.7892

 � <3 hours 59 (27%) 29 (26%) 30 (27%) 0.8790

 � ≥3 and≤8 hours 42 (19%) 23 (21%) 19 (17%) 0.4926

 � >8 hours 119 (54%) 58 (53%) 61 (55%) 0.6848

Capillary blood glucose (mg/dL) 178±80 170±83 187±77 0.1140

HbA1c (%) 8.3±1.8 8.1±1.8 8.6±1.8 0.0634

https://dx.doi.org/10.1136/bmjopen-2020-038148
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last oral intake parameters and glycaemic control cate-
gorisations for Model #1 and Model #2. For example, a 
patient with CBG ≤129 mg/dL who ate <3 hours before 
testing would be considered ‘well-controlled’ with an esti-
mated HbA1c ≤7.0% using Model #1 parameters. These 
categorisations allow providers to estimate a patient’s 
glycaemic control using only capillary blood glucose and 
time since last oral intake.

Table 3 show the relationship between actual glycaemic 
control (categorised by measured HbA1c) and estimated 
glycaemic control (calculated from the models). Areas 
highlighted in green represent agreement between the 
estimated glycaemic control categorisation and the actual 
glycaemic control categorisation. Areas in white represent 
disagreement between the estimated glycaemic control 
categorisation and actual glycaemic control categorisa-
tion. In Model #1, 56.3% of participants were correctly 
categorised (κ=0.2425, 95% CI (0.0959 to 0.3890)). The 
SE and root mean square error values of the regression 
model are 0.11 and 1.35 HbA1c percentage points, respec-
tively. In Model #2, 60% of participants were correctly 
categorised (κ=0.2957, 95% CI (0.1528 to 0.4386)). The 
SE and root mean square error values of the regres-
sion model are 0.11 and 1.40 HbA1c percentage points, 
respectively. For comparison to other similar models in 
the literature, we also report the sensitivity and specificity 
of our models to detect patients whose HbA1c is ≥9%; 
Model #1 had sensitivity of 50.0% and specificity of 86.5% 
and Model #2 had a sensitivity of 50.0% and specificity of 
89.2%.

HbA1c testing algorithm
Online supplementary table S1 (see Appendix B) illus-
trates the proposed algorithm for identifying individuals 
who require further HbA1c testing. The algorithm aims to 
reduce underestimation of risk of inadequate glycaemic 
control in patients while simultaneously minimising the 
need for HbA1c testing. Use of this algorithm requires 
an appropriate HbA1c threshold that minimises both 
risk underestimation and excessive HbA1c usage. Several 
potential thresholds were derived from the distribution 
of estimated HbA1c values among high-risk patients who 
were incorrectly categorised as low-risk or moderate-risk 
(n=14).

Online supplementary table S2 (see Appendix B) 
demonstrates these thresholds as well as their respective 
type II error rates (the percentage of patients who were 
high-risk but not grouped as high-risk nor identified for 
HbA1c testing by the algorithm) and the percentage 
of the development cohort that would need to have 
HbA1c testing if that threshold was selected. The optimal 
balance between type II error rate and total burden of 
HbA1c testing is with an estimated HbA1c threshold of 
7.4% (sample type II error rate of 7.1% while having to 
perform HbA1c testing on 56.3% of the sample).

The updated algorithm, recalibrated with this threshold 
presented in table 4, was applied to the validation cohort 
in order to assess its ability to maintain an acceptable type 
II error rate while reducing the need for HbA1c testing. 
Table 5 presents the results of this validation. Only one 

Table 2  Categorisations of glycaemic control in Model #1 (left) and Model #2 (right)

Time since last oral intake
(Model #1)

Time since last oral intake
(Model #2)

<3 hours 3–8 hours >8 hours ≤8 hours >8 hours

Estimated A1c ≤7.0%
(‘well-controlled’)

≤129 mg/dL ≤105 mg/dL ≤82 mg/dL ≤117 mg/dL ≤82 mg/dL

Estimated A1c 7.0%–8.9%
(‘moderately-controlled’)

130–242 mg/dL 106–218 mg/dL 83–210 mg/dL 118–233 mg/dL 83–210 mg/dL

Estimated A1c ≥9.0%
(‘poorly-controlled’)

≥243 mg/dL ≥219 mg/dL ≥211 mg/dL ≥234 mg/dL ≥211 mg/dL

Table 3  Validation of Model #1 and Model #2 through a comparison of agreement between actual glycaemic control 
categorisations and estimated glycaemic control categorisations

Model #1
κ=0.2425, 95% CI (0.0959 to 0.3890)

Model #2
κ=0.2957, 95% CI (0.1528 to 0.4386)

Measured A1c 
≤7.0%

Measured A1c 
7.0%–8.9%

Measured A1c 
≥9.0%

Measured A1c
≤7.0%

Measured A1c
7.0%–8.9%

Measured A1c
≥9.0%

Estimated A1c
≤7.0%

3 3 1 3 1 1

Estimated A1c
7.0%–8.9%

17 41 17 17 45 17

Estimated A1c
≥9.0%

1 9 18 1 7 18

https://dx.doi.org/10.1136/bmjopen-2020-038148
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high-risk participant out of 36 total high-risk participants 
would have been placed in the low-risk category and not 
been identified for further HbA1c testing (type II error 
rate of 2.8%) with a recalibrated HbA1c threshold of 
7.4%. From the 110 participants in the validation cohort, 
63 were identified for further testing (57.3%). Of these, 
17 (27.0%) were high-risk participants and 46 (73.0%) 
were non-high-risk participants. In summary, the algo-
rithm correctly identified 97.2% of high-risk individuals 
either by directly identifying them as high-risk or by iden-
tifying them for further testing.

DISCUSSION AND CONCLUSIONS
Methods designed to guide the allocation of resources 
for diabetes management in LMICs like Sri Lanka are 
necessary due to physician shortages and inadequate 
resources for routine HbA1c testing. Through the use 
of regression models and cross-validation, we present 
an algorithm that detects high-risk individuals either by 
directly identifying them using random CBG testing or 
by flagging them for further HbA1c testing. The algo-
rithm had a sensitivity of 97.2% while reducing the 
number of HbA1c tests by about 40%. The algorithm we 
devised has two main advantages: (1) it minimises type 
II errors and (2) it is tailored to the characteristics of 
the patient population. First, by identifying patients in 
need of further HbA1c testing as well as patients who are 
estimated to be at high-risk, the algorithm minimises the 
number of patients who would receive an inadequate 
level of care. In the setting of Trincomalee, Sri Lanka, 
where access to HbA1c testing is limited, an HbA1c 
threshold of 7.4% cuts down on the demand for HbA1c 
testing while missing very few high-risk patients with type 

2 diabetes. This recalibrated threshold allows the algo-
rithm to have the lowest type II error rate for this kind 
of model observed in the literature. Second, because the 
algorithm was derived from and validated in the ethnic 
cohort in which it will be applied, its use is fitted for this 
particular clinical setting. Racial and ethnic differences 
in HbA1c have been previously documented, though 
these differences have an unknown impact on the clin-
ical management of diabetes or the incidence of diabetic 
complications.24–27 Furthermore, data concerning 
HbA1c variation between Sri Lankans and internation-
ally accepted HbA1c standards for glycaemic control are 
sparse. A model that is built specifically for this group is 
thus clinically advantageous until more is known about 
the effects of racial and ethnic variation in HbA1c on the 
clinical management of diabetes.

Although subject recruitment was conducted in a 
hospital setting, the distinction between the hospital-
derived and community-derived patient populations in 
Sri Lanka must be highlighted. This study is focussed on 
community derived study subjects waiting in line for their 
routine checkups at public hospital-based clinics, not the 
inpatient population where there is a higher likelihood 
of finding poor glycaemic control and comorbidities in 
the patient population. In Sri Lanka, patients without 
financial means to pay for private community clinics 
or laboratory testing must visit public institutions or 
smaller provincial facilities for regular diabetes follow-up 
appointments. Long lines are common in these hospital 
settings since the traditional outpatient model that is 
designed to handle this patient population is lacking. As 
such, the risk profile and comorbidities of this particular 
hospital-derived patient population closely resembles the 
general diabetes patient population which would present 
to the primary care clinics in the community, allowing 
our model to be generalisable to this rural context. In 
selecting our patient population for model develop-
ment, we did not take pre-existing anaemia or chronic 
kidney disease (CKD) into consideration. While there is 
some concern that anaemia and CKD may alter the reli-
ability of HbA1c testing, recent research has suggested 
that this only occurs in patients with severe anaemia and 
severe CKD. The HbA1c value is unlikely to be altered 
in patients with mild-to-moderate anaemia and CKD.28 
Given that our patient population in this study resembles 
the general diabetes population, it is unlikely that severe 
anaemia and CKD is sufficiently prevalent in this popula-
tion to have seriously impacted our findings.

Table 4  Algorithm for decision-making regarding HbA1c testing; updated to reflect chosen HbA1c threshold value of 7.4

If estimated HbA1c <7.4% If estimated HbA1c 7.4%–8.9% If estimated HbA1c ≥9.0%

HbA1c Testing No HbA1c testing needed HbA1c testing needed No HbA1c testing needed
Treatment Treat as non-high-risk (well-controlled or 

moderately-controlled according to eHbA1c)
Treat according to HbA1c result Treat as poorly-controlled

eHbA1c, estimated HbA1c; HbA1c, haemoglobin A1c.

Table 5  Application of HbA1c testing decision algorithm to 
validation group

Actual A1c 
<9.0%

Actual A1c 
≥9.0% Total

Estimated HbA1c 
<7.4%

21 1 22

Estimated HbA1c 
7.4%–8.9%

46 17 63

Estimated HbA1c 
≥9.0%

7 18 25

Total 74 36 110

HbA1c, haemoglobin A1c.
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Given the small sample size (n=220) and the complex 
nature of glycaemic control, it is not surprising that only 
~60% of participants were correctly categorised by our 
models into glycaemic control groups and only 50% 
of patients were correctly identified as having poorly 
controlled diabetes. The goal of these analyses, however, 
was not necessarily to eliminate the need for HbA1c 
testing altogether, but rather to maximise the usage of this 
limited resource. This can be accomplished by combining 
the models with the HbA1c threshold algorithm. In spite 
of the somewhat low predictive value, the sensitivity and 
specificity of these initial models is comparable to similar 
models in the literature (sensitivity range 64.5% to 81.8% 
and specificity range 58.3% to 87%).9 29–33 Many of these 
other models are comparing predictive value using an 
HbA1c cut-off of 7.0%, so the lower sensitivity demon-
strated by our models (HbA1c cut-off of 9%) is to be 
expected. A recalibrated algorithm with a threshold of 
7.4%, though slightly less stringent than the American 
Diabetes Association (ADA) guidelines (which state that 
an HbA1c of <7% is a reasonable target for many non-
pregnant adults), ensures that physicians devote their 
time to engage in a patient-centred care model with 
patients with diabetes who have the poorest glycaemic 
control.34 Indeed, it has been previously suggested that 
a more appropriate target for glycaemic control may 
lie between 7% and 8% in most patients with type 2 
diabetes.35 The official recommendation from the Sri 
Lankan College of Endocrinologists states that an HbA1c 
of 7.0% is an acceptable glycaemic target for most patients 
with diabetes. However, their recommendation allows for 
glycaemic targets ranging from 6.5% to 8% depending 
on patient comorbidities, age, frequency of hypogly-
cemic episodes, duration of diabetes, life expectancy and 
patient motivation.36 It has also been demonstrated that 
individuals with an HbA1c of <7% do not greatly benefit 
from patient-centred care interventions; rather, individ-
uals with an HbA1c >8.5% are more likely to benefit from 
a more efficient use of limited resources.37

It must be noted that our HbA1c threshold of 7.4% is 
not a treatment target. Rather, this threshold represents 
the point at which we can be over 95% confident that a 
patient with an estimated HbA1c lower than this value is 
not hyperglycemic and does not have an HbA1c ≥9%. All 
patients, whether they have an estimated HbA1c higher 
or lower than 7.4%, will still have a treatment target in 
line with what is currently known about HbA1c levels and 
diabetic complications.38 39 It should also be emphasised 
that participants who were categorised as ‘non-high-risk’ 
by this algorithm still continue to receive high-quality 
care and monitoring from medical personnel specialised 
in diabetes care. Risk-stratifying patients by glycaemic 
control addresses the issue of congestion in the Sri 
Lankan healthcare system and may optimise the amount 
of time clinicians spend with their patients. The implica-
tions of this new clinical paradigm emphasise a patient-
centric approach to achieving adequate glycaemic control 
while meeting personal health goals. Such a paradigm 

empowers patients to work with their providers to arrive 
at an individualised treatment plan, a strategy that is 
strongly recommended by all major guidelines.34 35 40

Limitations
Our study cohort of 220 total participants, which were split 
into two subsets of 110 participants for cross-validation, is 
relatively small for the generation of this type of regres-
sion model. Further studies that incorporate more partic-
ipants are necessary to further validate these models and 
resulting algorithm. Furthermore, the scope of our study 
was restricted to the Tamil population of Trincomalee. 
It will be necessary to study additional ethnic groups, 
including the Sinhalese population, in order to gener-
alise our findings. Moreover, an additional analysis that 
captures patients managed with insulin would further 
expand our study and allow for the rapid risk stratifica-
tion of more patients with type 2 diabetes.
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