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Simple Summary: Cancer results from genetic changes in cells. These changes are often mutations
that alter the DNA sequence of critical genes. However, duplications and deletions in cancer-related
genes can also contribute to malignant transformation. In this study we use Nanostring technology to
assess DNA copy number changes in samples of Merkel cell carcinoma (MCC), a rare and aggressive
neuroendocrine skin tumor. We were able to identify recurrent amplifications and deletions in
cancer-related genes. We also found that MCC tumors grouped into three distinct copy number
variant profiles. The first group consisted of tumors with multiple deletions. The second group
contained tumors with low levels of genomic structural alterations. The last group comprised tumors
containing multiple amplifications. Our study suggests that most MCC tumors are associated with
deletions in cancer-related genes or are lacking in copy number changes, whereas a small percentage
of tumors are associated with genomic amplifications.

Abstract: Merkel cell carcinoma (MCC) is a rare, aggressive neuroendocrine skin cancer. Most
MCC tumors contain integrated Merkel cell polyomavirus DNA (virus-positive MCC, VP-MCC) and
carry a low somatic mutation burden whereas virus-negative MCC (VN-MCC) possess numerous
ultraviolet-signature mutations. In contrast to viral oncogenes and sequence mutations, little is
known about genomic structural variants in MCC. To identify copy number variants in commonly
altered genes, we analyzed genomic DNA from 31 tumor samples using the Nanostring nCounter
copy number cancer panel. Unsupervised clustering revealed three tumor groups with distinct
genomic structural variant signatures. The first cluster was characterized by multiple recurrent
deletions in genes such as RB1 and WT1. The second cluster contained eight VP-MCC and displayed
very few structural variations. The final cluster contained one VP-MCC and four VN-MCC with
predominantly genomic amplifications in genes like MDM4, SKP2, and KIT and deletions in TP53.
Overall, VN-MCC contained more structure variation than VP-MCC but did not cluster separately
from VP-MCC. The observation that most MCC tumors demonstrate a deletion-dominated structural
group signature, independent of virus status, suggests a shared pathophysiology among most
VP-MCC and VN-MCC tumors.

Keywords: Merkel cell carcinoma; virus positive Merkel cell carcinoma; virus negative Merkel cell
carcinoma and copy number variant

1. Introduction

Merkel cell carcinoma (MCC) is a rare neuroendocrine skin cancer associated with ad-
vanced age, UV-damage, and immunosuppression [1–3]. MCC is an aggressive cancer, with
a lethality rate of over one-third, and thus is more deadly than malignant melanoma [1,3–5].
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The incidence of MCC has increased in the past several decades in part due to improved
diagnostic tools, increased clinical awareness, an aging population, and increased sun
exposed skin [2,3]. In the United States, approximately 50–80% of MCC tumors are Merkel
cell polyomavirus-positive (VP-MCC), with clonal integration of viral DNA into the host
genome [6–12]. VP-MCC tumors carry a low somatic mutation burden, suggesting that
tumorigenesis is driven by viral T antigen oncogenes [11,13–19]. The remaining 20–50% of
MCC tumors are polyomavirus-negative (VN-MCC) and possess numerous ultraviolet sig-
nature mutations in genes such as p53 and RB1 [6,8–16]. Although a number of molecular
and cytogenetic alterations have been reported for MCC, no unique signatures have been
identified [11,13–16,20,21].

Genomic instability can initiate cancers, contribute to disease progression and impact
patient response to treatment [22–24]. Several factors promote genomic instability leading
to genomic structural variants in the form of amplifications or deletions, such as telomere
damage, epigenetic modifications and DNA damage [22,23]. Here we use Nanostring’s
nCounter copy number variant (CNV) analysis to identify commonly amplified or deleted
cancer-related genes in MCC. Unsupervised clustering identified three tumor groups with
distinct genomic structural variant signatures. On average VP-MCC tumors had fewer
copy number changes than VN-MCC. Furthermore, the cluster of tumors characterized by
very few structural variants were all VP-MCC. In contrast, the tumors with numerous copy
number variants clustered independently of virus status, suggesting a shared genomic
instability among VN-MCC and a subset of VP-MCC.

2. Results
2.1. Three Genomic Structural Variant Signatures Identified in MCC Tumors

Despite the importance of genomic integrity in cancer, little is known about the
genomic structural variants that lead to MCC. Therefore, we sought to identify commonly
amplified or deleted cancer genes in MCC. We obtained 31 MCC tumors from Memorial
Sloan Kettering (MSK), Marshfield Clinic (MF), and the University of Pennsylvania (UP)
(Table 1). The patients ranged from 53 to 100 years of age. Most of the tumors analyzed
were obtained from primary tumor lesions on sun exposed skin (Table 1). Genomic DNA
from tumor samples and control tissues was analyzed using Nanostring Technologies’
copy number variant cancer panel assay. Fresh-frozen tumors from MSK were normalized
to fresh-frozen adjacent tissue samples, whereas FFPE tumors were normalized to FFPE
normal spleen samples. As depicted in Figure 1, unsupervised clustering identified three
distinct structural variant groups. Tumors clustered in group 1 (Del) displayed numerous
recurrent deletions in a number of genes, including genes involved in cycle regulation
such as RB1 (Figure 1 and Table S1). Tumors in group 2 (Low) showed very few genomic
structural variations. In the third group (Amp), tumors carried very few deletions but
contained numerous recurrent amplifications in several genes, including MDM4, AKT3,
BCL2L1 and MYCL1 (Figure 1 and Table S1). In this cohort of 31 MCC tumors, most of
the tumors (18, 58%) have the structural group 1 Del signature dominated by deletions
in cancer related genes. Group 2 Low with few changes accounted for 8 (26%) tumors,
whereas only 5 (16%) tumors had the amplification-heavy group 3 Amp signature.
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Table 1. Patient Summary.

MCC
Sample Sex MCPyV

Status Age Site of MCC Specimen
Code Cluster Tissue

Source

MF1 Female Negative 68 right upper arm primary Del FFPE

MF2 Male Negative 72 left hand primary Del FFPE

MF3 Female Negative 80 right gluteal primary Del FFPE

MF4 Male Negative 64 abdominal wall primary Del FFPE

MF5 Male Negative 89 left ala of nose primary Del FFPE

MF6 Male Negative - frontal scalp primary Amp FFPE

MF7 Female Negative 94 right scalp primary Del FFPE

MF8 Female Negative - lymph node metastasis Del FFPE

MF9 Male Positive 58 left thigh primary Del FFPE

MF10 Male Positive 67 left index finger primary Del FFPE

MF11 Male Negative 72 left cheek primary Del FFPE

MF12 Male Positive - right neck primary Del FFPE

MF13 Female Negative - right leg primary Del FFPE

MF14 Female Negative 100 right forehead primary Del FFPE

MF15 Male Negative 93 left cheek, nose primary Amp FFPE

MF16 Female Negative 74 left buttock primary Del FFPE

MF18 Female Negative - right forearm primary Del FFPE

MF19 Male Negative 77 right face metastasis Del FFPE

MF20 Male Positive 75 top of head primary Del FFPE

MF21 Male Negative 87 right wrist primary Amp FFPE

MF22 Female Negative 88 forehead primary Amp FFPE

MF23 Male Positive 81 left cheek primary Del FFPE

UP1 Female Positive 75 left brow - Amp FFPE

MSK1 Female Positive 80 lymph nodes metastasis Low Frozen

MSK2 Male Positive 73 pancreas metastasis Low Frozen

MSK6 Male Positive 53 groin metastasis Low Frozen

MSK13 Female Positive 62 skin primary Low Frozen

MSK19 Male Positive 59 skin primary Low Frozen

MSK20 Female Positive 63 skin primary Low Frozen

MSK21 Male Positive 87 skin primary Low Frozen

MSK24 Male Positive 82 lymph nodes metastasis Low Frozen
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Figure 1. Three genomic structural variant signatures detected in MCC tumors by NanoString nCounter. Tumor DNA 
from 31 patients with MCC from Memorial Sloan Kettering (MSK), Marshfield Clinic (MF), and the University of 
Pennsylvania (UP) were subjected to Nanostring nCounter CNV analysis. CNV alterations for 86 gene loci commonly 
altered in cancer were ascertained and plotted as a heatmap. Three cluster groups denoted as Del (deletion) for group 1, 
Low for group 2, and Amp (amplification) for group 3. Bold indicates virus positive MCC (VP-MCC) tumors. Blue 
indicates metastatic tumor. 
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31 patients with MCC from Memorial Sloan Kettering (MSK), Marshfield Clinic (MF), and the University of Pennsylvania
(UP) were subjected to Nanostring nCounter CNV analysis. CNV alterations for 86 gene loci commonly altered in cancer
were ascertained and plotted as a heatmap. Three cluster groups denoted as Del (deletion) for group 1, Low for group 2,
and Amp (amplification) for group 3. Bold indicates virus positive MCC (VP-MCC) tumors. Blue indicates metastatic tumor.

2.2. MCC Structural Variant Signatures Are Characterized by Deletions, Absence of Copy
Changes, or Amplifications

To characterize the differences between MCC structural variant groups we compared
the total number of copy number variations per tumor for each cluster. Tumors in both the
Del and Amp groups had significantly more CNVs per tumor than tumors in the Low group
(p < 0.0001, Figure 2A). We then compared the average sum of the allelic variation relative
to diploid (−1 for each allelic deletion, +1 for each amplification, total of 86 genes) for the
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tumors in each cluster. As seen in Figure 2B, the Del group tumors had the lowest average
sum of variation (−37 copies), reflective of their numerous deletions. Similarly, the Low
group tumors’ average sum of variation was 0.125 copies, close to the zero-value seen in
the control samples; and the Amp group had an average sum of 82 copies. The significant
difference in the average sums of variation (p < 0.0001) support there being 3 distinct
CNV profiles for MCC rather than random distributions of deletions and amplifications in
the tumors.
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Figure 2. Structural variant clusters show distinct levels and types of CNVs whereas VN-MCC show more structural varia-
tion than VP-MCC. Comparison of clusters for the (A) average number of CNVs per tumor (one-way ANOVA), (B) average
sum of allelic variations (−1 for each haploid deletion, +1 for each amplification, Kruskal-Wallis test), (C) average haploid
deletions (Kruskal-Wallis test), (D) average diploid deletions (Kruskal-Wallis test), (E) average single-copy amplification
(one-way ANOVA), and (F) average two or greater copy amplifications (Kruskal-Wallis test). Comparison between VP-MCC
and VN-MCC for the (G) average number of CNVs per tumor (unpaired T-test), (H) average s um of allelic variations (Mann-
Whitney test), (I) average haploid deletions (unpaired T-test), (J) average diploid deletions (Mann-Whitney test), (K) average
single-copy amplification (Mann-Whitney test), and (L) average two or greater copy amplifications (Mann-Whitney test).
Uncolored dots are primary tumor samples, blue dots indicate metastatic tumor samples.
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A similar trend between signature groups was seen when quantifying CNV on a per
gene level with haploid deletions being more common than diploid deletions, and single
copy amplifications being more common than multi copy amplifications (Figure 2C–F).
Taken together, quantitative comparisons between the three structural variant signatures
suggest that MCC tumors with genetic instability are dominated by either recurrent haploid
deletions or recurrent amplifications in cancer associated genes.

2.3. VN-MCC Contains More Structural Variants Than VP-MCC

Comparing the average CNV per tumor for VP-MCC and VN-MCC samples we found
that VN-MCC tumor samples contained significantly more structural variation per tumor
(48.6) than VP-MCC samples (27.9) (Figure 2G). This is consistent with prior studies that
also found higher rates of CNV in VN-MCC [21,25]. Interestingly, VP-MCC and VN-MCC
showed no difference in the average sum of the variation, haploid deletions, diploid
deletions, single copy amplifications, or multi copy amplifications (Figure 2H–L). Thus,
although VN-MCC have more structural variants than VP-MCC on average, each virus
status subtype contains similar frequencies of amplifications and deletions. The decreased
average CNV count for VP-MCC was largely due to the fact that the eight tumors with
the Low variant signature were exclusively VP-MCC. Accordingly, the structural variant
signature of MCC tumors correlated with tumor virus status (two-tailed Fisher exact test,
p < 0.005), with VP-MCC being more likely in the Low variant group and VN-MCC more
likely in the deleted or amplified group. However, if a tumor was not in the Low variant
group, the likelihood of having a deletion or amplification signature was independent of
virus status (p = 1.0).

2.4. MCC Structural Variant Signatures Are Not Predictors of Survival

The three distinct CNV signatures observed in MCC tumors suggest differences in their
biology that might impact disease progression. We used non-parametric Kaplan–Meier esti-
mate to test for overall survival differences in patients based on the CNV signatures of their
MCC tumors. Survival data was available for 29 of the 31 patients in the study. As shown
in Figure S1, Kaplan–Meier survival estimates indicate that there is no statistical difference
in survival between the three signature groups (p < 0.8857). Taken together, although the
three signature groups reflect distinct patterns of genomic instability, any difference in
survival was not detected in this cohort of patients.

3. Discussion

Merkel cell carcinoma generally arises on sun exposure skin, giving rise to the notion
that UV mediated damage induces MCC [26–29]. UV-induced DNA damage is frequently
seen in skin cancer and has been shown to cause genomic instability [30–36]. Oncoviruses
also leads to genomic instability via virus integration or through the expression of viral
oncogenes that alters the fidelity of replication [37]. Interestingly, although VP-MCC
tumors do not have a significant enrichment of UV-induced sequence mutations, these
tumors primarily occur on sun exposed regions of the skin and these tumors, like VN-MCC,
also show genomic instability [21,25,38]. Here we used Nanostring Technologies nCounter
system to examine the frequency of structural variation in 31 MCC tumors by quantifying
amplifications and deletions in 86 cancer related genes. A number of the alterations
found in our data are predicted to disrupt cell cycle regulation, including deletions of RB1.
Deletions in the RB1 locus or mutations that functionally inactive RB have been previously
identified in MCC [11,13,15,21]. Loss of RB function is a well-established phenotype in a
variety of cancers [39–44]. In VP-MCC the MCPyV large T antigen binds and inhibits RB,
thereby releasing E2F to promote G1 to S phase transition through the cell cycle [45–47].
Interestingly, 5 (36%) of 14 VP-MCC also showed deletions in RB1, suggesting redundant
inactivation of RB may play a role in either MCC onset or progression. Future studies to
determine whether CNVs in RB1 correlate with the presence or absence of specific sequence
mutations may lead to a better understand of the pathophysiology of this disease.
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Genomic amplifications can also dysregulate the cell cycle leading to tumorigene-
sis [23,48,49]. Our data shows numerous amplifications within the group 3 Amp cluster,
some of which are well established proto-oncogenes known to be involved in the onset
and progression of many different cancers. Specifically, we observed amplifications in
MYCL1 which was previously shown to me amplified in MCC [20,21,50]. Furthermore,
the protein levels of MYC, which was also a gene loci amplified in the group 3 cluster,
are stabilized in VP-MCC by the small T antigen binding and inhibiting the function of
the F-box protein FBW7 [17]. In small cell lung cancer (SCLC), another neuroendocrine
carcinoma, L-myc is thought to induce pre-rRNA synthesis and transcriptional pathways
concomitant with ribosomal biogenesis [51]. A similar pathogenesis may be exploited in
L-myc amplified MCC. Another interesting finding in our data is that tumors in the Amp
signature cluster showed amplifications in AKT3 whereas tumors with the Del signature
had amplifications in AKT2, suggesting that both tumor types may utilize the AKT survival
pathway for tumorigenesis. Inhibition of the AKT downstream target mTOR has already
been implicated as a potential target for the treatment of MCC [52,53]. Moreover, gene
mutations and amplification in AKT1 have been found in MCC through next generation
sequencing studies [14,21]. Multiple lines of evidence suggestion that both L-myc and AKT
could potentially be druggable targets in the treatment of MCC [14,50,51], and assessing
CNV signature type may help predict which MCC tumors are more likely to respond to
these treatments.

We observed a number of genomic structural variants previously unreported in MCC.
Most notably, recurrent deletions of fragile histidine triad (FHIT) and recurrent amplifi-
cations in integrin β4 (ITGβ4). Interestingly, FHIT was shown to inhibit AKT activation
leading to one mechanism by which FHIT decreases lung cancer cell survival [54,55].
Additionally, FHIT was shown to transcriptionally repress β-catenin [56], which is a down-
stream target of not only AKT but also of the WNT signaling pathway [57,58]. The deletions
observed in FHIT could further implicate AKT in MCC. Intriguingly, ITGβ4 promotes
metastasis through the induction of epithelial-mesenchymal transition in pancreatic ductal
adenocarcinoma [59]. In addition, expression of ITGβ4, CD24 and Notch were shown to
confer non-small cell lung carcinoma (NSCLC) propagation in clonogenic and othotoptic
transplantation assays [60]. In MCC, amplification in ITGβ4 might similarly promote pro-
liferation and metastasis. Taken together, structural alterations in MCC tumors potentially
alter a number of different pathways to increase tumor cells survival such as AKT, L-myc,
RB, and β-catenin. Additionally, structural variation in ITGβ4 could play a role in MCC
metastases. Further work will be needed to test these potential associations.

The Nanostring technology used in this study allows for direct quantification of frag-
mented genomic DNA based on hybridization to barcoded probes for genes commonly
amplified or deleted in cancers. The technology uses an average of 3 probes per gene,
internal control probes to 54 invariant genomic regions, as well as spike-in process controls.
Thus, copy number variants relative to similarly processed diploid control tissues can be
reproducibly quantified from either FFPE or fresh-frozen tumor samples [61]. The het-
erogeneity of analyzing both FFPE and fresh-frozen samples from different institutions
is a limitation of our study. It is noteworthy that the 8 tumors comprising the Low CNV
cluster were all fresh-frozen samples from Memorial Sloan-Kettering, whereas the tumors
in the Del and Amp clusters were FFPE samples. Although the fresh-frozen samples and
controls met the same quality control endpoints as the FFPE samples and controls, it is
possible that there were batch effects related to sample acquisition or fixation. Formalin
fixation can cause DNA fragmentation, degradation, crosslinking, and adduct formation
that can theoretically impact molecular studies [62]. In addition, unlike the FFPE controls,
the fresh-frozen controls were normal adjacent tissues collected at the time of tumor ex-
cisions. Normal adjacent tissue has limitations as a control, but it is generally found to
contain diploid DNA [63] and thus its use is unlikely to impact a pooled reference for
CNV normalization. Despite these concerns, as discussed above, many of the recurrent
CNVs observed in our study were previously reported in MCC tumors based on studies
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using other copy number assays [11,13–15,20,21,50], suggesting some accuracy in our data.
Similarly, the observation that the average CNV load in VN-MCC is higher than the average
for VP-MCC has also been reported in other studies [11,13,21]. Finally, our finding that
individual VP-MCC tumors can have very few structural variants or can contain multiple
amplifications or deletions is consistent with the results of Starrett et al., 2020 [21]. Nonethe-
less, the possibility that some artifact is contributing to the clustering of our data must be
considered. Therefore, further studies will be needed to validate our findings and explore
the functional implications of MCC tumors with different structural variant signatures.

4. Materials and Methods
4.1. Inclusion Criteria and Patient Samples

Archival cases of MCC were identified by a retrospective search for the diagnosis of
Merkel cell carcinoma or neuroendocrine skin tumor in the Pathology Departments of the
institutions. For cases where adequate tissue was available for analysis, the diagnosis was
confirmed by an expert dermatopathologist (DK, KJB, or EYC) based on histopathology
and immunostaining for diagnostic markers. After confirming a diagnosis of MCC and
ensuring the sample was >75% tumor, tissue was cut for DNA extraction. For each case,
available patient information was retrieved by clinical chart review. De-identified tissue
samples and clinical data were sent to the NIH for analysis.

We performed CNV analysis on 23 formalin-Fixed Paraffin-Embedded (FFPE) MCC
tumor samples and 8 fresh-frozen MCC tumor samples. FFPE tumors were collected
from patients at the University of Pennsylvania and Marshfield clinic between August
1996 and April 2012. Fresh-frozen tumors and normal tissues were collected from pa-
tients at Memorial Sloan Kettering between July 1995 and August 2010. Control tissues
used for normalization consisted of 2 FFPE normal spleen samples (controls for the FFPE
tumors) and 3 fresh-frozen normal tissues adjacent to excised tumors (controls for the
fresh-frozen tumors).

4.2. Genomic DNA Isolation

Genomic DNA (gDNA) was extracted from FFPE or fresh-frozen tumor with QIAamp
DNA FFPE Tissue kit (Qiagen, Hilden, Germany) or the DNeasy Blood and Tissue kit
(Qiagen, Hilden, Germany) respectively, according to the manufacturer protocols. Sam-
ples were treated with RNase A (Qiagen, Hilden, Germany) per manufacturer protocol.
DNA concentration, 260/280 and 260/230 nm ratios were measured on a DeNovix DS-11
spectrophotometer (DeNovix Inc., Wilmington, DE, USA) prior to DNA fragmentation
with Alu1 restriction endonuclease. Following Alu1 restriction digestion, fragmented DNA
was analyzed on a 2100 Agilent Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA).
Representative electropherograms and gel images of Alu1 digested DNA from FFPE and
fresh frozen samples can be found in Figure S2.

4.3. Virus Detection

Nested qPCR was used to detect the presence of the Merkel cell polyomavirus from
gDNA. For step one, 20 ng of gDNA underwent 15 cycles of amplification with for-
ward primer GGCAACATCCCTCTGATGAAAGC 3′ and reverse primer 5′ CCACCAGT-
CAAAACTTTCCCAAGTAGG 3′ using the KAPA2G Fast HotSStart PCR kit according
to the manufacture protocol (Kapa Biosystems, Wilmington, MA, USA). Step two, 2 µL
of step one product was amplified for 25 cycles in a OneStep Real-Time PCR System
with forward primer 5′ CTTAAAGCATCACCCTGATAAAGG 3′ and reverse primer 5′

AAACCAAAGAATAAAGCACTGATAGCA 3′ using Power SYBR green master mix as
per the manufacture protocol (ThermoFisher, Carlsbad, CA, USA). Primer set (forward 5′

CCACACTGCCCATCTCGGAGAC 3′ and reverse 5′ GCGGTGAGGTCCCTACGGCCTG
3′) for TPO was used as an endogenous control for quantitative PCR. gDNA from the
VP-MCC cell line MKL1 and VN-MCC cell line UISO were used as controls to determine
the presence or absences of the polyomavirus.
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4.4. Cell Lines

UISO-MCC-1 [64] and MKL-1 [65] were previously described and grown in RPMI-
1640 supplemented with 10% fetal bovine serum and 1% streptomycin/penicillin. Cell
lines are sent out annually to be tested for authenticity via the Hum 16-Marker STR profile,
interspecies contamination test and PCR evaluation for viruses and Mycoplasma which was
performed by Idexx Bio Research.

4.5. Nanostring Prep and Run

A total of 600 ng of gDNA was process for Nanostring nCounter copy number variants
as per the manufacturer protocol (Nanostring Technologies, Seattle, WA, USA).

4.6. Nanostring Data Analysis

Copy number for 86 genes for each tumor sample compared to the appropriate control
samples were determined in nSolver according to manufacturer instructions. A heatmap
of the normalized copy number data was generated in R using the gplots package and
heatmap.2 code.

All statistical analyses were performed in GraphPad Prism (GraphPad Software,
La Jolla, CA, USA). For each comparison, Grubbs’ Method was used to detect statistical
outliers. For populations with normal distributions, T-test or one-way ANOVA were per-
formed to assess differences between VP-MCC and VN-MCC or between clusters. For pop-
ulations with statistical outliers, Mann–Whitney or Kruskal–Wallis test were performed to
assess differences between VP-MCC and VN-MCC or between clusters. Significance was
based on a p-value of less than 0.05.

5. Conclusions

We identified three distinct CNV signatures in MCC tumors. The observation that
majority of MCC tumors demonstrate the Del structural signature, independent of virus
status, suggests a shared pattern of genomic instability among most VP-MCC and VN-
MCC tumors that promotes allelic deletions. In contrast, a subset of MCC tumors appear to
be associated with mechanisms that promote genomic amplifications. A further subset of
VP-MCC tumors are capable of progression with very few genomic structural alterations.
As VP-MCC are known to have a very low somatic mutational burden, observing VP-MCC
tumors with few CNVs suggests that viral oncogenes and epigenetic changes may be
sufficient for tumorigenesis. Although the different CNV signatures were not associated
with survival differences in MCC patients, the signatures were associated with recurrent
changes in specific cancer pathways. It is possible that testing genomic structural signatures
may help identify MCC patients more likely to respond to targeted therapeutic approaches.

Supplementary Materials: The following are available online at https://www.mdpi.com/2072-6
694/13/5/1134/s1, Figure S1: The three genomic structural variant clusters are not predictors of
overall survival, Figure S2: Bioanalyzer analysis of Alu1 cut DNA from FFPE and fresh frozen MCC
tumor samples, Table S1: Normalized genomic copy number at 86 gene loci for MCC tumor samples.
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