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ABSTRACT: We propose an efficient and non-perturbative scheme to compute
magnetic excitations for extended systems employing the framework of time-
dependent density functional theory. Within our approach, we drive the system out
of equilibrium using an ultrashort magnetic kick perpendicular to the ground-state
magnetization of the material. The dynamical properties of the system are obtained
by propagating the time-dependent Kohn−Sham equations in real time, and the
analysis of the time-dependent magnetization reveals the transverse magnetic
excitation spectrum of the magnet. We illustrate the performance of the method by
computing the magnetization dynamics, obtained from a real-time propagation, for
iron, cobalt, and nickel and compare them to known results obtained using the
linear-response formulation of time-dependent density functional theory. More-
over, we point out that our time-dependent approach is not limited to the linear-
response regime, and we present the first results for nonlinear magnetic excitations
from first principles in iron.

1. INTRODUCTION

Collective magnetic excitations play a central role in our
understanding of the stability of magnetic materials; for
example, they determine the Curie (Neél) temperature of
(anti-) ferromagnets.1 In recent years, the experimental
confirmation of intrinsic two-dimensional magnets2−7 has
attracted a lot of attention, since it adds magnetism to the
toolbox of van der Waals heterostructures, which bears the
promise for creating efficient novel devices with tailored
electronic, optical, and magnetic properties.8 To understand
the coupled spin and charge dynamics of extended electronic
systems, numerical simulations can provide insight into the
involved physical processes and complement experimental
investigation. Broadly speaking, there are two approaches to
study the spin magnetization dynamics: (1) A phenomeno-
logical approach, where the spin degrees of freedom are
encoded in a model Hamiltonian, such as the Heisenberg
model, and the magnetization dynamics is computed, for
example, by solving the classical Landau−Lifshitz−Gilbert
equation.9 (2) The first-principles approach, based on the
solution of the microscopic Pauli−Schrödinger equation for
the electrons, where magnetism emerges due to the intrinsic
magnetic moment of the interacting electrons. In our work, we
follow the latter route; however, the direct solution of the
(time-dependent) Schrödinger equation for interacting elec-
trons is not possible in practice, at least for extended systems.
We employ instead the exact reformulation of quantum
mechanics based on density functional theory (DFT).10−12

Since its inception, DFT has evolved into the most widespread
approach to numerically study extended systems from first

principles. Its generalization to time-dependent or out-of-
equilibrium phenomena, the so-called time-dependent DFT
(TD-DFT),13−15 is currently the only viable and reliable route
to study the dynamics of large-scale quantum mechanical
systems from first principles despite the intrinsic limitations
introduced by approximating interaction effects beyond the
classical Hartree interaction. Specifically, the linear-response
formulation of TD-DFT has been used to study not only
optical properties but also magnetic excitations such as
magnons, which are collective fluctuations of the spin
magnetization.16−23

Over the last couple of years, first studies investigating
magnetization dynamics from first principles in real time have
emerged. For example, the ultrafast demagnetization due to
intense laser pulses24 has been successfully investigated using
TD-DFT approaches.25−29 In the present work, we are
interested in modeling transverse magnetic excitations,
specifically magnons, which are long-wavelength collective
excitations of magnetic materials with a typical energy of tens
to hundreds of milli-electronvolts. We propose a time-
dependent alternative to the widely used linear-response
formulation, in spirit closely related to the work of Bertsch
et al. for optical excitations,30 which allows us to go beyond the
linear regime and address the response of the system to
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arbitrary spatially and time-dependent electromagnetic fields.
To induce magnetization dynamics in the system, we employ a
“transverse magnetic kick”. The subsequent time evolution of
the spin magnetization, governed by the time-dependent
Schrödinger equation, is then analyzed to obtain the density of
states (DOS) of transverse magnetic excitations. We show that
for small magnetic kicks we recover the results from the linear-
response theory. However, our approach does not rely on the
assumption of small perturbations and we can analyze
magnetic excitations beyond the linear response. Surprisingly,
we find that the frequency of magnons in the ferromagnetic
metal iron gets detuned to higher energies, in contrast to the
prediction of simple models for the magnons based on the
Heisenberg model.
The outline of the paper is as follows: In Section 2, we

introduce our prescription to induce transverse magnetic
excitations in a real-time TD-DFT framework. Results for the
simple transition metals iron, cobalt, and nickel are presented
in Section 3, and we provide our conclusions and outlook in
Section 4. Furthermore, there are two appendices detailing
more technical aspects of our approach. In Appendix A, we
provide a more in-depth discussion of the TD-DFT linear-
response formalism, and in Appendix B, we discuss the so-
called generalized Bloch theorem, which allows for the efficient
simulation of long-wavelength magnons using the chemical
unit cell.

2. REAL-TIME MAGNONS WITHIN TD-DFT
We consider a Hamiltonian of the form

r r B r rH t T W r v t n t( ) d ( , ) ( ) ( , ) ( )3
B∫ σμ̂ = ̂ + ̂ + [ ̂ + · ̂ ]

(1)

where T
m
1

2

2̂ = Π̂ is the kinetic energy operator and n̂(r) and

σ̂(r) are the local operators yielding the electronic density,
n(r, t) = ⟨Φ(t)|n̂(r)|Φ(t)⟩, and the spin magnetization, m(r, t)
= ⟨Φ(t)|σ̂(r)|Φ(t)⟩, which couple to the scalar potential v(r, t)
and the magnetic field B(r, t), respectively. The momentum
operator Π̂ contains the vector potential and spin−orbit
coupling,31−34 but in the absence of an external laser pulse and
ignoring the spin−orbit coupling, it is simply given by Π̂ =
−iℏ∇. Finally, Ŵ represents the interaction between the
electrons, a Coulombic density−density interaction. Within
TD-DFT, the time-dependent densities, here the electronic
density n(r, t) and the spin magnetization m(r, t), are
determined by solving a time-dependent Schrödinger equation
for effectively noninteracting electrons, the so-called Kohn−
Sham (KS) equation

r

r r r

i t

m
v t t t

( , )

2
( , ) ( , ) ( , )

t n

n

s,

2
2

s s s,σ

ℏ∂ Φ

= − ℏ ∇ + + · ̂ Φ
Ä

Ç

ÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑ (2a)

r r rn t f t t( , ) ( , ) ( , )
n

n n ns, s,∑= Φ Φ†

(2b)

m r r rt f t t( , ) ( , ) ( , )
n

n n ns, s,∑ σ= Φ ̂Φ†

(2c)

Here, Φs,n represents the KS Pauli spinors labeled by a generic
index n and f n is the corresponding occupation number
specifying the initial state. The effective potentials vs and

Bs B sμ= are related to the external potential, v, and magnetic
field, BBμ= , of the interacting Hamiltonian (1) by vs = v +
vH[n] + vxc[n, m] and mn,s xc= + [ ], respectively. The
Hartree potential vH is the classical potential due to the
electronic density n. The so-called exchange-correlation (xc)
potential and magnetic field, vxc and xc, are functionals of the
density and spin magnetization and need to be approximated
in practice. The xc terms take electron−electron interactions
beyond the classical Hartree interaction into account. Within
DFT, a magnetic material is characterized by an effective field,

s xc= , that is, the effective magnetic field is purely internal
(due to electron−electron scattering). Put differently, the xc
magnetic field is crucial to stabilize the magnetic order.
A common approach to study transverse magnetic

excitations is to employ the linear-response formulation of
TD-DFT. In a nutshell, one computes the transverse magnetic
susceptibility χ+−, which determines the transverse spin
magnetization response induced by a weak transverse magnetic
field, that is

r r r rm t t r t t t( , ) d d ( , ; , ) ( , )3∫ ∫ χ= ′ ′ ′ ′ ′ ′+ +− + (3)

In eq 3, we introduced m± = mx ± imy and ix y
1
2

= [ ± ]± ,

which diagonalizes the transverse magnetic response for
systems with a collinear ground-state magnetization.35 The
transverse magnetic excitation spectrum is encoded in the
susceptibility χ+−. It is worth noting that the transverse
magnetic excitation provides complementary information to
the longitudinal magnetic response.36 The longitudinal
magnetic response of finite systems has been studied, for
example, using a dipolar kick in refs 37, 38. We provide a more
detailed discussion of the linear response within TD-DFT in
Appendix A.
Next, we describe an alternative approach for the

investigation of transverse magnetic excitation based on the
time propagation of the KS equations of TD-DFT (2). We can
rewrite the time-dependent Schrödinger equation for the KS
electrons as

i H t( )t n ns, s s,ℏ∂ |Φ ⟩ = [ ̂ + Δ̂ ]|Φ ⟩ (4)

In the previous equation, we denote all explicitly time-
independent contributions to the Hamiltonian by Ĥs. To
induce transverse magnetic excitations in the system, we add
an explicit time-dependent contribution, Δ̂(t), to the
Hamiltonian based on the building block
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(5)

which corresponds to a time-dependent Zeeman coupling due
to a magnetic field characterized by the wave vector q and
frequency ω, that is
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The operators σ̂±(r) = σ̂x(r) ± iσ̂y(r) are the local spin-raising
and -lowering operators, respectively. Taking a superposition
of the building blocks (5) over all frequencies, we arrive at
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where we damped high frequencies with a characteristic time
τ > 0. Averaging over the frequencies leads to the Poisson
kernel representation of the delta function in time, δτ(t) = τ/
π(t2 + τ2), with a pulse width ∝ τ. In the limit of vanishing
pulse width (τ → 0) and infinite field strength ( )→ ∞⊥ , we
arrive at

r rt t r( )
2

( ) d e ( ) e ( )q
q r q r3 i i∫θ δ σ σΔ̂ = ℏ [ ̂ + ̂ ]− · + · −

(8)

The angle θ is defined as the finite limit of /τ ℏ⊥ when τ →0
and → ∞⊥ . One can interpret this somewhat artificial
“transverse magnetic kick” as exciting all transverse magnetic
modes with a wave vector q and an arbitrary frequency.
Working in the limit of an infinitesimally sharp kick also allows
us to compute the effect of this transverse magnetic kick on the
KS states analytically. The propagator from the initial time t0 =
0 to the time just after the transverse magnetic kick, t0

+ = 0+, is
simply given by
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where we have used the integral only over an infinitesimal time
interval and therefore only the contribution proportional to the
δ-function survives. In eq 9a, we give the definition of the
infinitesimal propagator representing the transverse magnetic
kick, and in eq 9b, we show its explicit form acting on two-
component spinor wave functions in real space. It is instructive
to look at the spin magnetization just after the kick

m r U U

R r m r

t t t( , 0 ) ( 0) ( 0)

( ) ( )q

0 0

0

σ= = ⟨Ψ = | ̲ ̂ ̲ |Ψ = ⟩

= ̲ ·

+ †

(10)

where m0(r) = ⟨Ψ(t = 0)|σ̂|Ψ(t = 0)⟩, the ground-state spin
magnetization (oriented here along the z-axis), and Rq(r) is a

spatially varying rotation matrix characterized by the wave
vector q

R r q r

q r q r
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u u

( ) cos( ) sin( ) ( )

1 cos( ) ( ) ( )

q θ δ θ

θ

[ ̲ ] = + ϵ ·

+ [ − ] · ·

μν μν μκν κ

μ ν (11)

Equation 11 corresponds to a rotation around a spatially
dependent rotation axis u = [cos(q·r),sin(q·r), 0]T by a
constant angle θ. A pictorial presentation of the effect of the
transverse magnetic kick on the spin magnetization is given in
Figure 1.
After the transverse magnetic kick, the system is no longer in

an eigenstate of Ĥs, and a subsequent propagation with a field-
free Hamiltonian, that is, a Hamiltonian with no additional
(explicitly) time-dependent external field or potential, leads to
nontrivial dynamics of the observables. In this work, we are
explicitly interested in the dynamics of the transverse spin
magnetization encoded in m±(r). For a small opening angle θ,
we expect to recover the linear-response features contained in
χ± ∓.
The main numerical challenge for such a calculation is that

typical magnon frequencies are in the range of tens to
hundreds of milli-electronvolts while we are interested in wave
vectors within the first Brillouin zone. To resolve frequencies
on the order of milli-electronvolts, we need to propagate the
system up to a picosecond. Moreover, if we are interested in a
wave vector, which is a fraction 1/m of the reciprocal lattice
vector for the ground-state magnetic unit cell of the magnetic
material,a we have to construct an m × 1 × 1 supercell (m
repetitions along the wave vector q), which can host the
magnetic structure with a periodicity given by q. However,
there is a way to circumvent the construction of supercells,
which goes by the name of the generalized Bloch theorem
(GBT). The GBT has been introduced first by Sandradskii for
the calculation of ground-state spin waves.39 In Appendix B, we
show that the GBT can also be used for the time propagation
of the states induced by the magnetic kick given in eqs 9a and
9b.

3. RESULTS FOR SIMPLE MAGNETIC TRANSITION
METALS

We have implemented the transverse magnetic kick, described
in Section 2, and the GBT, detailed in Appendix B, in
Octopus,40 which is a real-time, real-space implementation of
TD-DFT. The initial kick, defined in eq 9b, is straightforward
to implement in a real-space code because it is simply a local
rotation of two-component Pauli spinors. The GBT is more
involved since it corresponds to modified boundary conditions
on the spinors (cf. Figure 7 in Appendix B). In principle, the
GBT allows for arbitrary wave vectors q for the initial kick or,

Figure 1. Schematic representation of the effect of the initial transverse magnetic kick on the ground-state spin magnetization of a solid. The initial
spin magnetization is shown as hollow black arrows (ferromagnetic “atomic” moments). The transverse magnetic kick rotates the spin by an angle θ
around a rotation axis in the x−y plane. The rotation axis itself (represented by green, dashed lines with black arrowheads) is rotating in the plane
perpendicular to the ground-state spin magnetization with the wavelength given by 2π/|q|. The resulting spins, depicted as filled red arrows, form a
spin wave.
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equivalently, the induced magnetic excitation. In practice,
however, we found that the propagation turns out to be
unstable if q is not commensurate with the k-point grid. A
transverse magnetic kick with the wave vector q mixes spin-up
and spin-down components of a spinor, which differ by a wave
vector of q. Only if the wave vectors differing by q are
representable by the k-point grid, this mixing of the spin-up
and spin-down components is numerically accurate. This
means that small wave vectors require a very dense k-point
grid. A way around this numerical challenge could be to use
two k-point meshes, one for spin-up components and the other
for spin-down components, which are shifted by q.
Subsequently, we show results for the well-studied reference

magnetic transition metals iron (Fe), cobalt (Co), and nickel
(Ni), frequently used benchmarks for experimental and
theoretical approaches to investigate magnetic excitations. In
all of the reported results, we employed the “twisted” boundary
conditions to benefit from the GBT, and the calculations are
performed in primitive cells of the materials unless stated
differently. For each transition metal, we induce transverse
magnetic excitations at a fixed wave vector q applying the kick
described above with an opening angle of θ = 2 × 10−2. This
value of the opening angle was determined by decreasing θ
until a clear spectral feature, such as a magnon peak at small
wave vectors, did not change its position further, indicating
that the linear-response regime is reached. We record the time
evolution of the spin magnetization, specifically

q r rm t r m t im t( , ) d e ( , ) ( , )iq r
x y

3∫= [ ± ]±
∓ ·

(12)

where the spin magnetization is computed from the KS states
[cf. eq 2c]. Next, we compute the Fourier transform of m±(q,
t), that is

q q
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m t m t
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T t
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where the time signal is artificially damped, described by a rate

T
Γ = α , such that it decays to a numerically small value at the

final time T of the propagation interval. Hence, we can
formally take T → ∞ for the upper integration limit in eq 13.
Note that a finite value of α fixes the value of the broadening,

which in our studies was chosen to be α = 5. The m±(q, ω)
values are then proportional to the transverse spin
susceptibilities χ±∓(q, ω; G = G′ = 0), provided the initial
kick is not too strong. Below, we show heat maps of the
imaginary part of m+(q, ω) as a function of the wave vector q
along high-symmetry lines (x-axis) and the energy (y-axis),
which correspond to the density of states (DOS) of magnetic
excitations. All results are obtained using the adiabatic local-
density approximation (LDA) for the effective potentials,
allowing us to compare our results to prior studies. Unless
specified otherwise, we propagated the system after the initial
magnetic kick for T = 18 000 au ≈ 435 fs. The spectral
resolution, Δω, can be estimated by requiring that half a period
is resolved within the propagation time, T, which yields Δω =
ℏπ/T ≈ 5 meV.

3.1. Nickel. We compute Ni using an FCC unit cell with a
theoretical lattice constant of a = 3.436 Å,23 a 16 × 16 × 16 k-
point mesh with four shifts, and a norm-conserving Hamann−
Schlüter−Chiang−Vanderbilt (HSCV) pseudopotential.45,46

The real-space grid is sampled along the primitive lattice
vectors of the cell using a grid spacing of 0.27 Bohr. This
specific k-point grid allows us to compute 16 distinct wave
vectors along q x X= Γ . In Figure 2, we show a heat map of the
imaginary part of (the negative of) eq 13. For small wave
vectors, x < 0.25, we find a pronounced peak in the DOS at
low energies, which corresponds to the collective magnon
mode. At larger wave vectors, this peak gets broadened due to
the vicinity of the Stoner continuum, that is, the continuum of
single spin-flip excitations (cf. right panel of Figure 2). From
the lowest three wave vectors, we can fit a quadratic dispersion
relation, ω(q) = Dq2, shown as the black parabola. Toward the
Brillouin zone boundary, the strength of the mode decreases
and its energy settles around 400 meV. The value for the fitted
spin stiffness47 (D = 890 meV Å2) and the energy toward the
Brillouin zone boundary is in good agreement with the
available linear-response studies using the adiabatic
LDA.18,19,21−23,48

3.2. Cobalt. For simulating the magnetization dynamics of
Co, we employed an FCC unit cell with a theoretical lattice
constant of a = 3.429 Å23 and, similar to the calculations for
Ni, a 16 × 16 × 16 k-point mesh with four shifts, a grid spacing
of 0.27 Bohr, and an HSCV pseudopotential. Figure 3 depicts
the DOS of transverse magnetic excitations for Co. At small
wave vectors, we find a clear magnon peak, which fades out

Figure 2. Left panel: density of states of magnetic excitations for nickel. Green stars represent experimental results from inelastic neutron scattering
(INS).41 The discrepancy between the INS results and the TD-DFT results within the adiabatic LDA is sometimes attributed to the overestimated
spin gap within LDA.42,43 Yellow stars are results obtained from inelastic scanning tunneling spectroscopy (ISTS).44 Right panel: Density of states
for several fixed wave vectors in arbitrary units.
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around halfway through the Brillouin zone along XΓ . The
value of the spin stiffness estimated from the lowest three wave
vectors (D = 325 meV Å2) is in good agreement with linear-
response studies using the adiabatic LDA18,23,48 and, in
contrast to Ni, close to experimental values obtained from
inelastic neutron scattering.49

3.3. Iron. In contrast to our study on Ni and Co, we did not
use the elementary (chemical) unit cell for Fe but instead used
a cubic supercell containing two Fe atoms. This allowed us to
compute the transverse magnetic response at q H1

2
= Γ

without using the GBT, hence numerically verifying the
validity of the GBT. We found no sizable difference between
the supercell calculation and the GBT, thus validating our
implementation of the GBT. For our simulation, we used the
experimental lattice constant of a = 2.867 Å, a 16 × 16 × 16 k-
point grid, a grid spacing of 0.27 Bohr, and a PseudoDojo51

pseudopotential Fe, which we found to be softer for Fe than
the HSCV pseudopotential, used for Ni and Co. The use of the
specified k-point mesh enabled the computation of 16 wave
vectors along HΓ and eight wave vectors along NΓ . No shifts
are applied to the k-point mesh, which yields the same density
of wave vectors as in our studies of Ni and Co. We find that
only for small wave vectors around Γ, that is, roughly up to

H1
4
Γ and N1

3
Γ , respectively, we get a clear peak corresponding

to the collective magnon mode. For larger wave vectors, the
magnon peak gets broadened by the Stoner continuum (see
Figure 4). Again, as for Ni and Co, our results for Fe are in
good agreement with the available linear-response calculations
using the adiabatic LDA within TD-DFT.18,19,21−23,48

The main advantage of our approach to compute transverse
magnetic excitations is that we are not limited to the linear-
response regime. A simple way to go beyond the linear regime
is to increase the opening angle of the magnetization spiral
formed due to the initial kick (cf. Figure 1). Since we found
that the positions of relevant spectral features are already
converged for a propagation time of T = 9000 au ≈ 220 fs in
the linear regime, all following results are obtained with this
shorter propagation time. In Figure 5, we show the DOS for
the fixed wave vectors q H1

8
= Γ and q H1

2
= Γ , for various

opening angles θ. For a wave vector of q H1
8

= Γ , where we

have a clear magnon peak in the linear regime, we find that the
magnon becomes stiffer for wider opening angles (stronger
perturbations). This is quite interesting because a simple,

classical Heisenberg model with nearest-neighbor (ferromag-
netic) couplings between the spins predicts a softening of the
magnon frequency for wider opening angles. Even more
surprising is the behavior of the DOS at q H1

2
= Γ , where we

do not have a clear magnon peak in the linear regime due to
the damping by the single spin-flip excitations (Stoner
continuum). We find that the spectral signal sharpens as we
increase the opening angle such that around θ = 0.1, we find a
clear single peak, similar to the magnon peaks at smaller wave
vectors in the linear regime. This suggests that the Stoner
continuum can no longer efficiently damp the collective
magnon modes. Increasing the opening angle further, we
observe a stiffening of the peak similar to the behavior of the
magnon peak at smaller wave vectors.

4. CONCLUSIONS AND OUTLOOK
In our work, we proposed a novel approach to study magnetic
excitations from first principles. The basic idea is to induce
magnetization dynamics by an ultrashort kick with a transverse
magnetic field. We implemented two approaches in the real-
space real-time TD-DFT code Octopus: One is based on the
use of supercells that are big enough to contain the wave vector
of interest. The other uses the flexibility of the real-space grid
to implement the “twisted” boundary conditions of the GBT,
which allows for the computation of magnetic excitation of any
fixed wave vector using the primitive cell. For the second
approach, we found the sampling of the Brillouin zone to be
important.
As a consistency check, we performed calculations in the

linear-response regime, where we can compare against known
results and found an excellent agreement with previously
published results. In the linear-response regime, our approach
has several features that render it different from the usual way
of computing the linear response.b First of all, it scales linearly
with the number of occupied states and does not require
unoccupied states, in contrast to the construction of the linear-
response function, which usually requires a summation over
unoccupied (virtual) states. This becomes increasingly
important for simulating large-scale systems and is therefore
extremely relevant in case the GBT cannot be applied, for
example, when spin−orbit interactions are included. Second,
since we are solving the Schrödinger equation, and not the

Figure 3. Density of states of magnetic excitations for cobalt. The
black line depicts a quadratic fit, ω(q) = Dq2, of the first three magnon
peaks. Yellow stars are results estimated from inelastic scanning
tunneling spectroscopy (ISTS) measurements.44

Figure 4. Density of states of magnetic excitations for iron. We show
the DOS along two high-symmetry lines, that is, along NΓ and HΓ .
Experimental results (isotropic) from inelastic neutron scattering are
shown as green stars.50 For each high-symmetry line, we fitted a
quadratic magnon dispersion relation. The anisotropy is slightly
reduced compared to the linear-response TD-DFT presented in ref
48.
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Dyson equation, for the linear-response function, we only need
an approximation for the exchange-correlation potentials and
not for the exchange-correlation kernel. Formally, the
exchange-correlation kernel is given by the functional
derivative of the exchange-correlation potentials with respect
to the densities, but in practice, it might be rather cumbersome
to implement the required kernel. For example, this plays a role
when using orbital functionals, for example, meta- or hyper-
GGAs,53 or mixed approaches like hybrid functionals and LDA
+U54 because for these approaches, which may be referred to
as generalized KS schemes,55,56 it is not obvious how to
construct the proper kernel for the linear-response Dyson
equation. Finally, even if the exchange-correlation potentials
and the corresponding exchange-correlation kernels are
available, the ground-state KS equation, which yields the KS
response function, and the Dyson equation from which the
interacting response function emerges are usually represented
in different numerical basis sets. This can lead to a (numerical)
violation of the Goldstone theorem, which states that the
magnon frequency vanishes for q → 0 in the absence of spin−
orbit coupling, while it is by construction satisfied in our
approach.
Most importantly, our approach is not limited to the linear-

response regime. Already, our proof-of-principles studies for
iron revealed interesting trends as transverse magnetic modes
are excited more violently. In the region of the energy−
momentum space, where a clear magnon peak is present
already in the linear regime, we found a stiffening of the
magnon frequency. While general nonlinearities can either
soften or stiffen the frequency of a harmonic oscillator, the
classical Heisenberg model with the nearest-neighbor
(ferromagnetic) coupling, for example, predicts a softening of
the magnon frequency when the magnon is excited more
strongly in contrast to our results. Similarly, magnon−magnon
interactions tend to soften the magnon frequency. However,
our study on iron, a prototypical ferromagnetic metal, shows
the opposite behavior. Even more striking are our findings in
the region of the energy−momentum space where collective
magnetic excitations are strongly damped by single-electron
spin-flip excitations in the linear regime: A stronger excitation
seems to “un-burrow” the collective mode, since a clear peak
emerges in the density of states. This will be further analyzed
in future works.

We stress that our approach is not limited to (anti-)
ferromagnetic materials. For example, the machinery can
readily be applied to systems exhibiting a nontrivial magnetic
order in the ground state, such as spin spirals or skyrmions.
However, starting from an already noncollinear ground state
implies that transverse and longitudinal magnetic excitations
are mixed and so the interpretation of the results might be
more difficult.
Finally, using our approach, it is straightforward to include

spin−orbit coupling or to combine the magnetic kick with
other external drivers, such as periodic lasers (Floquet
engineering57) or ultrashort intense laser pulses (e.g., pump-
probe spectroscopy). This opens up exciting possibilities to
study the interplay of electronic and magnetic excitations in
and out of equilibrium within the first-principles framework.

■ APPENDIX A: LINEAR-RESPONSE TD-DFT FOR
MAGNONS

In this appendix, we provide a concise summary of the linear-
response formulation of TD-DFT. We emphasize that all new
results presented in this work are obtained from the time
propagation presented in the main body of this paper and not
within the linear-response approach discussed in this appendix.
The motivation for this appendix is twofold: First of all, we
would like to give a short recap of the linear-response
formulation of magnetic excitations to provide the minimal
background for readers not deeply familiar with magnetic
excitations, for example, the definition of magnons within the
linear response formalism. Second, we provide the linear-
response formulas using our “notational” conventions to allow
for a direct comparison to other approaches formulated in the
linear response regime.
In the linear regime, the response of the density and the spin

magnetization to a perturbation by a scalar potential and
magnetic field is given by
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(14)

Figure 5. Left panel: dependence of the DOS on the opening angle for a wave vector q H1
8

= Γ for iron. Right panel: density of states at wave

vector q H1
2

= Γ for various opening angles θ.
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In eq 14, we have employed a compressed notation where we
omit the dependence on (r, t) of the induced density and spin
magnetization and the dependence on (r′, t′) of the perturbing
scalar potential and magnetic field. Note that we have included
the coupling constant μB in the definition of the perturbing
magnetic field, BBμ= , which means that the “magnetic
field” has the same units as the scalar potential v, that is,
both have the units of energy. The response matrix χ̲ depends
on, both, (r, t) and (r′,t′), and the * denotes a contraction
(integral) over (r′,t′). Within TD-DFT, the response function
of the interacting system χ̲ is computed from the response
function of the effective KS electrons χ̲s and the so-called
(Hartree-)exchange-correlation kernel fH̲xc by solving the
following equation

f
s s Hxc

χ χ χ χ̲ = ̲ + ̲ * ̲ * ̲ (15)

The KS response is determined from the eigenstates and
eigenvalues of the static KS equation. A common reformula-
tion of the linear response eq 14 is to introduce the following
linear combination of the densities and potentials

n n m v v
1
2

( )z z= + ⇔ = +↑ ↑ (16a)

n n m v v
1
2

( )z z= − ⇔ = −↓ ↓ (16b)

m m mi
1
2

( i )x y x y= + ⇔ = −+ − (16c)

m m mi
1
2

( i )x y x y= − ⇔ = +− + (16d)

In terms of these densities and potentials, the KS Hamiltonian
takes the form

r r r r
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and the KS response χ̲s is diagonal for magnetic systems with a
negligible spin−orbit coupling and a collinear ground-state
magnetizationc, that is
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The Hartree-exchange-correlation kernel can couple the
different channels. In fact, already the Hartree contribution
leads to a coupling between the ↑↑ and ↓↓ channels, but it
vanishes for the +− and −+ channels, since it stems from a
density−density interaction. In this work, we focus on the
adiabatic local-density approximation (ALDA) for the
exchange-correlation contribution to the effective potentials.
In the linear-response formulation of TD-DFT, this leads to an
exchange-correlation kernel fx̲c, which is local in space and
time, that is

f r r

r r f r m r

t t

t t n

( , ; , )

( ) ( ) ( ), ( )
xc
ALDA

xc
unif

0 0δ δ

̲ ′ ′

= − ′ − ′ ̲ [ ] (19)

where f ̲ xcunif is the static (ω→ 0) long-wavelength (q→ 0) limit
of the exchange-correlation kernel for a uniform electron gas
with the density n and spin magnetization m evaluated at the
local ground-state density and spin magnetization, n0(r) and
m0(r), respectively, of the system. Like the Hartree
contribution, it is block-diagonal in the “up”−“down” sector,
but, in contrast to the Hartree contribution, it has a
nonvanishing diagonal in the +− and −+ channels. This
contribution is crucial for the description of magnons, which
are collective excitations of the transverse spin magnetization:
without f xc, there would be no magnons, much like there would
be no plasmons without the Hartree contribution. In Figure 6,
we show a sketch of the imaginary part of χ+−, which
represents the density of states of magnetic excitations
perpendicular to the ground-state magnetization.

■ APPENDIX B: TIME-DEPENDENT GENERALIZED
BLOCH THEOREM

The generalized Bloch theorem (GBT) has been introduced
already some time ago by Sandratskii39 to study magnetic
systems exhibiting a spin spiral configuration in the ground
state. Moreover, this approach can also be used to compute a
constrained ground state, that is, the minimal energy state
compatible with a magnetization forming a spin spiral, which
can be used to compute adiabatic or frozen magnons. To the
best of our knowledge, the GBT has not been applied within a
time-dependent framework. Hence, within this appendix, we
answer the question regarding the conditions under which the
application of the GBT is possible within a time-dependent
approach.
Let us start by recalling why the Bloch theorem is applicable

for the propagation of solids: If the KS Hamiltonian for all
times commutes with translations by crystal lattice vectors, the
propagator commutes itself with these translations. Hence, if
the propagation is started in an eigenstate of the translation
operator, for example, a Bloch state, it remains an eigenstate of
the translation operator. Now, let us look at how the states
after the transverse magnetic kick, defined in eq 9a and 9b,
behave under translations by a lattice vector. We assume that
the system is collinear in the ground state, which means that
we ignore the spin−orbit coupling or a noncollinear spin
magnetization due to frustration (for example, in a two-
dimensional hexagonal lattice with anti-ferromagnetic nearest-

Figure 6. Sketch of Im[χ+−] (DOS of magnetic excitations) for a
typical ferromagnet. The so-called Stoner continuum is contained in
the KS response χs,+− (blue-shaded area). The Stoner continuum is
composed of single-electron excitations involving a spin flip. The red
curve depicts the dispersion relation for magnons, collective modes
induced by the interaction effects described by f xc,+− within TD-DFT.
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neighbor coupling). This implies that the states before the
magnetic kick are Bloch states, which are either pure “spin-up”
or pure “spin-down”. After the initial kick, the states are given
as follows
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u ,kn is invariant under transformations by lattice vectors, which
means that the new states Φ̃ transform under shifts by lattice
vectors as follows
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From eqs 21a and 21b, it is evident that the states after the kick
are no longer eigenstates of the translation operator. The
transformation law is spoiled by an additional local phase shift
between the spin-up and spin-down components. However, we
can introduce a new symmetry operator
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which corresponds to a translation in space by a lattice vector
and a simultaneous rotation in the spin space around the z-axis
by an angle q·Rd. The states Φ̃ are eigenstates of this new
symmetry operation that is
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We can define two generic time-dependent states, labeled as α
and β, that is
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which are eigenstates of R
q̂ , provided the u αβ, kn are periodic

under lattice translations. It is straightforward to see that the

states Φ̃ can be written in this way. To compute finite
differences (derivatives) on the real-space grid, the implemen-
tation of specific boundary conditions is required for the
generalized Bloch theorem, as illustrated in Figure 7. Now, to

show that eqs 24a and 24b are solutions of the time-dependent

KS equation, we need to establish that the Hamiltonian at all

times commutes with R
q̂ . For a truly noninteracting system,

this can be explicitly checked because the Hamiltonian is

determined for all times. However, the KS Hamiltonian

depends on time-propagated states themselves and therefore

we need to verify that the employed approximation for the self-

consistent potentials vxc and xc leads to an effective KS

Hamiltonian, which still commutes with symmetry operation

22. The density associated with the orbitals (24a and 24b) is

given in terms of and is therefore periodic under lattice

translations. The expectation value of the spin magnetization

for the orbitals (24a and 24b) is given by
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where r( )q̲ is a rotation matrix describing rotations of the

spin magnetization around the z-axis by an angle q × r
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The “partial” spin magnetizations mα/β
0 are determined

exclusively by and therefore are lattice periodic

Figure 7. Schematic representation of the boundary conditions used
for the (a) Bloch theorem and (b) generalized Bloch theorem. We
implemented these “twisted” boundary conditions for which an extra
phase factor is added to the boundary points. This extra phase
depends on the label (α or β) and the component of the Pauli spinor,
as explained in the main text.
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where we introduced φα/β(r, t) = arg[(uα/β
↑ )† uα/β

↓ ] and the
longitudinal and transverse spin magnetizations, mα/β,∥ = |uα/β

↑ |2

− |uα/β
↓ |2 and mα/β,⊥ = 2 |(uα/β

↑ )† uα/β
↓ |, respectively. Accordingly,

the full spin magnetization is given by
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The condition that the KS Hamiltonian commutes with the
symmetry 22 is equivalent to the requirement
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in the absence of spin−orbit coupling and without an external
magnetic field. Within the ALDA, the exchange-correlation
magnetic field is given by

r m rF m t t( , ) ( , )xc
ALDA = [ ] (30)

where F(m) is a scalar function depending only on the
magnitude of the spin magnetization m(r, t). Using (25), we
find immediately

r R R rt t( , ) ( ) ( , )qxc
ALDA

xc
ALDA+ = ̲ · (31)

which means that, within the ALDA, the KS Hamiltonian

commutes for all times with R
q̂ and the generalized Bloch

theorem applies. In fact, any approximation for r( )xc , which is
derived from an approximation to the exchange-correlation
energy Exc[n,m], for example, adiabatic GGAs, which only
depend on properly contracted scalars of the density and spin
magnetization and their respective gradients, will fulfill
condition 29.34,36,58,59 For an approximation based on
ground-state orbital functionals for the exchange-correlation
energy, which have to be considered within a generalized KS
scheme, one should check whether the generalized KS
Hamiltonian, which may contain nonlocal couplings, com-
mutes with the symmetry 22. Finally, let us briefly comment on
how we determine the labels α or β from the initial (ground-
state) KS states in practice. Using the fact that the states before
the magnetic kick are either pure “spin-up” or pure “spin-
down” states, we compute for each KS state the expectation of
Ŝz. Depending on its sign, a state is labeled as α or β. This
information is written such that it can be read in the case of a
restart of the time-dependent calculation.
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■ ADDITIONAL NOTES
aHere, we take the magnetic unit cell to be identical to the
chemical unit cell, since we are interested in simple
ferromagnetic materials.
bThe Sternheimer approach52 adopted for magnetic excita-
tions17,21,22 shares these features.
cThis implies that the spin magnetization is aligned along the
same axis, defined as the z-axis, everywhere in space.
dWe refer to the rotation angle of the spin magnetization,
which is twice the corresponding rotation angle for the spinor
(cf. eqs 9 and 11).
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