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Abstract Long-term memories are believed to be stored in the synapses of cortical neuronal

networks. However, recent experiments report continuous creation and removal of cortical

synapses, which raises the question how memories can survive on such a variable substrate. Here,

we study the formation and retention of associative memory in a computational model based on

Hebbian cell assemblies in the presence of both synaptic and structural plasticity. During rest

periods, such as may occur during sleep, the assemblies reactivate spontaneously, reinforcing

memories against ongoing synapse removal and replacement. Brief daily reactivations during rest-

periods suffice to not only maintain the assemblies, but even strengthen them, and improve

pattern completion, consistent with offline memory gains observed experimentally. While the

connectivity inside memory representations is strengthened during rest phases, connections in the

rest of the network decay and vanish thus reconciling apparently conflicting hypotheses of the

influence of sleep on cortical connectivity.

DOI: https://doi.org/10.7554/eLife.43717.001

Introduction
Long-term memories are believed to be stored in the connections of cortical neuronal networks

(Martin et al., 2000; Mayford et al., 2012). While it is often assumed that the synaptic connectivity

remains stable after memory formation, there is an increasing body of evidence that connectivity

changes substantially on a daily basis. Continuous rewiring of the synaptic connections

(Holtmaat et al., 2005; Xu et al., 2009; Yang et al., 2009; Loewenstein et al., 2015) may

exchange up to 50% of the synapse population over a time-course of weeks (Loewenstein et al.,

2015). Hence, only a minuscule fraction of synaptic connections generated upon the original learning

experience persists after a few months (Yang et al., 2009). Intriguingly, experiments demonstrate

that despite this continuous synaptic turnover, memories are not only stable but might even improve

without further training (Walker et al., 2003; Cai and Rickard, 2009; Honma et al., 2015), espe-

cially during sleep (Jenkins and Dallenbach, 1924; Karni et al., 1994; Fischer et al., 2002;

Walker et al., 2003; Dudai, 2004; Stickgold, 2005; Gais et al., 2006; Korman et al., 2007;

Lahl et al., 2008; Diekelmann and Born, 2010; Pan and Rickard, 2015; Rickard and Pan, 2017).

It is unclear how cortical networks can retain, let alone improve, memories over time

(Mongillo et al., 2017; Ziv and Brenner, 2018; Rumpel and Triesch, 2016). One hypothesis is that

there are two pools of synapses: a stable and an unstable one (Kasai et al., 2003;

Loewenstein et al., 2015), and in particular inhibitory stability could play a crucial role

(Mongillo et al., 2018). Another possibility is that, by hippocampal coordination, memory events are

replayed in the cortex. For example, Acker et al. (2018) show that periodic, external replay of
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learned input patterns strengthens synaptic connections that are consistent with existing connec-

tions. However, as the case of patient H.M. shows, hippocampal replay does not appear to be nec-

essary to maintain cortical memories. Finally, in Kappel et al. (2018), synaptic plasticity depending

on a global reinforcement signal is used to stabilize new synapses which contribute to a learned

behavior. However, such a reinforcement signal seems biologically implausible to maintain long-term

memories.

In this study, we will explore another possibility, namely that the Hebbian cell assemblies that

store the memories (Hebb, 1949; Palm, 1982; Harris, 2012; Palm et al., 2014; Litwin-Kumar and

Doiron, 2014), spontaneously transiently reactivate. Such spontaneous alternation between high

and low population activity has previously been associated with Up-Down-dynamics (Holcman and

Tsodyks, 2006; Barak and Tsodyks, 2007; Setareh et al., 2017; Jercog et al., 2017), observed in

cortical networks during sleep (Steriade et al., 1993) and in quiescent awake states (Poulet and

Petersen, 2008; Okun et al., 2010; Engel et al., 2016). Along these lines, experiments show that

learning- and memory-related activity patterns are reactivated in cortex, predominantly during sleep

and rest (Peyrache et al., 2009; Gulati et al., 2014; Ramanathan et al., 2015; Gulati et al., 2017;

Jiang et al., 2017). Recent modeling work has shown that in the absence of synaptic turnover, reac-

tivation can indeed maintain stable memories in recurrent networks (Tetzlaff et al., 2013; Litwin-

Kumar and Doiron, 2014; Zenke et al., 2015). However, it is unclear whether memories can be

made robust against synaptic turnover which would be necessary to account for long-memory in bio-

logical networks.

Synaptic turnover partly depends on neuronal activity or the size of the synapses (see Fauth and

Tetzlaff, 2016 for a review). In particular, larger synapses are less likely to be removed (e.g. Le Bé

and Markram, 2006) implying that rewiring follows synaptic plasticity and attains Hebbian-like char-

acter. Here, we show that the combination of structural plasticity, synaptic plasticity and self-gener-

ated reactivation, even for a just short period every day, can not only stabilize assemblies against

synaptic turnover but even enhance their connectivity and associative memory.

Results
Using a computational model, we investigate the storage and long-term stability of memories in the

presence of short-term depression and the two major activity-dependent processes that are thought

to implement long-lasting cortical connectivity changes (Figure 1A, for a review see Fauth and Tet-

zlaff, 2016): (1) Synaptic plasticity, which changes the transmission efficacy - or synaptic weight -

between neurons (see Martin et al., 2000; Takeuchi et al., 2014 for a review), and (2) structural

plasticity, that is, the creation and removal of synapses. Structural plasticity is strongly correlated to
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Figure 1. Schematics of model and stimulation paradigm. (A) Neuron j is connected to neuron i at Smax potential

synaptic locations (here Smax ¼ 7). (Inset) Non-functional potential synapses (dashed) become functional synapses

(solid) with a constant rate b and are deleted with a weight-dependent rate dðwij;kÞ. The weights of functional

synapses are adapted by a Hebbian plasticity rule _wij;k . (B) The simulation protocol is structured in three phases:

During a learning phase (blue) groups of neurons are strongly stimulated in an alternating fashion. During

subsequent sensory phases (yellow), the network is bombarded with quickly changing patterns. Finally, during rest

phases (red), the network receives no stimulation but spontaneously reactivates.

DOI: https://doi.org/10.7554/eLife.43717.002

Fauth and van Rossum. eLife 2019;8:e43717. DOI: https://doi.org/10.7554/eLife.43717 2 of 19

Research article Neuroscience

https://doi.org/10.7554/eLife.43717.002
https://doi.org/10.7554/eLife.43717


successful learning (Patel and Stewart, 1988; Patel et al., 1988; Kleim et al., 2002; Xu et al.,

2009; Yang et al., 2009; Lai et al., 2012; Moczulska et al., 2013), but also gives rise to continuous

synaptic turnover. We study how these plasticity processes store co-activity patterns in the connec-

tivity of recurrent neuronal networks and how the corresponding connectivity changes are retained

and strengthened over time.

The simulation protocol has three phases (Figure 1B): During the learning phase, alternate

groups of neurons receive strong stimulation and the patterns are stored into the network. Next,

during the sensory phase, the network receives ongoing input from upstream networks mimicking

incoming sensory information. Finally, during the rest phase, the neurons do not receive any external

stimulation but re-activate spontaneously.

Assembly formation during learning phase
As a first step to investigate memory storage in the presence of synaptic and structural plasticity, we

examine how cell assemblies are formed. We simulate a learning phase where multiple groups of

neurons receive strong, external stimulation in an alternating fashion. This stimulation leads to high

activity in these neurons, and low activity in the rest of the network due to lateral inhibition

(Figure 2A).

We track the time-course of the average synaptic weight (Figure 2B, Top) and the average num-

ber of synapses (Figure 2B, Bottom) in three different classes of connections: First, connections

within the same stimulated group (intra-assembly connections, purple curves) are potentiated as a

result of intervals of correlated high pre- and postsynaptic activity. As the decay occurring between

these intervals is limited, there is a fast increase of the weights (Figure 2B, Top, purple curves). On a

slower time-scale, new connections are build up (Figure 2B, Bottom). The build up occurs because,

while the connection creation rate is constant, the deletion probability decreases for larger weights,

in line with experiments (Le Bé and Markram, 2006; Yasumatsu et al., 2008).

Second, neurons outside the assembly, also referred to as control neurons, are not stimulated

and exhibit low activity. Connections between them are not potentiated and remain unstable, lead-

ing to a low connectivity between these neurons (Figure 2B, grey curves). Third, connections

between different stimulated groups as well as connections between control neurons and stimulated

Figure 2. Activity and connectivity during the learning phase. (A) Activity during the learning phase when

assemblies receive strong, alternating stimulation. (B) Top: Time-course of the synaptic weights per synapse

during learning. Between neurons within an assembly (purple), between control neurons (grey), and between

different assemblies or assembly and control neurons (green). Curves depict the mean and shadings the standard

deviation. Bottom: The slower time-course of the number of synapses per connection. (C) Top: Matrix depicting

the sum of weights between 120 exemplary neurons (including all three stimulated groups) after learning at

t ¼ 15h. Each point represents the synaptic weight summed over all the synaptic connections between the two

neurons (x-axis pre- and y-axis-postsynaptic neuron; sorted). Bottom: Corresponding connectivity matrix of the

number of synapses.

DOI: https://doi.org/10.7554/eLife.43717.003
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groups are asynchronously active. These connections have small weights, such that synapses are

unstable and the number of synapses remains low (Figure 2B, green curves).

In summary, during the learning phase, each stimulated group becomes a highly interconnected

cell assembly, while all non-intra-assembly synapses remain sparse and have small synaptic weights

(Figure 2B). The synaptic connectivity follows the synaptic strength on a time-scale of hours.

Cell assemblies spontaneously reactivate
After the learning phase, the network alternates between two modes. During sensory phases, the

network receives stimulation with quickly changing random patterns mimicking incoming information

from upstream networks. In this phase, lateral inhibition prevents spontaneous activation of non-

stimulated neurons and the assemblies slowly decay.

However, during rest phases, stimulation is absent and the assemblies can reactivate. This hap-

pens provided there is sufficient intra-assembly recurrence, so that the positive feedback drives the

assemblies towards a high population activity (e.g. Wilson and Cowan, 1972; Brunel, 2000;

Figure 3A, black nullcline), which corresponds to a reactivation of the learned pattern. As lateral

inhibition implements a winner-take-all structure, only one of the assemblies reactivates at any time.

To confirm this, we tracked the pre- and postsynaptic activities for all connections during the rest

phase. For connections within the same assembly, the activity is strongly correlated (Figure 3Ci). We

find a high probability of experiencing either high activities in both pre- and postsynaptic neuron

(self-reactivations) or low activities (activation of other assemblies). In contrast, for connections

between pairs of neurons from different assemblies or from assembly and control group there is vir-

tually no correlated activity (Figure 3Cii).

The high activity state is sustained by strong positive feedback from inside the assembly. To pre-

vent that the assembly stays highly active, the positive feedback-loop must be shut down. Similar to

other models (Barak and Tsodyks, 2007; Holcman and Tsodyks, 2006), short-term depression

weakens the transmission efficacy of the excitatory synapses and thereby the positive feedback. As a

consequence, the high population activity becomes unstable (i.e. the high activity fixed-point van-

ishes, Figure 3A, grey nullcline) such that the activity drops back and the synapses can recover.

Self-reactivation strengthens cell assemblies
Next, we investigate how reactivation is crucial for maintaining the assemblies. If there are no rest

phases in which the assemblies can reactivate, the synaptic weights inside the assemblies decay
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Figure 3. Activity after learning. (A) Sketch of the dynamics during the rest phase. Solid lines mark the fixed points

of population activity in a strongly connected assembly for relaxed weights (black) and after short-term depression

(grey). When the assembly is taken beyond a upper bifurcation point (black dot), it becomes highly active (black

dashed arrow). Subsequently, short-term depression decreases the recurrent connectivity and the population

activity falls back to the low activity (grey dashed arrow). (B) Mean activity in stimulated groups and control

neurons during sensory and rest phase. Shadings depict standard deviations. (Ci) Correlation of pre- and

postsynaptic activity during the rest phase for intra-assembly connections. (Cii) Same for connections between two

stimulated groups and between stimulated groups and control neurons.
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(Figure 4A, Top). Because the synaptic removal rate is faster for small synapses, the synaptic weight

decay is followed by a decay in the number of synapses on a timescale of days (Figure 4A, Bottom).

In contrast, when the sensory phases are interleaved with rest phases, we observe that the strong

connectivity inside the assembly is not only preserved by the self-reactivations, but even gradually

increases (Figure 4B, Bottom, purple curve). Moreover, the connectivity from and to other assem-

blies in the network remains weak (Figure 4C). Close inspection of the connectivity changes reveals

that also spurious connections that were built-up during the sensory phases are removed during the

rest phase (Figure 4—figure supplement 1).

In the absence of structural plasticity, maintaining the memories is more challenging. In

Figure 4D, we blocked structural plasticity during the retention phase. The assemblies initially reacti-

vate and are stable for multiple days, but a long sensory phase after 100 hours drives them below

the reactivation threshold and all assemblies are lost.

Figure 4. Stabilization of connectivity after learning. (A) Without resting intervals mean intra-group weights decay

(purple), followed by a decay in connectivity (bottom panel). Weights between control neurons (grey) and between

different assemblies or assembly and control neurons (green) remain low. Dashed line depicts theoretical

prediction; shading represents standard deviation. (B) Reactivation during rest phases rescues the assemblies. (C)

Connectivity matrix depicting the sum of weights (top) and number of synapses (bottom) between 120 exemplary

neurons at the end of the simulation in panel B. (D) Simulation with the same sequence of sensory and rest

phases, but all structural plasticity is blocked after learning (t ¼ 15h). The memory is retained for a while, but after

about 100 hr, when there is a longer period without reactivation, the assemblies decay. (E) Connectivity matrices

as in panel C for the simulation in panel D. Although the number of synapses is similar, the synaptic weights have

decayed.

DOI: https://doi.org/10.7554/eLife.43717.005

The following figure supplements are available for figure 4:

Figure supplement 1. Connectivity changes in individual phases.

DOI: https://doi.org/10.7554/eLife.43717.006

Figure supplement 2. Net weight change after 24 hr of repeated sensory and rest phases.

DOI: https://doi.org/10.7554/eLife.43717.007
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Synapses in assemblies are continuously replaced
The assembly strengthening during the rest phase could be due to addition of new synapses, or the

net result of concurrent creation and removal. Similar to experiments (Holtmaat et al., 2005;

Yang et al., 2009; Loewenstein et al., 2015), we measured the persistence of synapses at a specific

potential synaptic locations from day to day and find ongoing synapse creation and removal within

the assemblies, exchanging around 10% of the synapse population on a daily basis (Figure 5A).

Moreover, synapse creation transiently increases shortly after learning while spine removal remains

low, similar as in experiments (Yang et al., 2014). The fraction of synapses that were present after

learning and persist until a given time-point continuously decreases (Figure 5B) indicating that also

strong synapses inside the assemblies are continuously removed. Hence, the strengthening of the

assemblies is not emerging from a simple addition of new synapses, but because the reactivations

stabilize more synapses than are being removed and thus the synaptic substrate of the assemblies is

continuously exchanged (Figure 5C).

Self-reinforcements improves robustness of pattern completion
Knowing that cell assemblies can strengthen their connectivity by self-organized reactivation, we

examine whether this improves the associative properties of the encoded memories. Associative

memory requires the re-activation of an assembly, even when presented with a cue that only partially

overlaps with the memory.

Quick and correct recall of a cued pattern requires that those neurons which should be active in

this pattern receive a strong input and those neurons which should stay silent receive a weak input.

The further the input distributions are separated from each other and from the offset of the neuronal

gain function, the better and faster the recall quality. We investigate the retrieval robustness of the

memory against corruption in the cue, by switching a fraction of the active neurons of the pattern off

and the same number of inactive neurons on. Immediately after learning (t ¼ 15h, left most time-

point in 4B), the input distributions partly overlap (Figure 6A). However, after reactivations during

rest (t ¼ 300h), the distributions are separated further and the currents of the active neurons are

above the offset of the sigmoidal gain function (Figure 6B), such that the pattern will be correctly

completed.

To quantify this further, we evaluated the quality of pattern completion for varying levels of pat-

tern corruption. Directly after learning, errors increase when the corruption exceeds 15%

(Figure 6C), mostly due to an increase in false negatives (Figure 6D). After the resting phases, the

1 3 5 7 9 11
0

25

50

75

T
u
rn

o
v
e
r 

p
e

r 
d
a
y
 [
%

]

creation
removal

1 3 5 7 9 11
Day after learning

0.6

0.8

1.0

F
ra

c
ti
o
n

 p
e
rs

is
te

n
t

A B C

Day after learning

-

+

+

-

+

Figure 5. Assemblies undergo strong synapse turnover. (A) Synapse creation (red) and removal (blue) relative to

the synapses existing at the previous day. Synapse creation is strongly elevated the first day after learning. (B) The

decay of persistent synapses created during learning indicate ongoing removal and replacement of synapses that

originally formed the memory. (C) Sketch of the structural changes occurring in the presence of self-reactivation.

Although the synapses that have been created during learning are continuously removed (-), the collective

dynamics of the assembly stabilizes new synapses (+) between its neurons which counteracts synapse loss and can

lead to a net strengthening of the assembly.
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strengthened network (t ¼ 300h) recalls correctly up till much higher noise levels. In summary, the

self-induced strengthening improves recall quality.

Timescale requirements for assembly strengthening
Given that spontaneous reactivation during the rest phase is thus crucial for memory maintenance

(Figure 4B), we analyze how frequent and how long the rest phases need to be. Starting from a

given number of synapses between the neurons in the assembly, we find that the number of connec-

tions increases more the longer the rest phases and the shorter sensory phases (Figure 7A). When

the sensory phases are too long (trnd > 20 hr), the assemblies loose synapses (blue region).

This behaviour can be described theoretically (Materials and methods): We assume that all synap-

ses in an assembly are maximally potentiated by reactivation during the rest phase and decay expo-

nentially during sensory phases and then calculate the expected synaptic creation and removal. This

simple theory explains the simulation results over a broad regime of timescales (Figure 7B) indicat-

ing that the dynamics of the intra-assembly synapses is governed by the collective reactivation of

the assemblies.

It is also possible, however, that assemblies fail to reactivate and decay instead. To quantify when

such reactivation failures occur, we evaluated the maximal duration of the sensory phase after which

at least 90% of assemblies still reactivate for different initial connectivity levels. Unsurprisingly, the

larger the number of initial connections, the longer the assemblies survive (Figure 7C). This, in turn,

implies that by increasing their connectivity by self-reactivation, the assemblies also become more

and more stable against prolonged absence of reactivation.

Strengthening emerges from convergence to an attractive state
Connections in an anssembly can undergo two fates: either the connections decay to control levels

or they converge to a fixed number of synapses (Figure 7D). Self-organized strengthening, as

observed above, occurs when the initial number of synapses is below the fixed point, yet the assem-

bly is strong enough to survive and self-reactivate (e.g. traces starting at S ¼ 8 or S ¼ 12 in

Figure 7D).

To study the emergence of this fixed point in the number of synapses, we simulated the change

in the number of synapses after one full cycle of sensory and rest phase (Figure 7E). The number of

synapses either decreases for large initial numbers of synapses and increases for small initial
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Figure 6. Spontaneous reactivation improves robustness of pattern completion. (A) Histograms of the incoming

currents to different classes of neurons right after learning (t ¼ 15h), when presented with corrupted memory

patterns (histograms from 100 realizations). For successful pattern completion, the incoming currents of neurons in

the tested stimulation pattern (blue) should be above the threshold at zero while the currents from neurons that

are part of another pattern (green) and neurons that have not been stimulated during learning (grey) should be

below. (B) After the reactivations during rest phases, the distributions are more separated (t ¼ 300h). (C) Fraction

of correctly classified neurons (active and inactive) for different levels of cue corruption. (D) Fraction of wrongly

inactive (bottom) and wrongly active neurons (top).
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numbers of synapses, matching theory (Figure 7F). Hence, after many cycles with the same phase

durations, the number of synapses will converge and fluctuate around a stationary final value (gray

line). The theory provides the dependence of this final value on the durations of sensory and rest

phases: The longer the rest phase and the shorter the sensory the higher the value (Figure 7G).

For long sensory phases (x-axis in Figure 7E,F and G), the synaptic survival probability diminishes.

The stationary number qualitatively follows this survival probability and decreases for longer duration

of the sensory phase. The longest sensory phase after which reactivation is no longer possible is well

predicted by the time at which the excitatory strength (product of weight and number of synapses)

drops below inhibition (Figure 7C, black line, Figure 7F, green region).

Within longer resting intervals, more synapses are created and stabilized, such that the stationary

value increases (Figure 7G). Note, however, even a short rest phase of 3 min is sufficient to maintain

strong connectivity for up to 20 hr of sensory phase.

Role of short-term depression
In the above, spontaneous reactivations of assemblies were terminated by short-term depression.

However, short-term depression is not the only candidate mechanism and spike-frequency adapta-

tion can be used instead (Jercog et al., 2017). This does not lead to qualitative changes in the

results thus far (data not shown), however, a qualitative difference emerges when considering the

stability of overlapping cell assemblies. We initialized our network with two 30-neuron assemblies
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Figure 7. Analysis of connectivity decay and stationary weights. (A) Change of the number of synapses between

intra-assembly neurons after 5 days. The intra-assembly connectivity grows stronger for longer rest phases and

shorter sensory phases. For long sensory phases connectivity decreases. (Averaged over fifteen 30-neuron

assemblies initialized with eight synapses per connection.) (B) The theoretical prediction matches the simulation.

(C) Maximal duration of sensory phase after which assemblies still self-reactivate increases when starting of with a

larger initial numbers of synapses. The curve shows the theoretical predictions of the latest possible reactivation.

(D) Time-course of the average number of synapses (network alternating between tsens ¼ 4:5h sensory phases and

trest ¼ 0:5h rest phases). Above a minimal initial number of synapses, a convergence to a stable state can be

observed. (E) Change in the number of synapses after one cycle of sensory and rest phase for different initial

numbers of synapses and durations of the sensory phase (trest ¼ 1h). In the green region, reactivations will not

occur (see panel C) and assemblies will decay (see panel D). (F) Theoretical prediction of the change per cycle

(color code) matches experiment and exhibits a stable stationary value (solid grey curve). (G) Theoretically

predicted stationary number of synapses for different rest phase durations.
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with an overlap of 5 neurons, initially connected by 12 synapses on each connection. After 5 days,

the network with short-term depression maintained the overlapping assemblies (Figure 8A). In con-

trast, the network with spike-frequency adaptation has formed non-overlapping assemblies

(Figure 8B) and the neurons in the overlapping population have been incorporated into either one

of the assemblies.

The reason for the difference is that with spike-frequency adaptation, neurons activated with the

first assembly will be adapted and therefore less likely to be reactivated with second assembly. Due

to this competition and the positive feedback between activity and connectivity introduced by the

Hebbian plasticity processes, the overlap region will be reactivated and connected more and more

with only one of the assemblies and disconnect from the other, separating the assemblies. In con-

trast, using short-term depression, only the synapses between the overlap region and the assembly

are adapted such that a reactivation with another assembly is not impeded.

Discussion
We have introduced a network with synaptic and structural plasticity which forms Hebbian cell

assemblies in response to external stimulation. During random sensory stimulation these assemblies

decay, but in the absence of external stimulation, the cell assemblies self-reactivate resulting in peri-

ods of strong correlated activity which strengthen and stabilize the intra-assembly connectivity, and

weaken other connections. This protects the assemblies against ongoing synaptic turnover, increases

their robustness against prolonged phases without reactivation, and leads to off-line improvement

of the associative properties of the memories.

The critical ingredients and parameters for the mechanism to work are as follows: (1) The network

needs to be able to spontaneously reactivate assemblies. This requires sufficient increase of the syn-

aptic weights during the learning phase, so that the assembly has a net positive feedback and can

transition to a high activity state. (2) The high activity state needs to terminate, requiring an adaptive

mechanism such as spike frequency adaptation or short-term synaptic depression. (3) Lateral inhibi-

tion is required to prevent the activation from spreading to multiple assemblies. This de-correlates

activity and ensures that only connections within the assemblies potentiate. (4) Structural plasticity

should encourage stabilization of intra-assembly synapses. Here, this is achieved by a higher synap-

ses removal rate for small synapses, while the synapse creation rate is fixed. Note, that the the struc-

tural plasticity in our model is not associative by itself. It becomes so indirectly via its dependence

on the synaptic weights. (5) Connections between assemblies should remain weak, which, given (3)

and (4), requires synaptic plasticity which depresses weights in case of asynchronous high pre- and

postsynaptic activity, as is the case in Hebbian learning.
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Figure 8. Stability of overlapping cell assemblies for alternative adaptation mechanisms. (A) Connectivity matrix of

the number of synapses after 5 days for two overlapping assemblies and the combination of plasticity processes

used in this paper. (B) Same for using spike-frequency adaptation instead of short-term depression. Neurons from

the overlap-region have become associated to one of the assemblies and disconnected from the other. In all

cases, connections within assemblies were initialized with eight synapses.
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Self-organized reactivations
A number of earlier models of long-term and very-long-term memory have used reactivation to

strengthen or restructure previously stored memories. However, these models often rely on an exter-

nal reactivation mechanism (Tetzlaff et al., 2013; Acker et al., 2018). In contrast, here the self-gen-

erated reactivations of cell assemblies cause non-correlated reactivations of individual cell

assemblies, such that neither individual external cues (Acker et al., 2018), nor pre-structured con-

nectivity (Tetzlaff et al., 2011; Tetzlaff et al., 2013) are necessary.

Other models have shown that self-organized reactivation can stabilize Hebbian cell assemblies

against ongoing synaptic plasticity (Litwin-Kumar and Doiron, 2014; Zenke et al., 2015). However,

stability was only demonstrated on a timescale of hours and in the absence of synaptic turnover. It

remained questionable whether assemblies could survive prolonged periods in which the reactiva-

tions are absent or when their synaptic substrate is subject to synaptic turnover. Here, we show that

assemblies can indeed survive for many hours without reactivation. Moreover, in our model, reactiva-

tions maintain and strengthen the assembly connectivity by stabilizing new synapses which support

the memories, while removing distracting synapses, resulting in offline memory gains.

We expect that offline memory gains will generally emerge for mechanisms which induce a bi-sta-

ble connectivity dynamics, that is when synapse creation balances removal both in a weakly and a

strongly connected configuration and connectivity will converge to one of these configurations from

any initial condition (Figure 7D–G). For example, the bi-stablility does not necessarily have to rely on

reactivation (see Helias, 2008; Deger et al., 2012; Fauth et al., 2015; Deger et al., 2018 for alter-

natives). However, as connectivity dynamics in the presence of structural plasticity is slow, memory

strength will typically not be saturated after learning. Therefore whenever the memory is strong

enough, one should observe convergence to the upper configuration and hence a strengthening

after learning. However, when only faster synaptic plasticity is considered for memory formation, the

connectivity (i.e. the weights) tends to converge already during learning and no off-line strengthen-

ing will be observed (Zenke et al., 2015; Litwin-Kumar and Doiron, 2014; but see Figure 6 in

Tetzlaff et al., 2013 for an example of non-converged weights).

Reactivation, sleep and memory improvement
Reactivations of memory related activity patterns in cortex have been reported mostly during sleep,

predominantly during NREM or slow-wave sleep (Ramanathan et al., 2015; Gulati et al., 2017;

Gulati et al., 2014; Peyrache et al., 2009; Jiang et al., 2017). During this sleep phase, the cortex

exhibits alternating phases of high and low activity, so-called Up- and Down-phases or slow oscilla-

tions (Steriade et al., 1993; Steriade et al., 2001; Timofeev et al., 2001). This Up-Down-dynamics

relies on recurrent excitation (Sanchez-Vives and McCormick, 2000), similar to the dynamics here.

In vitro imaging of individual activity during Up-Down-dynamics in cortical slices reveal further simi-

larities with our model: Each Up-state comprises a subgroup of cells with strong correlated activity

and the time-course of the activity is reminiscent of the convergence into an attractive state

(Cossart et al., 2003; Shu et al., 2003). Accordingly, also in vivo, Up-states induce stereotypical

local patterns (Luczak et al., 2007). Finally, single-cell recordings indicate that learning-related activ-

ity patterns reactivate during slow-wave sleep and that this is phase-coupled with Up-states

(Ramanathan et al., 2015). The memory strengthening reported here might therefore be related to

the long known beneficial properties of sleep on memory (Jenkins and Dallenbach, 1924;

Karni et al., 1994; Fischer et al., 2002; Walker et al., 2003; Dudai, 2004; Stickgold, 2005;

Gais et al., 2006; Korman et al., 2007; Lahl et al., 2008; Diekelmann and Born, 2010; Pan and

Rickard, 2015; Rickard and Pan, 2017).

In our model, we observe a decrease of memory stability for very long wake (sensory) phases (Fig-

ure 7). However, as sleep deprivation normally does not lead to a large scale loss of memories, it is

possible that there are further processes at work to prevent the decay of memories. For example,

there may be a stable pool of synapses (Kasai et al., 2003; Loewenstein et al., 2015), which is

more resilient to decay. Another possibility is that reactivations do not exclusively occur during

sleep, as sleep-like activity patterns can also be observed during periods of resting or quiet wakeful-

ness (Vyazovskiy et al., 2011; Sachidhanandam et al., 2013; Engel et al., 2016; Gentet et al.,

2010; Poulet and Petersen, 2008; Okun et al., 2010). Coherent with the above-presented model,

offline-gains for some kinds of memories have been observed during wakefulness (Walker et al.,
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2003; Rickard et al., 2008; Cai and Rickard, 2009; Varga et al., 2014; Honma et al., 2015;

Pan and Rickard, 2015; Rickard and Pan, 2017 but see, for example Adi-Japha and Karni, 2016).

Moreover, several fMRI studies establish a link between the reactivation of task specific patterns dur-

ing rest periods and later task performance (Staresina et al., 2013; Deuker et al., 2013), which is

consistent with this view.

Connectivity changes during sleep
The question whether cortical connectivity increases or decreases during sleep - especially slow-

wave sleep - has been heavily debated recently (Tononi and Cirelli, 2003; Frank, 2012; Frank, 2013;

Tononi and Cirelli, 2014; Timofeev and Chauvette, 2017). On one hand, the synaptic homeostasis

hypothesis states that connectivity should be down-regulated during sleep to balance the potentia-

tion dominated wake intervals and to allow for new learning (Tononi and Cirelli, 2003; Tononi and

Cirelli, 2014). On the other hand, there is accumulating evidence that connectivity is built-up espe-

cially after learning (e.g. Yang et al., 2014, for a recent review see Timofeev and Chauvette, 2017).

Here, we observe an increase in the intra-assembly connectivity, consistent with the second

hypothesis. Yet, inter-assembly and control connectivity decreases, as proposed by the synaptic

homeostasis hypothesis. Thus, our model combines and refines both views: connectivity inside mem-

ory representations is up-regulated, such that memories are consolidated and strengthened,

whereas the rest of of the network down-regulates weights and number of synapses, such that these

neurons remain susceptible to subsequent learning.

Synaptic weight fluctuations
While our model focuses on the critical ingredients described above, there are further challenges to

the retention of memories on long timescales. Most prominent are the large intrinsic fluctuations of

the synaptic weights observed on a daily basis (Yasumatsu et al., 2008; Statman et al., 2014;

Dvorkin and Ziv, 2016). Although the daily changes of the synaptic weights in our model are com-

parable to experimental data, in the model the synapses segregrate in a stable and unstable pool

(Figure 4—figure supplement 2, compare to Yasumatsu et al., 2008, Figure 1B). It needs to be

clarified in future research how such synapse intrinsic fluctuations affect memory maintenance. We

expect that also in this context the connectivity build-up due self-reactivation will make memories

more robust.

Materials and methods

Model description
Neuron model
As the simulations extend to timescales of days and weeks, we use computationally efficient rate-

based neurons. The membrane potential ui follows

t

dui

dt
¼�ui þ

XNcells

j¼1

XSij

k¼1

fjwij;kvjþ Iinhþ Istim;i þ Inoise;i (1)

where t¼ 155ms is the neural time-constant, Istim;i is the individual external stimulation current and

Inoise;i is a spatio-temporal white noise current drawn from a Gaussian distribution with zero mean

and standard deviation of 1.5. As neurons can be connected with multiple synapses, the connection

between each pair ði; jÞ of neurons is described by a number of synapses Sij and their synaptic

weights wij;k with k 2 f1; :::;Sijg (see Figure 1A). The utilization factor fj arises from short-term depres-

sion (below).

Moreover, each neuron receives a global inhibitory current

t

dIinh

dt
¼�Iinh�winh

XNcells

i¼1

vi

determined by the sum of all firing rates vi and the inhibitory weight winh ¼ 3:5wmax, where wmax ¼ 0:7

is a global factor scaling all weights (see below).
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The firing rate follows from the membrane potential by a logistic function vi ¼ ð1þ expð�uiÞÞ
�1.

Structural plasticity
We assume an all-to-all potential connectivity. Each pair of neurons has Smax potential synaptic loca-

tions at which functional synapses can be formed (Figure 1A). An unoccupied potential synapse is

converted to a functional synapse with rate b ¼ 1 day�1. These new synapses are initialized at a small

weight (w0 ¼ 0:001) and then evolve according to the synaptic plasticity rule described below. On

the other hand, functional synapses will be removed with a certain probability. To model the experi-

mental observation that larger synapses are more stable than small synapses (Le Bé and Markram,

2006; Matsuzaki et al., 2001; Yasumatsu et al., 2008), we use a deletion probability

dðwij;kÞ ¼ d1þ
d0� d1

1þ expð�bðw
off
�w

ij;k
ÞÞ

(2)

which scales between d1 ¼ 0:03day�1 (when wij;k !wmax) and d0 ¼ 24day�1 (for wij;k ! 0), with an offset

woff ¼ 0:35wmax and steepness b¼ 20.

Synaptic plasticity
The weights of existing synapses evolve according to a threshold-based Hebbian synaptic plasticity

rule inspired by the calcium-based plasticity rule of Graupner and Brunel (2012):

dwij;k

dt
¼

�Ddecaywij;k if vi<0:5 and vj<0:5

þDLTPðwmax �wij;kÞ if vi>0:5 and vj>0:5

�DLTDwij;k otherwise

8

<

:

where Ddecay ¼ ð2daysÞ�1 is the weight-decay rate at low activity. The synapse potentiates (with a

potentiation rate DLTP ¼ 0:1s�1) when pre- and postsynaptic neurons are simultaneously highly active.

Potentiation is soft-bound and diminishes close to the maximal weight wmax. When only one of the

neurons is active, the synapse depresses with a rate DLTD ¼ 0:01s�1. Note, this rule can also be seen

as a variant of the covariance rule (Sejnowski and Tesauro, 1989) with decay instead of potentiation

when both activities are low.

Short-term depression
Similar as in previous models (Holcman and Tsodyks, 2006; Barak and Tsodyks, 2007), excitatory

synapses are subject to short-term depression (Tsodyks et al., 1998; Markram et al., 1998;

Holcman and Tsodyks, 2006; Barak and Tsodyks, 2007) to terminate high activty states. The utili-

zation variable fi follows the presynaptic activity vi:

dfi

dt
¼
1� fi

trelax

�Ffivi;

where trelax ¼ 5s is the time constant describing recovery from depression, and F ¼ 1s�1 scales the

amount of depression when the synapse is activated. Note, as the dynamics of the utilization variable

only depends on the presynaptic activity, we can use the same fi for all synapses from the same pre-

synaptic neuron i.

Spike-frequency adaptation
We focus on short-term depression as a mechanism to terminate the high population activity. As an

alternative mechanism (see, for example Jercog et al., 2017; Setareh et al., 2017), we use spike-

frequency adaptation (Benda and Herz, 2003). We model this process as an additional current Iad;i

in Equation 1. This current shifts the sigmoidal gain function and, thereby, adapts the firing fre-

quency (Jercog et al., 2017). The adaptation current follows

tadapt

dIad;i

dt
¼�Iad;i �avi

with adaptation strength a¼ 33 and an adaptation timescale tadapt ¼ 5s to achieve dynamics
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comparable to short-term depression. In the simulations with spike-frequency adaptation, the utiliza-

tion variable fi was fixed to 1 (no short-term depression).

Simulations
We simulate a network of 240 neurons with an all-to-all potential connectivity of Smax ¼ 16 potential

connections between each pair of neurons. The network is initialized without any functional synapses

and exposed to a 6 hr long sensory phase (see below), during which structural plasticity converges

to an equilibrium state in which synapse creation and removal are balanced. The subsequent simula-

tion protocol has three phases (Figure 1B): During the learning phase, one of three disjunct stimula-

tion groups of 30 neurons each receives a strong (Istim ¼ 200) stimulation for 18 s, which leads to

nearly maximum activity in that group, followed by 36 s without stimulation. After that, the next

group is stimulated. This protocol is repeated as long as the learning phase lasts (typically 9 h).

After learning, the network is alternately exposed to sensory phases and rest phases with dura-

tions drawn from exponential distributions with means tsens ¼ 4h and trest ¼ 2h respectively unless

stated otherwise. The sensory phase models the ongoing input from upstream networks arising from

sensory information. During this phase, we randomly select 15 neurons and expose them to strong

stimulation (Istim ¼ 50) for 1 s. After this, a new group of neurons is selected for stimulation. Note, we

exclude the neurons that have been stimulated during the learning phase from the being stimulated

in this phase. This guarantees that the random patterns do not (accidentally) reactivate the stored

assemblies such that we are able to investigate the impact of phases without reactivation in our

model.

Finally, during the rest phase, none of the neurons receives any external stimulation and activity is

entirely intrinsically generated.

For simulations that investigate memory retention (Figure 7B and C, and Figure 8), we skip the

learning phase and manually initialize strongly connected assemblies. Each connection within these

assemblies starts with the same number of synapses with the maximum weight wmax, whereas all

other connections start with no synapses. In these simulations, the sensory and rest phase durations

are drawn from truncated normal distributions with a standard deviation set to 0.25 times the mean.

Simulations were written in C++ and optimized for efficient implementation of the above-

described synaptic and structural plasticity rules on long timescales. For example, synapse creation

and removal were simulated event-based. Differential equations were integrated with an Forward-

Euler-method with a step-size of 100ms. Note that ideally the step size should be much smaller than

the smallest time-constant in the system; however, this large value was chosen for efficiency and we

checked that a shorter time-step did not substantially change the results (data not shown). Analysis

was carried out in Python.

Evaluating associative memory quality
To quantify pattern completion, we examine the currents evoked by corrupted versions of the

learned activity patterns (stimulation groups). Corrupted pattern are created by randomly switching

off a certain percentage of neurons which are active in the pattern , while the same number of inac-

tive neurons is switched on. We evaluate the evoked current distributions in neurons which were

active in the original pattern and in neurons that were inactive across 100 randomly corrupted ver-

sions of each pattern. For good pattern completion, these distributions should be well separated.

As performance measure, we evaluate how well the currents can be classified. Neurons which

should be active should receive a current above the offset of the sigmoidal gain function in order to

exhibit a high activity. Hence, to assess the influence of the corruption level, we abstract the neurons

to binary units (i.e. active vs inactive classifiers) with a threshold at zero. We evaluate the percentage

of neurons that reproduce the correct activity of the original pattern (again averaging over 100 cor-

rupted versions of each pattern).

Analysis of connectivity decay during sensory phases
To gain better insight into the mechanisms that influence the connectivity, we compare our simula-

tions with an analytical theory. We first investigate the connectivity decay in the sensory phase dur-

ing which the network receives random stimulation. For this, we use a mean-field approach and

assume that an assembly is homogeneously connected with weights w and a number of synapses S
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between each pair of neurons (whose continuous value represents the expected number of synapses

between two neurons). Due to the fast timescale of LTP, we assume that the weights have reached

wð0Þ ¼ wmax at the end of a preceding learning or rest phase. During the sensory phase, the pre- and

postsynaptic activity in the stimulated groups are almost always below the plasticity thresholds.

Hence, weights will exponentially decay as wðtÞ ¼ wmax expð�DdecaytÞ.

Using the removal probability dðwðtÞÞ, Equation 2, the probability sðtÞ that a pre-existing synapse

survives until time t is

sðtÞ ¼ exp �

Z t

0

d wðtÞð Þdt

� �

(3)

¼ exp �

Z t

0

d wmax expð�DdecaytÞ
� �

dt

� �

; (4)

which needs to be evaluated numerically due to the non-linearity of dðwÞ. Given a connection with

Sðt¼ 0Þ ¼ S0 synapses, the expected number of surviving synapses is S0sðtÞ.

In addition to the surviving pre-existing synapses, new synapses will be created during the sen-

sory phase at vacant potential synaptic locations with rate b. These synapses will remain at very small

weights with a high removal probability d » d0. We approximate their number Ssmall by assuming that

the creation and the removal of these small synapses is in equilibrium. Then, the expected number

of created synapses equals the number of removed ones (Deger et al., 2012; Fauth et al., 2015),

which gives

SsmallðtÞ ¼
b

d0 þ b
Smax� S0sðtÞð Þ:

The resulting time-course of the total number of synapses, SðtÞ ¼ S0sðtÞþ SsmallðtÞ, matches the

connectivity decay in simulations (dashed line in Figure 4B).

Analysis of maximal time without reactivation
To estimate the longest duration of a sensory phase after which an assembly can still self-reactivate,

tmax, we determine the time-point at which the inhibition between the neurons within the assembly

becomes stronger than the excitation. We neglect the Ssmall newly formed synapses with small

weights and assume that only S0sðtÞ synapses with weights wðtÞ contribute to the excitatory recurrent

connectivity. Overcoming the inhibitory coupling between two neurons given by winh requires

S0sðtÞwðtÞ � winh. We find the implicit relation for tmax

expð�DdecaytmaxÞsðtmaxÞ ¼
winh

wmaxS0
; (5)

which is solved numerically to obtain an estimate of the longest time after which the assembly can

still reactivate. Reactivation needs to happen before then, otherwise the connectivity keeps decaying

and the assembly is lost.

Analysis of one full cycle of sensory and rest phase
In the simulation, the network cycles between sensory and rest phases. We examine the expected

connectivity changes within the stimulated groups for one full cycle of a sensory and rest phase. Until

the end of the sensory phase, tsens, the connectivity follows the above derived time-courses. Assum-

ing that the assemblies self-reactivate during the rest phase, the surviving S0sðtsensÞ synapses as well

as the SsmallðtsensÞ small synapses formed during the sensory phase will quickly potentiate due to the

correlated activity and remain stable throughout the rest phase. For longer resting interval durations

trest, we also have to consider synapse creation during this phase. The probability that a vacant

potential synapse is created during the rest phase is pðtrestÞ ¼ 1� expð�btrestÞ. Therefore,
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Snew ¼
vacant locationsat trand

Smax � S0sðtsensÞ� SsmallðtsensÞ½ �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl} �

1� expð�btrestÞ½ �

¼ d0
d0þb

Smax � S0sðtsensÞ½ � � 1� expð�btrestÞ½ �

potential synaptic locations are turned into synapses and stabilized during the resting interval.

Hence, the expected change in the number of connections per full cycle is

DSðS0; trest;tsensÞ ¼ Snewþ SsmallðtsensÞ� S0 1� sðtsensÞ½ �

¼ Smax 1�gðtrestÞ½ �� S0 1�gðtrestÞsðtsensÞ½ �
(6)

with gðtrestÞ ¼
d0

d0þb
expð�btrestÞ.

To compare this to the simulation results (Figure 7B), we estimated the number of cycles in the

simulation by dividing the simulation time of 5 days by the sum of the mean interval durations trest

and tsens and calculate the total expected change after the respective number of cycles.

Furthermore, we can use Equation 6 to determine the stationary number of synapses S* at the

start of a sensory phase for which we expect no change after one full cycle (i.e. DSðS*; trest; trandÞ ¼ 0)

as

S* ¼ Smax

1�gðtrestÞ

1�gðtrestÞsðtdecayÞ
: (7)

For this initial value, the number of synapses will still drop during sensory phases but will return

to the same value after each full cycle. Whether this stationary state is stable and can be reached will

be discussed below.
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