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Poly(ADP-ribose) polymerase inhibitors (PARPi) have shown clinical activity in patients with
germline BRCA1/2 mutation (gBRCAm)-associated breast and ovarian cancers. Accumulat-
ing evidence suggests that PARPi may have a wider application in the treatment of cancers
defective in DNA damage repair pathways, such as prostate, lung, endometrial, and pancre-
atic cancers. Several PARPi are currently in phase I/II clinical investigation, as single-agents
and/or combination therapy in these solid tumors. Understanding more about the molecular
abnormalities involved in BRCA-like phenotype in solid tumors beyond breast and ovarian
cancers, exploring novel therapeutic trial strategies and drug combinations, and defining
potential predictive biomarkers are critical to expanding the scope of PARPi therapy. This
will improve clinical outcome in advanced solid tumors. Here, we briefly review the pre-
clinical data and clinical development of PARPi, and discuss its future development in solid
tumors beyond gBRCAm-associated breast and ovarian cancers.
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INTRODUCTION
Increasing understanding of the cellular aberrations inherent to
cancer cells has allowed the development of therapies targeting
biological pathways. This approach has been an important step
toward individualization of therapy for germline BRCA1/2 muta-
tion (gBRCAm)-associated breast and ovarian cancers (1, 2). The
clinical development of poly(ADP-ribose) polymerase inhibitors
(PARPi), with their selective mechanisms of action involving the
DNA damage repair pathways, is an example of this strategy. Early
clinical trials have shown significant single-agent activity of PARPi
in gBRCAm-associated breast and ovarian cancers (3–5). Response
rates (RR) of 31–40% have been reported in gBRCAm ovarian
cancer patients with measureable recurrent disease, and the RR
and duration of response to PARPi monotherapy has been associ-
ated with platinum sensitivity (6, 7). Emerging evidence suggests
that PARPi is an effective therapeutic strategy in subsets of other
malignancies that have gBRCAm, such as melanoma, prostate, and
pancreatic cancers. BRCA-like tumors have molecular and clinical
characteristics in common with tumors occurring in patients with
gBRCAm, which may have implications for PARPi-based therapy
(8). Additionally, there is a potential therapeutic role for PARP
inhibition in a wider subgroup of solid tumors that may have
defective homologous recombination (HR) (9). Therefore, the
utility of PARPi in other solid tumors is potentially greater than
was previously envisioned (8).

PARPi have shown to enhance cytotoxicity in combination
with DNA methylating agents (10, 11), topoisomerase inhibitors
(12, 13), platinums (14, 15), alkylating agents (14), and radi-
ation (16, 17) in numerous preclinical studies. These preclin-
ical findings are being explored in clinical trials to elucidate
the role of PARPi as chemo- and radiosensitizers in various

tumor types (18). A large number of clinical trials are explor-
ing the efficacy of combination strategies in malignancies such
as non-small cell lung cancer (NSCLC), squamous cell cancer
of the head and neck (HNSCC), esophageal, and colorectal can-
cers (CRCs) (Tables 1 and 2); the results of several phase I and
II trials have already been reported (Table 3). These data sug-
gest further clinical exploration of PARPi as monotherapy or
combinations is warranted in patients not only with gBRCAm-
associated breast or ovarian cancer, but also in solid tumors with
HR dysfunction.

gBRCAm-associated and BRCA-like tumors are rare subsets of
advanced solid tumors. Approximately 5–10% of breast (27) and
10–15% of ovarian cancers (28) occur in the setting of a heredi-
tary cancer syndrome, the most common of which is a gBRCAm
(29). This occurs less frequently in other solid tumors. Approxi-
mately 5% of cutaneous melanoma and gastric cancers are related
to gBRCAm and 5–19% cases of familial pancreatic cancer are
attributed to a gBRCAm (30, 31). Furthermore, gBRCAm are very
rare events in patients with prostate cancer and NSCLC. gBRCAm
are present in 0.44–1.2% of prostate cancer cases (32, 33). The
overall incidence of gBRCAm in patients with NSCLC has not
been reported from large trials; only 3 patients (2.7%) were noted
to have a gBRCAm in a study of 110 Jewish men with epithelial
growth factor receptor (EGFR) mutant-NSCLC (34). These sub-
groups of tumors with germline HR dysfunction constitute a rare
population with recognized unmet therapeutic needs, and may be
sensitive to treatment with PARPi. Additionally, there are signifi-
cant unanswered questions of their use in solid tumors that have
molecular and clinical characteristics in common with gBRCAm-
associated tumors. Advances have been made in identifying new
therapeutic targets and analyzing response to novel treatments
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Table 1 | PARPi in clinical development (excluding breast and ovarian cancer) (19).

Name Treatment Cancer types Phase

Olaparib (AstraZeneca) Monotherapy GBM, prostate, ES, NSCLC, CRC, and gastric cancer I/II

Combination with chemotherapy Esophageal cancer and HNSCC

Combination with RT

Combination with targeted therapies

Rucaparib (Clovis) Combination with chemotherapy AST I

Veliparib (Abbott) Monotherapy gBRCAm prostate cancer, HNSCC, NSCLC, SCLC, pancreatic

cancer, biliary cancers, HCC, rectal cancer, cervical cancer, CRPC,

and CNS malignancies

I/II
Combination with chemotherapy

Combination with RT

Combination with targeted therapies

CEP-9722 (Cephalon) Monotherapy AST I

Combination with chemotherapy

E7016 (EISAI) Combination with chemotherapy Melanoma and AST I/II

BMN-673 (BioMarin) Monotherapy AST I

GBM, glioblastoma multiforme; ES, Ewing’s sarcoma; NSCLC, non-small cell lung cancer; SCLC, small cell lung cancer; CRC, colorectal cancer; AST, advanced solid

tumors; HNSCC, head and neck squamous cell cancer; CRPC, castrate resistant prostate cancer; HCC, hepatocellular cancer; CNS, central nervous system; n/a, not

applicable.

in these patient subgroups and this has led to an explosion of
PARPi-based clinical trials extending the patient cohort to include
BRCA-like tumors.

PARP FUNCTION AND INHIBITION IN DNA DAMAGE REPAIR
PATHWAYS
DNA damage can occur through various mechanisms from envi-
ronmental factors such as ultraviolet rays, ionizing radiation,
and genotoxic chemicals, to endogenous processes including gen-
eration of reactive oxygen species and replication (35). Highly
complex and intertwined repair pathways have evolved to provide
broad and redundant mechanisms to address damaged DNA: mis-
match repair (MMR), base excision repair (BER), and nucleotide
excision repair (NER) for a low fidelity single strand DNA break
(SSB) repair mechanism, and HR and non-homologous end-
joining (NHEJ) for double-strand DNA breaks (DSBs) (36).
The different repair mechanisms are orchestrated by numer-
ous enzymes to ensure the integrity of DNA essential for cell
survival.

PARP are a family of enzymes that catalyze nicotinamide ade-
nine dinucleotide (NAD+)-dependent ADP-ribosylation of DNA.
PARP1 is the best characterized member of the PARP family, and
PARP2 has a similar structure and function with varying affinity
for substrates (37). PARP1 has been implicated in several DNA
repair mechanisms including the repair of SSBs through the BER
pathway. It recognizes and binds to DNA sites with SSB via its DNA
binding domain, then subsequently synthesizes poly(ADP-ribose)
(PAR) by transferring ADP-ribose molecules from NAD+ to itself
and other acceptor proteins (38). This activates the formation
of a DNA repair complex consisting of multiple repair proteins,
including DNA ligase III and X-ray repair cross-complementing
1 (XRCC1) (39). The PARylated PARP1 dissociates from DNA
as the negative charge of PAR decreases its affinity for DNA,

and poly(ADP-ribose) glycohydrolase then degrades the PAR on
PARP1 (40). PARP has been shown to have a direct involvement in
DSB repair in addition to its role in preventing DSB formation by
promoting BER. In PARP1-deficient cells, ATM-kinase function
is compromised leading to a reduction in DNA DSB in response
to radiation, indicating a role of PARP1 in ATM activation and
HR (38, 41). PARP1 has been shown to reduce DSB formation
by sensing stalled replication forks and recruiting MRE11 for end
processing to initiate HR (42). Increased PARP1 expression and/or
activity in tumor cells have been demonstrated in many tumor
types (43, 44). Thus, HR dysfunction sensitizes cells to PARP inhi-
bition leading to further chromosomal instability, cell cycle arrest,
and apoptosis (45, 46).

PARPi are a class of drugs designed to compete with NAD+

for the substrate binding site of PARP, acting as an effective
catalytic inhibitor (47). PARP inhibition has been shown to
induce phosphorylation of DNA-dependent protein kinase (DNA-
Pk), to further stimulate error-prone NHEJ in HR-deficient cells
(44, 48, 49). More recently, another mechanism of action of
PARPi involving PARP1-trapping has been proposed (50). PARPi
have been shown to trap PARP1 and PARP2 while in com-
plex with damaged DNA, resulting in cytotoxic consequences
(51). Trapped PARP prevents its availability for repair function
and secondarily causes replication and transcription fork block-
ade, and subsequent DNA breakage. This mechanism of action
may be important to the clinical activity of the PARPi class.
The potency in trapping PARP differs markedly among PARPi,
with niraparib (MK-4827) and olaparib having greater potency
than veliparib. This pattern is not correlated with the catalytic
inhibitory properties of each drug. These findings suggest that
PARPi have several mechanisms of action and multiple targets in
the DNA repair pathway to potentially induce cancer cell death
(Figure 1).
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Table 2 |Trials of PARPi in solid tumors (excluding breast and ovarian cancers).

Malignancy PARPi Combination agent(s) Phase

GI

Pancreatic Olaparib Chemotherapy I/II

Veliparib Cisplatin

Gemcitabine

Gemcitabine/IMRT

Monotherapy (gBRCAm pancreatic cancer)

Modified FOLFOX 6

Pancreatic, biliary, urothelial and NSCLC Veliparib Cisplatin and gemcitabine I

Liver Veliparib Cisplatin and gemcitabine I

Colorectal cancer Veliparib TMZ I/II

Olaparib Irinotecan

Veliparib Capecitabine and RT

Colorectal cancer stratified by MSI Olaparib N/A I/II

Esophageal cancer Olaparib RT I

Gastric cancer Veliparib FOLFIRI I/II

Olaparib Paclitaxel

LUNG

NSCLC (surgically unresectable) Olaparib Concurrent RT± cisplatin I/II

Veliparib RT

Carboplatin/paclitaxel

Cisplatin/gemcitabine

EGFR mutation positive advanced NSCLC Olaparib Gefitinib±olaparib I/II

SCLC Veliparib Cisplatin/etoposide I/II

TMZ

GENITOURINARY

CRPC Veliparib Abiraterone and prednisone I/II

TMZ

Olaparib N/A II

GYNECOLOGIC

Cervical cancer Veliparib Cisplatin and paclitaxel I/II

Topotecan

Carboplatin and paclitaxel

Uterine carcinosarcoma Veliparib Carboplatin and paclitaxel II

CENTRAL NERVOUS SYSTEM

GBM Olaparib TMZ I

Veliparib TMZ I/II

Brain metastases Veliparib WBRT I/II

DPG Veliparib RT I/II

TMZ

Refractory CNS tumors Veliparib TMZ I

HEAD AND NECK

HNSCC Veliparib RT I/II

Docetaxel

5-FU

(Continued)
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Table 2 | Continued

Malignancy PARPi Combination agent(s) Phase

SARCOMA

Ewing’s sarcoma Olaparib N/A II

SKIN CANCER

Melanoma Veliparib TMZ II

E7016 TMZ

ADVANCED SOLIDTUMORS

Veliparib Carboplatin and gemcitabine I/II

Gemcitabine

Carboplatin and paclitaxel

Mitomycin C

Capecitabine and oxaliplatin

Cyclophosphamide

Olaparib Cisplatin/gemcitabine

PLD

Topotecan

Niraparib Monotherapy

CEP-9722 Monotherapy

BMN-673 Monotherapy

IMRT, intensity modulated radiotherapy; NSCLC, non-small cell lung cancer; RT, radiotherapy; MSI, microsatellite instability; CRPC, castrate resistant prostate cancer;

SCLC, small cell lung cancer; GBM, glioblastoma multiforme; DPG, diffuse pontine glioma; HNSCC, squamous cell carcinoma of the head and neck; 5-FU, 5-fluorouracil;

PLD, pegylated liposomal doxorubicin.

PARP INHIBITION IN gBRCAm AND BRCA-LIKE SOLID
TUMORS
Understanding DNA repair biology has allowed the identification
of patient subsets with high potential for response to PARPi treat-
ment. The marked susceptibility of patients with gBRCAm has
validated gBRCAm as a predictive biomarker for PARPi response
in breast and ovarian cancer patients. In a series of pivotal pre-
clinical studies, PARPi were noted to cause selective cytotoxicity
for in vitro and in vivo models of BRCA-deficient cells (52, 53).
Additionally, PARPi attenuates tumor formation in embryonic
stem cell-derived teratocarcinoma xenograft models (46). These
findings were translated into a phase I clinical trial of the PARPi,
olaparib, in recurrent breast, ovarian, and prostate cancer patients
with gBRCAm (4), initiating a new era of possibilities for the
use of PARPi as single-agent therapy to treat gBRCAm-associated
cancers.

The BRCA-like behavior has been described based on clinical
and molecular features that parallel gBRCAm-associated cancers’
characteristics. The major clinical BRCA-like behavior identified
is susceptibility to platinums and other DNA-damaging agents
(54–56). Some of the molecular events described in BRCA-like
behavior include epigenetic silencing of BRCA1 through promoter
methylation (57–59) and overexpression of EMSY, suppressing
BRCA2 transcription (60). In addition, loss or disruption of
proteins necessary for HR such as RAD51, ATM, ATR, CHK1,
CHK2, FANCD2, and FANCA (53, 61–64) are observed in a vari-
ety of tumors (8, 65–71), and may confer sensitivity to PARPi
(8, 53). Defects in translesion synthesis (TLS) also contribute to
carcinogenesis but confer sensitivity to DNA-damaging agents
(72, 73), requiring further investigation on sensitivity to PARPi.

Homozygous mutation in the PTEN tumor suppressor gene may
also lead to HR dysfunction (74). Increased PARPi sensitivity was
shown in a series of cell lines with PTEN mutation or haploinsuf-
ficiency, and confirmed in xenograft models using olaparib (74).
There is also clinical evidence that olaparib may have a therapeu-
tic utility in PTEN-deficient endometrial cancer (75, 76). Further
studies are needed to investigate whether PTEN loss can serve as a
potential biomarker for PARPi sensitivity (77–79). Future studies
should focus on DNA profiling and the use of predictive biomark-
ers to select those tumors which are more likely to respond to
PARPi. Ongoing research suggests HR deficiency, rather than a
specific mutation in the BRCA genes, may be the main driver of
cytotoxicity of PARP inhibition (45).

TRIALS WITH PARPi IN gBRCAm AND/OR BRCA-LIKE
ADVANCED SOLID TUMORS
MALIGNANT MELANOMA
Little is known about the underlying cause of hereditary cancer
predisposition in melanoma and its impact on the prognosis and
therapeutic decisions. Cutaneous melanoma has been associated
with mutations in the BRCA2 gene although there are only a few
cases reported for uveal melanoma in BRCA2 mutation carri-
ers (80). In recent years, the advent of BRAF V600E inhibitors
(e.g., vemurafenib) and anti-CTLA4 antibodies (e.g., ipilimumab)
has significantly improved outcomes in patients with metasta-
tic melanoma (81–83), with a median duration of response of
8 and 16 months, respectively (84, 85). However, most patients
eventually progress and some do not tolerate therapy due to
immune-related side effects, indicating the need to develop other
therapeutic strategies.
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PARPi have multiple targets in DNA repair pathways that
can potentially promote cancer cell death. In the setting of
melanoma, altered expression or new mutations in DNA MMR
genes, MLH1 and MSH2, have been reported in brain metastases
(86). A melanoma cell line (MZ7), derived from a patient who
received dacarbazine therapy, exhibited a high level of resistance to
temozolomide (TMZ) without expressing O(6)-methylguanine-
DNA methyltransferase (MGMT), which was related to impaired
expression of MSH2 and MSH6 (87). PARP inhibition with INO-
1001 has been shown to restore sensitivity to TMZ in an MMR-
deficient xenograft model of malignant melanoma (88), and
another PARPi, GPI 15427, enhanced TMZ anti-tumor activity in
various cancers, including metastatic melanoma in an orthotopic
xenograft mouse model (24). These preclinical studies provide
evidence that MMR loss of function is a potential predictive
biomarker of PARPi responsiveness in patients with metastatic
melanoma.

A number of clinical trials of PARPi in melanoma patients have
been conducted or are ongoing although they have not specif-
ically addressed the frequency of HR dysfunction/gBRCAm in
their populations. Bedikian et al. reported the results of a phase
IB study of intravenous INO-1001 and oral TMZ in unselected
patients with unresectable stage III or IV melanoma (89). The
dose limiting toxicities (DLTs) were elevation of liver transami-
nases and myelosuppression at the 400-mg dose of INO-1001. Of
the 12 patients enrolled, 1 patient had a partial response (PR)
and 4 patients had stable disease (SD). Several phase II stud-
ies using PARPi either as a single-agent or in combination with
chemotherapy, radiotherapy, or targeted therapy are summarized
in Table 3. A phase II trial sought to evaluate the combination
of rucaparib and TMZ in patients with metastatic malignant
melanoma (90). The disease-control rate was 40% (8/20), where
four patients attained a PR and four others had prolonged SD.
In total, 12 of the 40 patients required a dose reduction of TMZ
secondary to myelosuppression (90). Another phase II study eval-
uated treatment with rucaparib 12 mg/m2 and TMZ 200 mg/m2

in patients with advanced melanoma. Myelosuppression was again
noted, with 25 patients (54%) requiring a 25% dose reduction in
TMZ. The RR was 17.4%, with median time to progression and
OS of 3.5 and 9.9 months, respectively. This study demonstrated
that TMZ could safely be given with a PARP-inhibitory dose (PID)
of rucaparib (12 mg/m2), based on 74–97% inhibition in PARP of
peripheral blood mononuclear cells (PBMCs). This resulted in an
increase in PFS compared with historical controls (91). Phase I and
II trials evaluating E7016 in combination with TMZ in patients
with advanced solid tumors and malignant melanoma are ongo-
ing (92, 93). Eligibility criteria for the phase II study include BRAF
wild-type status and no prior treatment with TMZ or PARPi. As
substantial progress has been made in the management of malig-
nant melanoma in recent years (94), it remains to be seen whether
PARPi will be added to the treatment armamentarium.

PANCREATIC CANCER
Hereditary pancreatic cancer is rare and extremely heterogeneous,
and it accounts for approximately 2% of all pancreatic cancer
cases. The major component of hereditary pancreatic cancer is
the familial pancreatic cancer syndrome. Although up to 20% of
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FIGURE 1 | PARP1 binds to DNA single strand break and catalyzes
poly(ADP-ribosyl)ation of itself and acceptor proteins, which
facilitates recruitment of DNA repair proteins. In addition to its reported
role in base excision repair, PARP1 plays a role in activating ATM
necessary for homologous recombination and inactivating DNA-dependent
protein kinase, a key component of non-homologous end-joining. PARP
inhibitors directly interfere with the above functions of PARP1. In addition,
PARP inhibitors have been shown to trap PARP1 on damaged DNA,
leading to replication and transcription fork blockage and subsequent
double-strand DNA breakage. Repair of intra/interstrand crosslinks through
nucleotide excision repair or homologous recombination are also important

components of the DNA repair system, and whether defects in these
repair pathways can confer sensitivity to PARPi are under investigation.
PARP, poly(ADP-ribose) polymerase; PARPi, PARP inhibitor; DNA polβ/δ/ε,
DNA polymerase beta/delta/epsilon; XRCC1, X-ray repair
cross-complementing protein 1; DNA-PKcs, DNA-dependent protein
kinase catalytic subunit; KU 70/80, a.k.a XRCC6/5 (X-ray repair
cross-complementing protein 6/5); ATM, ataxia telangiectasia mutated;
ATR, ataxia telangiectasia and Rad3-related; γ-H2A.X, gamma-histone H2A
member X; RAD51, RAD51 homolog (S. cerevisiae); ERCC1, DNA excision
repair protein ERCC1; XPF, DNA repair endonclease XPF (xeroderma
pigmentosum group F-complementing protein); FANC, Fanconi anemia.

hereditary pancreatic cancer cases are associated with germline
mutations in BRCA2, CDKN2A, PRSS1, STKI1, or MMR genes,
the major underlying gene defects are still unknown (95). BRCA2
mutation prevalence in familial pancreatic cancer patients varies
between 5 and 19% (30), and a BRCA2 mutation increases the
risk of developing pancreatic cancer by approximately 3.5-fold
(96). The unique biology of cancer cells with BRCA mutations
offers potential therapeutic advantages with agents such as plat-
inums. However, one case series report patients with gBRCAm
did not reveal a benefit to first line platinum chemotherapy in the
treatment of advanced pancreatic cancer (97), although this needs
to be further evaluated in a selected study for pancreatic cancer
with gBRCAm. Preclinical studies have shown single-agent activity
of PARPi (98), as well as radiosensitization in combination with
chemoradiation in BRCA2-deficient pancreatic cells (25). Stud-
ies are ongoing to examine single-agent and combination PARPi
therapy in BRCA2 mutant pancreatic cancers.

Interim results from an ongoing phase II study of olaparib
monotherapy in gBRCAm-associated advanced solid cancers were
recently reported (99). Nearly 8% of the patients (23/298) had
advanced/recurrent pancreatic cancer. A RR of 5/23 (21.7%) was
noted, with eight patients achieving SD. This yielded a clinical ben-
efit rate of 57% in gBRCAm-associated pancreatic cancer patients.

Pishvaian et al. reported a phase I study of veliparib with concur-
rent FOLFOX chemotherapy in patients with metastatic pancreatic
cancer (100). Twenty-eight patients were enrolled in the trial and
at the time of review, data were available for 18 patients. For the
11 patients who were treated in the first line setting, RR was 18%,
with a PFS and OS of 3.9 and 7.4 months, respectively (Table 3).
Therefore, the investigators concluded that the experimental com-
bination regimen could be given safely, and was modestly active
(100). These data support further evaluation of PARPi either as
different combinations or more potent PARPi with chemother-
apy and/or other targeted agents combination in this subgroup of
pancreatic cancer patients.

PROSTATE CANCER
Germline BRCA2 mutation confers the highest genetic risk of
prostate cancer known to date at 8.6-fold in men ≤65 years,
whereas the effect of BRCA1 is more modest at 3.4-fold (32, 33,
101, 102). Prostate cancer in patients with gBRCAm tends to be
more aggressive, with a higher likelihood of nodal involvement
and distant metastasis with inferior survival outcomes (103). Tri-
als analyzing the response of these patients to DNA-damaging
agents, such as platinums, and identifying the therapeutic targets
of this subgroup are urgently needed.
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Single-agent olaparib has demonstrated activity in patients
with gBRCAm castration resistant prostate cancer (CRPC). A
phase I olaparib study by Fong et al. reports one gBRCA2m patient
treated with single-agent olaparib who sustained a CR lasting in
excess of 2 years (4). Recently, Sandhu et al. presented clinical
data on four patients with advanced gBRCAm CRPC, three of
whom were treated with olaparib and one with niraparib (104).
Two patients on olaparib showed prostate-specific antigen (PSA)
and radiologic responses lasting 26 and 34 months, respectively,
while the third patient had SD for 10 months. The patient on nira-
parib exhibited primary resistance with development of a new liver
lesion and a rise in PSA of nearly threefold at the time of the first
reassessment. Translational studies revealed positive ERG staining
by immunohistochemistry, and ERG rearrangements by FISH, as
well as either heterozygous or homozygous PTEN allelic loss in all
four cases. Subsets of patients with CRPC are also known to mani-
fest increased PARP activity (105). This potentially opens another
avenue for therapy utilizing PARPi, although gBRCAm is a very
rare event in prostate cancer.

Gene fusion between the ERG proto-oncogene and TMPRSS2
promoter is a major genomic alteration observed in approximately
50% of prostate cancers. Formation of the TMPRSS2-ERG fusion
gene causes aberrant androgen-dependent ERG expression (106)
and promotes tumorigenesis (107). Preclinical studies have shown
that PARP1 directly interacts with ERG to inhibit ETS gene fusion
protein activity. In turn, inhibition of PARP1 reduces ETS-positive,
but not ETS-negative, prostate cancer xenograft growth (108). This
may be a useful predictive biomarker for PARPi sensitivity.

Other preclinical studies include radiosensitization by ruca-
parib, most evident in PTEN-deficient prostate cancer cells con-
taining the TMPRSS2-ERG fusion gene (109). However, no asso-
ciation was noted between loss of PTEN expression by immuno-
histochemistry and ETS rearrangements by FISH, with radiologic
assessment of the anti-tumor activity of niraparib in 18 patients
with prostate cancer (110). The HR/PARP synthetic lethality
model may be more widely applicable in prostate cancer with
germline or somatic inactivating mutations in the HR DNA repair
genes, CHK2, BRIPI/FANCJ, NBS1, BRCA1, and ATM, collectively
thought to occur in 20–25% of prostate cancer cases. Recently, a
phase II study of olaparib in unselected patients with CRPC was
initiated (111).

Veliparib has also been investigated and shown to enhance the
anti-tumor activity of TMZ in prostate cancer xenografts, yielding
tumor size reduction in TMZ-resistant PC3-Leu prostate can-
cer mice (112). This formed the rationale for testing the efficacy
and safety of veliparib and TMZ in 26 patients with metastatic
CRPC (113). Grade III/IV thrombocytopenia was noted in 15%
of patients. Two patients had a confirmed PSA response and four
patients had SD for at least 4 months. The median PFS and OS were
2.1 (95% CI: 1.8, 3.9) and 9.1 (95% CI: 5.5, 11.7) months, respec-
tively. This study suggested veliparib and TMZ are tolerated well,
but with limited clinical activity. Future trials will explore the use of
different chemotherapy agents in combination with higher doses
of veliparib. Overall, further evaluation of biochemical changes or
predictive biomarkers in response to PARPi in advanced prostate
cancer is needed.

COLON CANCER
Preclinical data suggest the utility of PARPi in tumors deficient in
HR and displaying microsatellite instability (MSI) due to muta-
tions in the coding microsatellites of the MRE11A and hRAD50
genes involved in DNA DSB repair (114). Preferential cytotoxi-
city to the PARP1 inhibitor ABT-888 was seen in MSI cell lines
containing mutant copies of MRE11A, compared with wild-type
or microsatellite stable (MSS) cells (115). In a recent study, the
observed ability of MSH3 to protect against DSB was exploited
by the combination of oxaliplatin and a PARPi, which produced a
synergistic cytotoxic effect against CRC cells (116). Another study
reporting high correlation between MRE11 mutations and MSI in
CRC cell lines as well as primary tumors, found that PARPi prefer-
entially kills MSI cell lines harboring MRE11 mutations (115). The
data suggest a role for PARPi in MSI-CRC treatment, providing a
rationale for clinical studies in this subset of patients.

Dozens of potential PARPi have been screened in vitro and
in vivo to select candidates for clinical evaluation as a chemosen-
sitizer in CRC (117). A phase II trial is currently evaluating the
efficacy of olaparib in metastatic CRC (mCRC) stratified for MSI
status (118). Twenty-two patients with MSI-negative tumors were
enrolled and received a mean number of two cycles. Preliminary
data indicate no single-agent activity of olaparib against non-
MSI-high (MSI-H) mCRC. Accrual of MSI-H mCRC patients
continues, along with active biomarker analysis. Other clinical
trials of PARPi in MSI-CRC are in progress.

Studies have evaluated and validated veliparib as a sensitizer to
irinotecan, oxaliplatin, and radiation therapy (RT) in CRC cells
(26, 119). Several phase II studies are evaluating the role of PARPi
as a chemosensitizer in patients with advanced and mCRC, irre-
spective of MSI status (Table 2). Pishvaian et al. (120) conducted
a single arm, open label phase II study in patients with unre-
sectable or mCRC. Patients were treated with TMZ (150 mg/m2

orally daily) days 1–5, and veliparib (40 mg orally twice a day) days
1–7 of each 28-day cycle. Immunohistochemistry was performed
on archived tumor samples to quantify MMR and PTEN protein
expression. The combination of veliparib and TMZ was well toler-
ated in the 47 patients treated, with a disease-control rate of 23%.
The results of immunohistochemistry for the MMR and PTEN
proteins from 45 archived tumor samples are not yet reported. It
was concluded that, in a heavily pre-treated population of patients
with mCRC, the combination of veliparib and TMZ can be safely
given, and displayed limited clinical activity.

LUNG CANCER
Reduced BRCA1 mRNA and protein expression levels have been
observed in up to 44% of NSCLC, occurring through various
mechanisms such as promoter hypermethylation (121). One study
showed that BRCA1 silencing increased susceptibility to olaparib
treatment in NSCLC cell lines (122), providing evidence for pos-
sible clinical application in this subset of NSCLCs. A future study
will assess the utility of olaparib in delaying the time to disease pro-
gression in patients with advanced NSCLC who have responded
to initial chemotherapy (123). The role of PTEN mutation and
its effect on the susceptibility to PARPi is an area of continued
research in lung and other malignancies. Up to 9% of NSCLCs
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have a somatic mutation in PTEN. Olaparib has yielded addi-
tive activity with cisplatin in homozygous deleted PTEN-deficient
NSCLC cells and xenograft models (79). Another gene involved
in DNA repair, excision repair cross-complementation group 1
(ERCC1), is a key component of NER and the main mechanism for
removing platinum–DNA adducts (124). Preclinical studies have
explored this repair pathway, demonstrating synergy of olaparib
and veliparib with cisplatin in NSCLC cell lines with low ERCC1
expression levels (125, 126). PARPi have also been explored pre-
clinically in combination with other DNA-damaging modalities
such as RT (16).

The role of PARPi in patients with EGFR mutant NSCLC
has been studied in a phase IB study of olaparib and the
EGFR tyrosine kinase inhibitor (TKI) gefitinib (127). It was
noted that high BRCA1 mRNA expression is associated with a
shorter PFS in EGFR-mutated patients treated with erlotinib.
To date, 18 patients have received treatment at four different
dose levels of olaparib ranging 100–200 mg twice daily dose,
and 200–250 mg three times daily dose. DLT was grade 3 ane-
mia observed at dose level 4 (250 mg three times daily). Of
the 17 patients in whom a disease response could be evalu-
ated, 7 (41.1%) had a PR. All of the patients who responded
were EGFR TKI naive. Another seven patients (41.1%), most of
whom received prior treatment, had documented SD, and three
patients (17.6%), all of whom had prior EGFR TKI treatment,
progressed. The observed anti-tumor activity will be further eval-
uated in EGFR TKI treatment-naive patients with EGFR-mutated
NSCLC; a phase II randomized trial comparing the efficacy of
olaparib and gefitinib versus gefitinib alone was launched in
July 2013.

Multiple studies are also exploring the role of PARPi in com-
bination with chemotherapy and/or RT in NSCLC. A phase I
dose-escalation trial of olaparib and concurrent RT, with or with-
out cisplatin, is ongoing in patients with advanced NSCLC (128).
SWOG 1206, a phase I/II trial, is evaluating the use of veliparib
with or without RT and carboplatin/paclitaxel in patients with
inoperable stage III NSCLC. Several similar studies involving other
combinations of PARPi± chemotherapy and/or RT are ongoing
in patients with NSCLC (Table 2). Ultimately, combining PARPi
with cisplatin or radiotherapy may prove to be a useful strategy in
the treatment of NSCLC.

EWING’S SARCOMA
PARPi has preclinically shown anti-tumor activity in the treat-
ment of Ewing’s sarcoma. Gene fusions involving Ewing’s sarcoma
breakpoint region 1 (EWS) and ETS transcription factors have
been implicated in abnormal proliferation, invasion, and tumori-
genesis (129). PARP inhibition has been evaluated as an effective
treatment option for Ewing’s sarcoma with EWS–FLI1 or EWS–
ERG genomic fusions in xenograft models (130), and olaparib has
been shown to have potent activity in cell lines with a EWS/FLI1
translocation (131). Additionally, a study in preclinical models
showed synergy between PARPi and TMZ (130) in the treatment
of Ewing’s sarcoma cell lines. Currently, a number of clinical trials
investigating the utility of PARPi in Ewing’s sarcoma are underway
(132, 133).

CHALLENGES AND FUTURE DIRECTIONS FOR CLINICAL
DEVELOPMENT IN CANCERS OTHER THAN BREAST AND
OVARIAN
There is considerable interest in the clinical development of PARPi
for use in solid tumors other than breast and ovarian cancers. The
optimal dose, scheduling, and sequencing of PARPi, and combi-
nation with other cytotoxic or biologic agents need to be evaluated
in carefully designed clinical trials. The incorporation of predic-
tive biomarkers into studies of gBRCAm and BRCA-like cancers
presents challenges. First is the development of a mechanism with
which to identify patients who are most likely to benefit from
PARPi therapy. Predictive biomarkers applied to readily available
bioresources, such as archival tissue or non-tumor tissue, have
been proposed. Changes in or baseline PAR incorporation into
PBMC DNA was suggested and evaluated as a putative early on-
treatment pharmacodynamic measure; while present, there was no
relationship to clinical outcome (134). BRCA1/2 somatic muta-
tion or promoter methylation, ATM mutation, MRE11-dominant
negative mutations in MMR-deficient cancers, FANCF promotor
methylation and PTEN deficiency are all potential biomarkers of
sensitivity to PARPi (51). Importantly, not all patients with defi-
ciencies in BRCA1 or 2 are responsive to PARP inhibition (135).
Therefore, identification and validation of predictive biomarkers
of those gBRCAm who will respond to PARPi is also an important
area of ongoing research.

The second challenge is dissecting and defining mechanisms
of development of resistance to PARPi, and whether they por-
tend potential collateral resistance to other DNA-damaging agents.
Acquisition of a secondary mutation in BRCA1/2 that allows
BRCA1/2 gene read-through and yields a functional protein has
been demonstrated in cell lines and some patients; this was corre-
lated with loss of susceptibility to PARPi treatment (136). Other
potential mechanisms of clinical resistance have been proposed
based on preclinical models, including loss of 53BP1, or increased
activity of RAD51 (137, 138). Whether these findings can be
used as selective or predictive biomarker is yet to be determined.
Ang et al. recently reported that gBRCAm-associated ovarian
cancer patients retain the potential to respond to subsequent
chemotherapy, including platinum-based agents, after progression
on PARPi (139). This observation has implications for chemother-
apy sequencing. Further studies are needed to evaluate outcomes
to subsequent chemotherapies or another PARPi in other solid
tumor patients who have a BRCA-like phenotype. Understand-
ing the mechanism(s) of resistance to PARPi will lead to optimal
application and sequencing of PARPi and other DNA-damaging
agents.

CONCLUSION
PARPi are a class of agents with mechanisms of action beyond
their documented role in BER pathway. They potentially have
a broader application in the treatment of cancer patients, both
within the confines of gBRCAm and BRCA-like disease, but also
extending to a wide range of aberrations in DNA damage repair
pathways. Ongoing research will aim to identify optimal predictive
biomarkers in order to improve patient selection and thus, clinical
responses to treatment. It is anticipated that novel clinical trial
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design strategies will help minimize toxicity and maximize ther-
apeutic efficacy. Other pertinent questions relate to the duration
of treatment and long-term effects of treatment, which need to
be carefully investigated (20). Future directions for PARPi will
include clinical trials directed at patient subsets that are most
likely to respond to treatment, based on their molecular char-
acteristics and predictive biomarkers. This may ultimately result
in practice-changing treatments in malignancies such as pancre-
atic cancer, prostate cancer, and Ewing’s sarcoma. The results of
trials of PARPi, either as single-agents or in combination with
chemotherapy, RT, or biological agents in other solid tumors are
eagerly awaited.
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