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A Targeted Mass Spectrometric 
Assay for Reliable Sensitive 
Hepcidin Quantification
Ahmed Moghieb1, Lia Tesfay2, Song Nie1, Marina Gritsenko1, Thomas L. Fillmore1, 
Jon M. Jacobs1, Richard D. Smith   1, Frank M. Torti3, Suzy V. Torti2, Tujin Shi1 & 
Charles Ansong1

Hepcidin, a cysteine-rich peptide hormone, secreted mainly by the liver, plays a central role in iron 
metabolism regulation. Emerging evidence suggests that disordered iron metabolism is a risk factor 
for various types of diseases including cancers. However, it remains challenging to apply current mass 
spectrometry (MS)-based hepcidin assays for precise quantification due to the low fragmentation 
efficiency of intact hepcidin as well as synthesis difficulties for the intact hepcidin standard. To address 
these issues we recently developed a reliable sensitive targeted MS assay for hepcidin quantification from 
clinical samples that uses fully alkylated rather than intact hepcidin as the internal standard. Limits of 
detection and quantification were determined to be <0.5 ng/mL and 1 ng/mL, respectively. Application 
of the alkylated hepcidin assay to 70 clinical plasma samples (42 non-cancerous and 28 ovarian cancer 
patient samples) enabled reliable detection of endogenous hepcidin from the plasma samples, as well 
as conditioned culture media. The hepcidin concentrations ranged from 0.0 to 95.6 ng/mL across non-
cancerous and cancer plasma specimens. Interestingly, cancer patients were found to have significantly 
higher hepcidin concentrations compared to non-cancerous patients (mean: 20.6 ng/ml for cancer; 
5.94 ng/ml for non-cancerous) (p value < 0.001). Our results represent the first application of the alkylated 
hepcidin assay to clinical samples and demonstrate that the developed assay has better sensitivity and 
quantification accuracy than current MS-based hepcidin assays without the challenges in synthesis of 
intact hepcidin standard and accurately determining its absolute amount.

Hepcidin is a peptide hormone derived from the liver and known to regulate systemic iron hemostasis1,2. The 
mature bioactive form of hepcidin is a 25 amino acid residue peptide (hepcidin-25). Smaller isoforms of hepcidin 
have been reported in serum and urine, but their functional significance is unclear3–6. Hepcidin dysfunction is 
associated with several diseases, including various cancers, sepsis and chronic kidney disease7,8 where in gen-
eral hepcidin concentrations are increased. Thus, there is growing interest in utilizing hepcidin measurement 
as a more instructive marker for iron state, as well as diagnosis and management of iron metabolism disor-
ders. Immunoassays have traditionally been utilized to measure hepcidin in biological fluids. However, present 
immunoassays measure total hepcidin and do not distinguish hepcidin forms (e.g., hepcidin-20, hepcidin-22, and 
hepcidin-25). Mass spectrometry (MS)-based assays for hepcidin detection have been reported4,9–13. The attrac-
tiveness of MS-based assays stems from the fact that they are able to distinguish hepcidin isoforms. Literature 
reports of MS-based hepcidin concentrations indicate significant variations14, most likely due to the lack of 
transferable hepcidin gold standards. Intact hepcidin has 4-disulfide linkages15, making consistent synthesis of 
intact hepcidin standard with high purity challenging, and thus degrading quantitation accuracy. To our best 
knowledge, the only prior report utilizing the reduced form of hepcidin-25 was by Cho et al.16 who compared 
the ionization efficiency of reduced and nonreduced forms in a targeted mass spectrometry assay with relatively 
low sensitivity (LOD 1 fmol in an un-reported matrix) and who did not apply their approach to clinical samples.

Herein we describe an improved MS-based assay that addresses the challenge(s) with intact hepcidin-25 by 
using a fully alkylated hepcidin-25 and the first application of the alkylated hepcidin assay to clinical samples. 
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The use of an alkylated hepcidin-25 standard makes both synthesis of a consistent peptide product and accurate 
determination of hepcidin-25 straightforward. We show that the alkylated hepcidin-25 alleviates the low frag-
mentation efficiency of intact hepcidin-25. Additionally, we demonstrate that assays for alkylated hepcidin-25 
provide improved detection (LOD) and limit of quantification (LOQ) values in plasma compared to current 
MS-based assays using intact hepcidin-25 as internal standards. Finally, we demonstrate the improved assay to 
measure endogenous hepcidin-25 in 70 clinical plasma samples (42 non-cancerous and 28 ovarian cancer patient 
samples) as well as in conditioned culture media.

Experimental Procedures
Reagents.  Urea, iodoacetamide (IAA), and trichloroacetic acid (TCA) were purchased from Sigma (St. Louis, 
MO). Tris(2-carboxyethyl) phosphine (TCEP) was purchased from Thermo Scientific (San Jose, CA). Mass spec-
trometry grade solvent components, including water (H2O), formic acid (FA), and acetonitrile (ACN) were pur-
chased from Sigma (St. Louis, MO).

Hepcidin-25 standards.  The synthetic fully alkylated hepcidin-25 peptide (DTHFPICIFCCGCCH 
RSKCGMCCKT) labeled with 13C/15N on C-terminal lysine residue (K24), 3259.97 g/mol and unlabeled, 
3251.26 g/mol were purchased from New England Peptides (Gardner, MA). The alkylated light peptide for 
hepcidin-25 were estimated to be of >95% purity by HPLC and the purity of crude alkylated heavy hepcidin-25 
was not known.

Sample preparation.  All plasma samples (including 70 patient plasma) were subjected to preparation work-
flow for precise detection and quantification of hepcidin-25 as shown in Supplementary Fig. 1. First, samples 
were thawed in ice and then vortex mixed. In a 1.5 mL LoBind tube, 100 µl plasma proteins were mixed with 10 µl 
heavy internal standard (71.03 ng/ml), and then denatured with 8 M urea and reduced with 10 mM TCEP for 2 h 
at 37 °C. Protein cysteine residues were alkylated with 40 mM iodoacetamide for 2 h at room temperature in the 
dark. 4% of trichloroacetic acid (TCA) solution (1:1 ratio) was added. Samples were then vortexed for a few sec-
onds and centrifuged at 18,000 × g for 5 minutes to obtain a clear supernatant. The supernatant was transferred 
into a new LoBind tube, then diluted with 0.1% formic acid in water for solid phase extraction (SPE) cleaning 
using a 1 mL SPE C18 column (Phenomenex, Torrence, CA). After SPE cleaning, the samples were completely 
dried in a vacuum concentrator, resuspended with 40 µl 0.1% formic acid in water and then centrifuged at 18,000 
× g for 3 h at 4 °C. The supernatant was transferred into liquid chromatography (LC) vials (Waters) for mass spec-
trometry (MS) analysis. For media, in 15 ml tube, 2 ml media was mixed with 10 µl internal hepcidin-25 standard 
solution (71.03 ng/ml), using the same protocol as described above for plasma samples with only one extra step of 
bovine serum albumin (BSA) blocking of SPE C18 columns prior to media sample cleaning.

Generation of calibration curve.  Control plasma with negligible endogenous hepcidin-25 was used as the 
matrix for generating calibration curve. Lyophilized high-purity light alkylated hepcidin-25 peptide was recon-
stituted with H2O/ACN (70:30, v/v), then hepcidin-25 stock solutions (16.26, 162.56 and 1625.63 ng/ml) were 
diluted with the same solvent. Light alkylated hepcidin-25 was spiked into the control plasma with the final con-
centrations of 0, 0.5, 1, 2.5, 5, 10, 25, 50, 100 and 250 ng/mL. Heavy alkylated synthetic peptide was also spiked 
into each sample at a final concentration of 71.03 ng/ml. The spiked-in samples were processed according to the 
sample preparation described above. The generated calibration curve was used for calculating the endogenous 
hepcidin-25 concentrations in clinical samples, alkylated heavy synthetic peptide, and for determining the LOD 
and LOQ values.

Human plasma specimens.  The use of human blood plasma samples was approved by the Institutional 
Review Boards of the University of Connecticut and Pacific Northwest National Laboratory in accordance with 
federal regulations. Clinical plasma samples were collected from the biorepository of UCHC with informed con-
sent given for the use of samples in research (IRB IE-08-310-1). The control (non-cancerous) and the cancer 
plasma specimens were obtained from healthy people with no cancer diagnosis and female diagnosed with ovar-
ian cancer, respectively.

Media samples.  HepG2 cells were obtained from American Type Culture Collection (ATCC) and cultured 
in Eagle’s Minimum Essential Medium (EMEM medium) from ATCC containing 10% Fetal Bovine Serum (FBS) 
purchased from Gemini Bioproducts. Induction of hepcidin was measured in sub-confluent cultures following 
replacement of the medium for 48 hours with serum-free EMEM or serum-free EMEM containing 10 ng/ml Bone 
Morphogenetic Protein 6 (BMP6) (R&D Systems).

Enzyme-linked immunosorbent assay (ELISA) analysis for secreted Hepcidin.  Hepcidin was 
measured in conditioned medium from HepG2 cells using an ELISA kit from Bachem according to the manu-
facturer’s protocol.

Liquid chromatography (LC) separation.  All samples were analyzed using a nanoACQUITY UPLC sys-
tem (Waters Corporation, Milford, MA) coupled online to a TSQ Vantage triple quadrupole mass spectrometer 
(Thermo Scientific, San Jose, CA). Solvents used were 0.1% formic acid in water (mobile phase A) and 0.1% 
formic acid in 90% acetonitrile (mobile phase B). Peptide separations were performed at a mobile phase flow rate 
of 400 nL/min using an ACQUITY UPLC BEH 1.7 μm C18 column (100 μm i.d. ×10 cm), which was connected 
to a chemically etched 20 μm i.d. fused-silica emitter via a Valco stainless steel union. 0.5 µl sample was injected 
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for LC-SRM using a binary gradient of 5–20% B in 35 min, 20–25% B in 10 min, 25–38% B in 8 min, 38–95% B in 
1 min, and 95% B for 6 min for a total of 75 min.

Selected reaction monitoring (SRM) assay configuration.  Mass spectrometric detection was per-
formed using TSQ Vantage triple quadrupole mass spectrometer (Thermo Scientific). The TSQ Vantage was 
operated in the same manner as previously described17. Scan width of 0.002 m/z and a dwell time of 75 ms were set 
for all SRM transitions. The synthesized fully alkylated hepcidin-25 peptides were further evaluated for peptide 
response and fragmentation pattern. Optimal collision energy (CE) values were achieved by direct infusion of 
the individual peptides with CE ramping as depicted in Table 1. Precursor ions monitored were 651.3 m/z (z = 5) 
for the endogenous hepcidin-25 and 652.8 m/z (z = 5) for the heavy standard. The relative intensity ratios among 
the four final selected transitions for the SRM assay were predefined by internal standard heavy peptides. Matrix 
interference for a given transition that fell into the mass width of Q1 and Q3 from co-eluting peptides was deter-
mined by deviation from the expected relative intensity ratios between the transitions. While four transitions 
were monitored, the best two transitions with no matrix interference were used to generate calibration curve and 
hepcidin-25 quantification in media and clinical plasma samples (Table 1).

Data analysis.  SRM data acquired on the TSQ Vantage were analyzed using Xcalibur 2.0.7 (Thermo 
Scientific). Peak detection and integration were determined based on two criteria: (1) same retention time; 
(2) approximately same relative SRM peak intensity ratios across multiple transitions between light pep-
tide and heavy peptide standard. All data were manually inspected to ensure correct peak detection and 
accurate integration. Signal to noise ratio (S/N) was calculated by the peak apex intensity over the highest 
background noise in a retention time region of ±15 s for the target peptides. The background noise levels 
were conservatively estimated by visually inspecting chromatographic peak regions. The limit of detection 
(LOD) and limit of quantification (LOQ) were defined as the lowest concentration point at which the S/N 
of surrogate peptide was at least 3 and 10, respectively. For conservatively determining the LOQ values, in 
addition to the requirements of the S/N to equal or be above 10, two other criteria were applied: the coef-
ficient of variation (CV) at the concentration point be less than 20%; surrogate peptide response over the 
protein concentration be within the linear dynamic range. The light to heavy (L/H) SRM peak area ratio 
was used to generate the calibration curve and assess reproducibility. Microsoft Excel 2010 was used for sta-
tistical analysis and calibration curve plotting. The RAW data from TSQ Vantage were loaded into Skyline 
software18 to create high resolution figures of extracted ion chromatograms (XIC) of multiple transitions 
monitored for hepcidin-25.

Results and Discussion
Alkylated hepcidin assay configuration.  This work used the active hormone form of hepcidin to quan-
tify hepcidin-25; DTHFPICIFCCGCCHRSKCGMCCKT. The mass spectrum for the intact (i.e. unalkylated) 
heavy form of hepcidin-25 is shown in Fig. 1. Figure 1A shows representative MS1 spectra for the intact (i.e. 
unalkylated) heavy hepcidin-25 and Fig. 1B shows representative MS2 spectra for dissociation of the intact heavy 
hepcidin-25. The MS2 spectra for the intact heavy hepcidin-25 is characterized by poor fragmentation as previ-
ously observed19. This is likely due to the four disulfide linkages which also makes synthesis of a consistent pep-
tide product challenging20,21, and in part accounting for the significant variability reported for MS-based assays14. 
Thus, we reasoned that elimination of disulfide linkages via generation of an alkylated hepcidin-25 peptide prod-
uct may significantly contribute to reducing the challenge associated with synthesis while simultaneously improv-
ing the low fragmentation efficiency associated with the disulfide linkages in intact hepcidin. Figure 1C,D show 
representative MS1 and MS2 spectra for the alkylated heavy form of hepcidin-25 respectively. Noticeably, the 
alkylated heavy form of hepcidin-25 provided a much higher fragmentation efficiency with a rich MS2 spectra 
(Fig. 1D) compared to the intact (i.e. unalkylated) heavy form of hepcidin-25 (Fig. 1B), which is consistent with 
our hypothesis. The list of fragment ions (b & y ions) for intact and alkylated heavy Hepcidin-25 are shown in 
Supplementary Table 4.

Compound name
Precursor 
ion5+

Product 
ion

Collision 
energy Fragment

Optimized SRM method and selected target compounds.

DTHFPICIFCCGCCHRSKCGMCCKT, M 3251.259

651.259 501.209 22 [b4]+

651.259 756.943 12 [y17]3+

651.259 794.637 11 [y18]3+

651.259 847.981 11 [y19]3+

DTHFPICIFCCGCCHRSKCGMCCKT, M 3259.971

652.862 501.209 22 [b4]+

652.862 759.614 12 [y17]3+

652.862 797.309 11 [y18]3+

652.862 850.652 11 [y19]3+

Table 1.  The optimal collision energies (CEs) and selected transitions for alkylated hepcidin-25 (light and 
heavy versions). C = C[+57.0], K = K[13C6,15N2], Ions chosen as quantifiers in bold, the others were used as 
qualifiers.
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Calibration curve for hepcidin-25 quantification in plasma.  To evaluate the hepcidin-25 assay perfor-
mance a calibration curve was generated. High-purity alkylated light hepcidin-25 was spiked into non-cancerous 
human plasma with negligible endogenous hepcidin-25. We note that all clinical samples are treated with IAA to 
convert hepcidin to the analyzed alkylated hepcidin. The linearity was assessed by a 10-point calibration curve with 
concentrations ranging from 0.5 to 250 ng/ml (Supplementary Table 1). Figure 2 shows that the calibration curve 
has excellent linearity with a coefficient of correlation R2 ~ 0.99. Across the concentration range of the calibration 

Figure 1.  Optimization of SRM transitions of intact and alkylated isotopic hepcidin-25. MS spectra of intact 
(A) and alkylated isotopic hepcidin-25 (C). The most intense parent ions with the charge state of 5+, m/z 560.34 
for intact isotope-labeled hepcidin-25 and m/z 652.95 for alkylated isotope-labeled hepcidin-25, were chosen 
to generate product ions. Representative MS/MS spectra that shows low fragmentation efficiency of the intact 
hepcidin (B) when compared to the alkylated form (D).

Figure 2.  Calibration curve for hepcidin quantification. High-purity alkylated light hepcidin with a 
concentration range from 0.5–250 ng/mL was spiked into the control plasma with negligible endogenous 
hepcidin, with a fixed concentration (71.03 ng/mL) for alkylated heavy hepcidin.
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curve, a median coefficient of variation (CV) of 2.66% was obtained with CV at 7.73% for the lowest concentration 
point (0.5 ng/mL) and at 2.36% for the highest concentration point (250 ng/mL) (Supplementary Table 1).

The calibration curve generated was leveraged to determine the LOQ and LOD for the hepcidin-25 assay 
developed when combined with the S/N ratio at each concentration point (Supplementary Table 1). Figure 3 
depicts extracted ion chromatograms (XICs) of transitions monitored for alkylated endogenous and heavy 
hepcidin-25 at various concentrations. The LOD for the current assay was determined to be <0.5 ng/ml, 
and the LOQ was assessed to be 1 ng/ml. The LOD and LOQ values are better than what has been previously 
reported using intact hepcidin as an internal standard. For example, Delaby et al.14 recently reported a mass 
spectrometry-based hepcidin-25 assay with analytical validation performed according to ISO15189 norms. In 
that study they reported LOD of 2 ng/mL and LOQ of 6 ng/mL in serum. It is likely that the improved LOD and 
LOQ stem from the improved sensitivity offered by the higher fragmentation efficiency of the alkylated hepcidin 
when compared to the intact hepcidin bearing disulfide linkages.

Endogenous hepcidin-25 quantification in human plasma.  Next, we applied our developed LC-SRM 
assay to quantify hepcidin concentration in human plasma specimens. Endogenous hepcidin-25 was measured 
in 70 clinical plasma samples (42 non-cancerous and 28 ovarian cancer patient samples). We note that all clinical 
samples are treated with IAA to convert hepcidin to the analyzed alkylated hepcidin. With the established calibra-
tion curve and the measured L/H peak area ratio for individual samples, the hepcidin-25 concentration in each 
sample could be calculated and expressed as ng/mL in plasma. The measured hepcidin-25 concentration ranged 
from 0 ng/mL to 95.57 ng/mL across non-cancerous and cancer samples. The measured hepcidin-25 concentra-
tions are shown in Supplementary Table 1 and Fig. 4, they are largely within the range of our calibration curve. 
A prior study14 using a similar analytical approach to measure hepcidin-25 in serum indicated quantitation of 
hepcidin-25 in cohort samples did not exceed 140 ng/mL. That observation is largely consistent with the present 
study data where the highest hepcidin concentration reported in plasma was 95.6 ng/mL, in part supporting the 
validity of the assay developed using alkylated hepcidin-25 instead of traditional intact hepcidin-25.

Prior studies have suggested that hepcidin-25 serum levels may serve as a predictive biomarker in renal 
cell carcinoma and non-small cell lung cancer22,23. We also assessed the potential for hepcidin to discriminate 
between non-cancerous plasma and ovarian cancer patient plasma sample types. Non-cancerous plasma sample 
concentrations (n = 42) ranged between 0 ng/mL and 26.7 ng/mL with a median value of 4.28 ng/mL (a mean 
value of 5.9 ng/mL) (Supplementary Table 2). Ovarian cancer patient plasma concentrations (n = 28) ranged 
between 0.12 ng/mL and 95.6 ng/mL with a median value of 15.18 ng/mL (a mean value of 20.6 ng/mL). The 
increased hepcidin-25 amounts in serum of ovarian cancer patients relative to non-cancerous was statistically 
significant (p < 0.001) (Supplementary Table 2). Interestingly, this observation was consistent with prior reports 
of increased serum hepcidin-25 levels in renal cell carcinoma and non-small cell lung cancer22,23. Definitely, large 
clinical cohort studies are needed for the validation of hepcidin as a useful cancer biomarker.

Figure 3.  Extracted ion chromatograms (XICs) of transitions monitored for alkylated endogenous and heavy 
hepcidin at different spiked-in hepcidin concentrations. The black arrows indicated the location of SRM peak 
apex based on the retention time of heavy internal standards. Transition legend at bottom left hand of figure 
defines the blue and purple XIC traces for y18 and y17, respectively.
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Quantification of hepcidin-25 concentration in spent media.  While the measurement of hepcidin in 
biological fluids (e.g., urine and plasma) is important in the context of the diagnosis and management of diseases 
in which iron metabolism is affected, the ability to measure hepcidin-25 in in vitro systems (e.g., cell culture) is 
also equally important to dissect and understand mechanisms underlying diseases in which iron metabolism 
is affected to identify novel therapies. Hepcidin in the context of cell culture is primarily partitioned into the 

Figure 4.  Application of developed hepcidin assay for quantification of endogenous hepcidin in clinical plasma 
samples. Cancer patients were found to have significantly higher hepcidin concentration than non-cancerous 
patients (p < 0.001).

Figure 5.  XICs of transitions monitored for alkylated endogenous and heavy hepcidin in hepatocytes cell 
media (HepG2) in the presence (A) and absence of BMP6 (10 ng/ml) (B).The black arrows indicated the 
location of SRM peak apex based on the retention time of heavy internal standard. Transition legend at bottom 
left hand of figure defines the blue and purple XIC traces for y18 and y17, respectively. (C) L/H hepcidin ratios 
for both HepG2 control and with BMP6 obtained from triplicate analysis with the standard error of mean. 
(D) Secretion of hepcidin in conditioned media. Secreted hepcidin in conditioned media was measured using 
ELISA. Hepcidin quantity was normalized to 1 × 106 cells.
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condition media as opposed to being retained intracellularly. Therefore, we also developed an analytical approach 
for quantification of hepcidin-25 in spent media from mammalian cell culture systems. Specifically, we examined 
hepcidin-25 quantification in spent media from the hepatoma cell line HepG2. Because several studies have 
shown that bone morphogenetic proteins (BMPs) including BMP 2, 4, 6, and 9 stimulate hepcidin expression24–26, 
we also examined hepcidin-25 quantification in spent media from the hepatoma cell line HepG2 treated with 
BMP 6. Representative XICs of transitions monitored for alkylated endogenous and heavy hepcidin-25 in media 
from control and BMP 6-treated HepG2 cells are shown in Fig. 5A,B. As expected, BMP6 increased the abun-
dance of hepcidin in conditioned media from HepG2 cells compared to untreated cells (Fig. 5C). Triplicate anal-
ysis showed an increase in hepcidin-25 after BMP6 stimulation (Fig. 5C and Supplementary Table 3). This was 
consistent with observations from immunoassay (ELISA) measurement of hepcidin under the same conditions 
(Fig. 5D). Thus, ELISA assay provides an orthogonal validation of hepcidin SRM assay.

Conclusion
Hepcidin is a cysteine-rich tightly folded 25-residue peptide hormone containing four disulfide bonds, making 
endogenous hepcidin both challenging to synthesize20,21 and hampering reliable detection. Here we have devel-
oped a simple reliable targeted LC-SRM assay for quantification of hepcidin-25 in complex biological matrices by 
replacement of intact (disulfide linked) hepcidin standard with fully alkylated hepcidin standard. Our approach 
overcomes: (i) the challenges in synthesis and cost of generating intact hepcidin peptide, and (ii) the low frag-
mentation efficiency that characterizes the intact hepcidin peptide which challenges quantification accuracy. The 
new assay provided reliable detection of endogenous hepcidin-25 in human plasma samples and conditioned cell 
culture media. Additionally, our study suggests the potential for hepcidin to discriminate between non-cancerous 
plasma and plasma from patients with ovarian cancer. Larger cohort studies are definitely required to further 
validate hepcidin as a potential biomarker for ovarian cancer. In summary, we anticipate our newly developed 
assay will facilitate more reliable, sensitive, and low-cost quantification of hepcidin in complex biological samples.

Data Availability
All the Skyline-processed SRM results reported in this study can be accessed at Panorama (Access link:  
https://panoramaweb.org/Ixvl9u.url; the reviewer account: Email: panorama + pnnl5@proteinms.net,  
Password: W$VbZ2&R).
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