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Abstract

Phylogeography research involving virus spread and tree reconstruction relies on accurate 

geographic locations of infected hosts. Insufficient level of geographic information in nucleotide 

sequence repositories such as GenBank motivates the use of natural language processing methods 

for extracting geographic location names (toponyms) in the scientific article associated with the 

sequence, and disambiguating the locations to their co-ordinates. In this paper, we present an 

extensive study of multiple recurrent neural network architectures for the task of extracting 

geographic locations and their effective contribution to the disambiguation task using population 

heuristics. The methods presented in this paper achieve a strict detection F1 score of 0.94, 

disambiguation accuracy of 91% and an overall resolution F1 score of 0.88 that are significantly 

higher than previously developed methods, improving our capability to find the location of 

infected hosts and enrich metadata information.
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1. Introduction

Nucleotide sequence repositories like GenBank contain millions of records from various 

organisms collected around the world that enables researchers to perform phylogenetic tree 

and spread reconstruction. However, a vast majority of the records (65–80%)1,2 contain 

geographic information that is deemed to be at an insufficient level of granularity; 

information that is often present in the associated published article. This motivates the use of 
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natural language processing (NLP) methods to find the geographic location (or toponym) of 

infected hosts in the full text. In NLP, this task of detecting toponyms from unstructured text, 

and then disambiguating the locations to their co-ordinates is formally known as toponym 

resolution.

Toponym resolution in scientific articles can be used to obtain precise geospatial metadata of 

infected hosts which is highly beneficial in building transmission models in phylogeography 

that could enable public health agencies to target high-risk areas. Improvement in geospatial 

metadata also enriches other scientific studies that utilize GenBank data, such as those in 

population genetics, environmental health, and epidemiology in general, as geographic 

location is often used in addition to or as a proxy of other demographic data. Toponym 

Resolution is typically accomplished in two stages (1) toponym detection (geotagging), a 

named entity recognition (NER) task in NLP and (2) toponym disambiguation (geocoding).

For instance, given the sentence “Our study mainly focused on pediatric cases with different 
outcomes from the most populated city in Argentina and one of the hospitals in Buenos 
Aires where patients are most often referred.”, the detection stage deals with extracting the 

locations “Argentina” and “Buenos Aires”.3 The disambiguation stage deals with assigning 

the most likely, unique, identifiers from gazetteer resources like Geonamesa to each location 

detected e.g. “3865483:Argentina” from 145 candidate entries containing the same name 

and “3435910:Buenos Aires” from 943 candidate entries with variations of the same name. 

Both tasks bring forth interesting NLP challenges with applications in a wide number of 

areas.

In this work, we present a system for toponym detection and disambiguation that improves 

substantially over previously published systems for this task, including our own.4–6 Since 

detection is the first step in the process, its impact on the overall performance of the 

combined task is multiplied, as locations not detected can never be disambiguated. We use 

recurrent neural network (RNN) architectures that use word embeddings, character 

embeddings and case features as input for performing the detection task. In addition to these, 

we also experiment with the use of conditional random fields (CRF) on the output layer as 

they have known to improve performance. We perform ablation studies/leave-one-out 

analysis with repetitive runs with different seed values for drawing strong conclusions about 

the use of deep recurrent neural networks, their architectural variations and common 

features. We evaluate the impact of the results from the detection task on the upstream 

disambiguation task, performed using the commonly assumed population heuristic7 whereby 

the location with the greatest population is chosen as the correct match.

The rest of the document is structured as follows. In Section 2, we summarize research 

efforts in the area of toponym detection and disambiguation and list the contributions of this 

paper in light of previous work. We distinguish the RNN architectures used for evaluation 

along with the population heuristic used for measurement in Section 3. Finally, we present 

and discuss the results of the toponym detection and disambiguation experiments in Sections 

4 and discuss limitations and scope for improvements in Section 5.

ahttp://www.geonames.org/ Accessed:Sept 30 2018
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2. Related Work

Toponym detection and toponym disambiguation have been widely researched by the NLP 

community, with numerous publications on both detection and disambiguation tasks.8–10 To 

ponym detection is commonly tackled as a NER challenge where toponyms are recognized 

among other named entities like organization names and people’s names. Previous studies11 

have identified the performance of the NER as an important source of errors in enhancing 

geospatial metadata in GenBank, motivating the development of tools for performing 

detection and resolution of named entities such as infected hosts and geographical locations.
12,13 The annotated dataset used in this work4,11 includes both span and normalized 

Geonames ID annotations. Since the performance of the overall resolution task is deeply 

influenced by the NER, some of the previous works using this dataset have looked 

specifically at improving the NER’s performance. Our previous research on toponym 

detection have used rule-based methods,4 traditional machine learning sequence taggers 

using conditional random fields (CRF)5 and deep learning methods using feed forward 

neural networks.6 NER performance since the introduction of the dataset has increased from 

an F1-score of 0.70 to 0.91 closing in on the human-level annotation agreement of 0.97. In 

the previous baseline for toponym resolution4 a rule based extraction system was used to 

detect toponyms. In subsequent work, traditional machine learning algorithms such as 

conditional random fields (CRFs)5 and feedforward neural nets6 were introduced for 

improving the NER’s performance. There exist some studies involving RNN experiments 

that explore the use of RNN architectures for sequence tagging tasks in the generic domain.
14,15 While these tasks measure the performance on specific tasks, the effect of optimal 

performances haven’t been measured in upstream tasks.

On the other hand, toponym disambiguation has been commonly tackled as an information 

retrieval challenge by creating an inverted index of Geonames entries.4,16 Given a toponym, 

candidate locations are first retrieved based on words used in the toponym and subsequently 

heuristics are used to pick the most appropriate location. Popular techniques use metrics 

such as entity co-occurrences, similarity measures, distance metrics, context features and 

topic modeling.7,16–20 This approach is largely adopted due the large number of Geonames 

entries (about 12 million) to choose from. We also find that the most common baseline used 

for measuring the disambiguation performance is the population heuristic where the place 

with the most population is chosen as the correct match. Most research articles that focus 

specifically on the disambiguation problem use Stanford-NER or the Apache-NER tool20–22 

for detection which has been trained on datasets like CoNLL-2003, ACE-2005 and MUC. 

Some studies assume gold standard labels and proceed with the task of disambiguation 

which makes it difficult to assess the strength of the overall system. It is also important to 

note that a majority of efforts have been focused on texts from a general domain like 

Wikipedia or news articles.20–22 Only a handful of publications deal with the problem in 

other domains like biomedical scientific articles4,23 which contain a different and broader 

vocabulary. Similar to the previous disambiguation method developed for this dataset,4 we 

build an inverted index using Geonames entries but use term expansion techniques to 

improve the performance and usability of the system in various contexts.

In light of previous work, the main contributions of this work can be summarized as follows:
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i. We perform a comprehensive and systematic evaluation of multiple RNN 

architectures from over 400 individual runs for the task of toponym detection in 

scientific articles and arrive at state-of-the-art results compared to previous 

methods.

ii. We discuss the impact of significant performance improvement in toponym 

detection in the upstream task of toponym resolution.

3. Methods

Our approach for detection and disambiguation of geographic locations are tackled 

independently, as described in the following subsections. For the purposes of training and 

evaluation, we use the publicly available human annotated corpus of 60 full-text PMC 

articles containing 1881 toponyms.4 Of the 60, the standard test set for the corpus includes 

only 12 articles containing a total of 285 toponyms, a large majority of which are countries 

and major locations. The annotated dataset contains both span annotations and gazetteer ID 

annotations linking ISO-3166–1 codes for countries and GeonamesIDs for the remaining 

toponyms. For uniformity, we converted all ISO-3166–1 codes to equivalent GeonameIDs.

3.1. Toponym Detection

The task of toponym detection typically involves identifying the spans of the toponyms in an 

NER task where the sequence of actions is illustrated in Fig 1. As input features, we use 

publicly available pre-trained word embeddings that were trained on Wikipedia, PubMed 

abstracts and PubMed Central full text articles.24 In addition to word embeddings, we 

experiment with orthogonal features such as (1) a case feature to explicitly distinguish all-

uppercase, all-lowercase and camel-case words encoded as one-hot vectors that are 

appended to the word, and (2) fixed length character embeddings. Character embeddings 

have shown to improve the performances of deep neural networks and are employed in few 

different ways. One of the popular methods used involves the use of a CNN layer25 or an 

LSTM layer26 on vectors from a randomly initialized character embeddings that are fine 

tuned during training appended to the input word embedding layer. During initial 

experiments we found that implementation of this architecture added significantly to the 

training time and hence we employ the use of a simpler model where character embeddings 

are pre-trained using word2vec and appended directly to the input layer along with word 

embeddings and case features.

The proposed RNN units and their variations can be used on their own for NER purposes. 

However, bidirectional architectures are popularly employed for NER as they have the 

combined capability of processing input sentences in both directions and making tagging 

decisions collectively using an output layer as illustrated in figure 1. In this paper, we 

specifically look at bi-directional recurrent architectures. It is also common to observe the 

use of a CRF output layer on top of the output layer of bidirectional RNN architecture. 

CRF’s are known to add consistency in making final tagging decisions using IOB or IOBES 

styled annotations. We experiment between combinations of the RNN variants along with 

the optional features in an ablation study to identify the impact of these additive layers on 

the NER’s performance as well as its impact on the upstream resolution task.
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3.1.1. Recurrent Neural Networks—RNN architectures have been widely used for 

auto-encoders and sequence labeling tasks such as part-of-speech tagging, NER, chunking 

among others.27 RNNs are variants of feedforward neural networks that are equipped with 

recurrent units to carry signals from the previous output yt−1 for making decisions at time yt 

as shown in equation 1.

yt = σ W ⋅ xt + U ⋅ yt − 1 + b (1)

Here, W and U are the weight matrices and b is the bias term that are randomly initialized 

and updated during training. σ represents the sigmoid activation function. In practice other 

activation functions such as tanh and rectified linear units (ReLU) are also used. This 

characteristic recurrent feature simulates a memory function that makes it ideal for tasks 

involving sequential predictions dependent on previous decisions. However, learning long 

term dependencies that are necessary have been found to be difficult using RNN units alone.
28

3.1.2. LSTM—LSTM networks29 are variants of RNN that have proven to be fairly 

successful at learning long term dependencies. A candidate output g is calculated using an 

equation similar to equation 1 and further manipulated based on previous and current states 

of a cell that retains signals simulating long-term memory. The LSTM cell’s state is 

controlled by forget (f), input (i) and output (o) gates that control how much information 

flows from the input to the state and from state to the output. The gates themselves depend 

of current input and previous outputs.

g = tanh Wg ⋅ xt + Ug ⋅ yt − 1 + bg (2)

f = σ W f ⋅ xt + U f ⋅ yt − 1 + b f (3)

i = σ W i ⋅ xt + Ui ⋅ yt − 1 + bi (4)

o = σ Wo ⋅ xt + Uo ⋅ yt − 1 + bo (5)

The future state of the cell ct is calculated as a combination of (1) signals from forget gate g 
and the previous state of the cell ct−1 which determines the information to forget (or retain) 

in the cell, and (2) signals from the input gate i and the candidate output g that determines 
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the information from the input to be stored in the cell. Eventually the output yt is calculated 

using signals from the output gate o and the current state of the cell ct.

ct = f ⊙ ct − 1 + i ⊙ g (6)

yt = o ⊙ tanh ct (7)

In the above equations, ʘ indicates pointwise multiplication operation. While the above 

equations represent LSTM in its most basic form, many variations of the architecture have 

been introduced to simulate retention of long-term signals a few of which have been 

summarized in the following subsections and subsequently evaluated in the results section. 

For reasons of brevity, we do not include the formulas used for calculating the output yt but 

they can be inferred from the works cited.

3.1.3. Other Gated RNN Architectures—We evaluate in our experiments one of the 

LSTM variations introduced for speech processing30 that introduced the notion of peepholes 

(LSTM-Peep) where the idea is that state of the cell influences the input, forget and output 
gates. Here, signals for the input and forget gates i and f depend not only on the previous 

output yt−1 and current input xt but also the previous state of the cell ct−1 and the output gate 

o depends on the current state of the cell ct.

Gated Recurrent Unit (GRU)31 also known as coupled input and forget gate LSTM 

(CIFGLSTM)15 is a simpler variation of LSTM with only two gates: update z and reset r. 
Their signals are determined based on the current input x and previous output yt−1 similar to 

the gates in LSTMs. The update gate z attempts to combine the functionality of input and 

forget gates of LSTMs i and f and eliminates the need for an output gate as well as an 

explicit cell state. A singular update gate signal z controls the information flow to the output 

value. Although it appears far more simple, GRU has gained a lot of popularity in the recent 

years in a variety of NLP tasks.32,33

Update gate RNN (UG-RNN)34 is a much simpler variation of LSTM and GRU 

architectures containing only an update gate z is also included in our experiments. The 

importance of the update gate is often highlighted in RNN based architectures.15 Hence, we 

include this model to perform a gate based ablation study to understand their contributions to 

the overall resolution task.

3.1.4. Hyperparameter search and optimization—The performance of deep neural 

networks relies greatly on optimization of its hyperparameters and the performance of the 

models have been found to be sensitive to changes in seed values used for initializing the 

weight matrices.27 We first performed a grid search over the previously recommended 

optimal range of hyperparameter space for NER tasks27 and to arrive at potential candidates 

of optimal configurations. We then performed up to 5 repetitions of experiments at the 
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optimal setting for the model at different seed values to obtain the median performance 

scores. All models were developed using the TensorFlow framework and trained on NVIDIA 

Titan Xp GPUs equipped with an Intel Xeon CPU (E5–2687W v4).

3.2. Toponym Disambiguation

For toponym disambiguation, we use the Geonames gazetteer data to build an inverted index 

using Apache Luceneb and search for the toponym terms extracted in the toponym detection 

step in the index.

3.2.1. Building Geonames Index—Individual Geonames entries in the index are 

documents with common fields such as GeonameID, LocationName, Latitude, Longitude, 

LocationClass, LocationCode, Population, Continent and AncestorNames. Here, 

LocationName contains the common name of the place. For countries, we expand this field 

by using official names, ISO and ISO3 abbreviations (e.g. United States of America, US and 

USA, respectively, for United States). For ADM1 (Administrative Level 1) entries that have 

available abbreviations (e.g. AZ for Arizona, and CA for California), we add such alternate 

names to the LocationName field. In addition to the above fields we add the County, State 
and Country fields depending on the type of geoname entry. Fields such as LocationName, 

County, State, Country and AncestorNames are chosen to be reverse indexed such that 

partial matches of names offers the possibility of being matched with the right 

disambiguated toponym on a search.

3.2.2. Searching Geonames Index—Most cities and locations commonly have their 

parent locations listed as comma separated values (e.g. Philadelphia, PA, USA). In such 

cases, the index provides the capability to perform compound searches (e.g. 

LocationName:”Philadelphia” AND AncestorNames:”PA, USA”). We find that this method 

offers the best scalable framework for toponym disambiguation among approximately 12 

million entries. Efficient search capabilities aside, the solution internally provides 

documents to be sorted by a particular field. In this case, we choose the Population field as 

the default sorting heuristic such that search results are sorted by highest population first. An 

additional motivation for the implementation of this solution is the flexibility of using 

external information to narrow down search results. For example, when Country information 

is available in the GenBank record, we can use queries like LocationName:”Paris” AND 
Country:”France” to narrow down the location of infected hosts.

4. Results and Discussion

For the NER task, we use the standard metric scores of precision, recall, and F1-scores for 

toponym entities across two modes of evaluation:(1) Strict where the predicted spans of the 

toponym have to match exactly with the gold standard spans to be counted as a true positive 

and (2) Overlapping where predicted spans are true positives as long as one of its tokens 

overlap with gold standard annotations. For toponym disambiguation, we compare the 

predicted and gold standard GeonameIDs to measure precision, recall and f1-scores as long 

bhttp://lucene.apache.org/ Accessed:Sept 30 2018
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as the spans overlap. We compare our scores with the previous systems that were trained and 

tested on the same dataset. To evaluate the performance of the overall resolution task, it is 

important to examine the performance of the individual systems to assess the cause of errors 

and identifying regions for improvement.

4.1. Toponym Disambiguation

Our toponym disambiguation system is unsupervised, giving us the capability to test its 

performance on the entire dataset assuming gold standard toponym terms to be available. 

Under this assumption, the accuracy of the disambiguation system was found to be 91.6% 

and 90.5% on training and test set respectively. Analyzing the errors, we found that 

comparing ids directly is a very strict mode of evaluation for the purposes of 

phylogeography as Geonames contains duplicate entries for many locations that belong to 

two or more classes of locations such as administrative division (ADM) and populated area 

or city (PPLA, PPLC) but refer to the same geographical location. For instance, when we 

look at the test set alone, which had 27 errors from a total of 285 locations, 19 appeared to 

be roughly the same location. These included locations like Auckland, Lagos, St. Louis, 
Cleveland, Shantou, Nanchang, Shanghai, and Beijing which were assigned the ID of the 

administrative unit by the system, while the annotated locations were assigned the ID of the 

populated area or city or vice versa. Given these reasons, we find that the performance of the 

resolution step exceeds the reported scores by 5% to arrive at an approximate accuracy of 

95–96%. However, for the purposes of comparison with previous systems we report the 

overall resolution performance in Table 1 without making such approximations. We did 

however observe 8 errors where the system assigned GeonamesIDs were drastically different 

from their original locations due to the population heuristic. For example, a toponym of 

Madison was incorrectly assigned the ID of Madison County, Alabama which had a higher 

population than the gold standard annotation Madison, Dane County, Wisconsin(WI).

4.2. Toponym Resolution

Analyzing the errors across the architectures, we find that 80–90% of the erroneous 

instances to be repeating across the RNN architectures making it challenging to use 

ensemble methods for reducing errors. These included false negative toponyms such as 

Plateau, Borno, Ga, Gurjev, Sokoto etc. which appear in tables and structured contexts 

making it difficult to recognize them. However, as discussed in our previous work,6 we plan 

to handle table structures differently by employing alternative methods of conversions from 

pdf to text. Almost all false positives appeared to be geographic locations, however in the 

text they were found to be referring to other named entities like virus strains and isolates 

rather than toponyms.

We found that the LSTM-Peep based architecture appeared to have marginally better 

performance scores on the NER task and hence the overall resolution task. Feature ablation 

analysis shown in Figure 2 indicate that inclusion of the character embedding feature 

contributed to increase in the overall performance of RNN models. However, inclusion of 

case feature in combination with the character embeddings appeared to be redundant. 

Inclusion of the CRF output layer seemed to have a positive impact on most models while 

additive layers seemed to have more effect on GRU, LSTM and LSTM-Peep architectures.
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5. Limitations and Future Work

In this work, we find that utilizing state-of-the-art NER architectures help us obtain 

performances that are inching close to human performance. However, we do find that the 

articles in the test set may perhaps be relatively easier than the average article for the 

detection task when we compare it to randomly selected validation/development set 

performances. As discussed in our previous work,6 distance supervision datasets can contain 

toponym spans in close proximity to each other generating noisy training examples. This 

makes it challenging to use distance supervision techniques to increase the size of training 

data for training sequence tagging models based on RNN architectures. Hence, to address 

this issue, we are in the process of expanding the annotation dataset from 60 articles to 150 

articles for a more comprehensive training and evaluation of the system.

Irrespective of the ease of detection in the test set, there appear to be false negative 

toponyms (discussed in the previous section) that could possibly be the location of infected 

hosts(LOIH). While there are chances that toponyms that are LOIH appear repeatedly in the 

scientific article in varying contexts thus increasing the chances of them being detected, in 

our following work we wish to evaluate the impact of these false negatives on the overall 

task of identifying the LOIH. To reduce false positives where locations could infact refer to 

other named entities like virus strains and isolates than toponyms themselves, we intend to 

explore approaches from metonymy resolution35 for filtering out such false positives.

6. Conclusion

Phylogeography research relies on accurate geographical metadata information from 

nucleotide repositories like GenBank. In records that contain insufficient metadata 

information, there is a motivation to extract the geographical location from the associated 

articles to determine the location of the infected hosts. In this work we present and evaluate 

methods built on recurrent neural networks that extract geographical locations from 

scientific articles with a substantial increase in performance from an F1 score of 0.88 which 

improves significantly over the previous toponym resolution system F1 of 0.69. Our 

implementations of the toponym detection and toponym disambiguationc systems along with 

the updated version of the annotations containing GeonameIDsd are available online.
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Fig. 1. 
A schematic representation of the sequence of actions performed in the NER equipped with 

bi-directional RNN layers and an output CRF layer. RNN variants discussed in this paper 

involve replacing RNN units with LSTM, LSTM-Peepholes, GRU and UG-RNN units.
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Fig. 2. 
(Left) Ablation/leave-one-out analysis showing the contribution of individual features to the 

NER performance across the RNN models. (Right) Impact of additive layers on the 

performance of the NER across the RNN models. Here, RNN layers refer to respective 

variants of RNN architectures. Y-axis shows strict F1 scores.
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Table 1.

Median Precision(P), Recall(R) and F1 scores for NER and Resolution. Bold-styled scores indicate highest 

performance. All recurrent neural network units were used in a bidirectional setup with inputs containing pre-

trained word embeddings, character embeddings and case features, and an output layer with an additional CRF 

layer.

Method

NER-Strict NER-Overlapping Resolution

P R F1 P R F1 P R F1

Rule-based4 0.58 0.876 0.698 0.599 0.904 0.72 0.547 0.897 0.697

CRF-All5 0.85 0.76 0.80 0.86 0.77 0.81 - - -

FFNN + DS6 0.90 0.93 0.91 - - - - - -

RNN 0.910 0.891 0.901 0.931 0.912 0.922 0.896 0.817 0.855

UG-RNN 0.948 0.902 0.924 0.959 0.912 0.935 0.903 0.824 0.862

GRU 0.952 0.919 0.935 0.967 0.930 0.948 0.888 0.835 0.860

LSTM 0.932 0.926 0.929 0.954 0.947 0.950 0.892 0.842 0.866

LSTM-Peep 0.934 0.944 0.939 0.951 0.961 0.956 0.907 0.863 0.884
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