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Abstract

Background: Neoplastic cells harbor both hypomethylated and hypermethylated regions of DNA. Whereas hypomethyla-
tion is found mainly in repeat sequences, regional hypermethylation has been linked to the transcriptional silencing of
certain tumor suppressor genes. We attempted to search for candidate genes involved in breast/prostate carcinogenesis,
using the criteria that they should be expressed in primary cultures of normal breast/prostate epithelial cells but are
frequently downregulated in breast/prostate cancer cell lines and that their promoters are hypermethylated.

Methodology/Principal Findings: We identified several dozens of candidates among 194 homeobox and related genes
using Systematic Multiplex RT-PCR and among 23,000 known genes and 23,000 other expressed sequences in the human
genome by DNA microarray hybridization. An additional examination, by real-time qRT-PCR of clinical specimens of breast
cancer, further narrowed the list of the candidates. Among them, the most frequently downregulated genes in tumors were
NP_775756 and ZNF537, from the homeobox gene search and the genome-wide search, respectively. To our surprise, we
later discovered that these genes belong to the same gene family, the 3-member Teashirt family, bearing the new names of
TSHZ2 and TSHZ3. We subsequently determined the methylation status of their gene promoters. The TSHZ3 gene promoter
was found to be methylated in all the breast/prostate cancer cell lines and some of the breast cancer clinical specimens
analyzed. The TSHZ2 gene promoter, on the other hand, was unmethylated except for the MDA-MB-231 breast cancer cell
line. The TSHZ1 gene was always expressed, and its promoter was unmethylated in all cases.

Conclusions/Significance: TSHZ2 and TSHZ3 genes turned out to be the most interesting candidates for novel tumor
suppressor genes. Expression of both genes is downregulated. However, differential promoter methylation suggests the
existence of distinctive mechanisms of transcriptional inactivation for these genes.
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Introduction

Homeobox genes have a key role in the specification and

patterning of body parts during development [1,2,3,4,5,6,7]. These

genes contain a highly conserved 183-bp sequence (homeobox) and

encode proteins that specifically bind to DNA acting as transcrip-

tional modulators [8,9]. There are at least 178 homeobox sequences

in the human genome, 160 of which may be translated into

homeodomains within functional proteins [10]. Whereas regulated

cell growth and differentiation are the basis for development, cancer

results from uncontrolled growth of undifferentiated cells. Accord-

ingly, cancer may be regarded as a dynamic developmental disorder

[11]. It is, therefore, not unreasonable to speculate that the

activation/inactivation of certain homeobox genes may contribute

to carcinogenesis. As a matter of fact, such examples have been

reported. Activation of homeobox genes was described in

hematopoietic cell lines either by incorporation of a viral regulatory

element in the vicinity of the homeobox gene or by chromosomal

rearrangement [12,13,14]. The oncogenic potential of certain

deregulated homeobox genes was also demonstrated by using in vitro

and in vivo transformation assays [15]. In contrast, other

homeoproteins with tumor suppressor activity have also been

reported [16,17,18,19,20,21,22].

We became interested in homeobox genes and its relationship

with cancer after analyzing the result of a previous work using

Methylation Sensitive-Amplified Fragment Length Polymorphism

(MS-AFLP) fingerprinting [23]. MS-AFLP is an efficient and

sensitive method that provides a rapid evaluation of DNA

methylation alterations at NotI landmarks. Using this method we

found that multiple homeobox and related genes exhibited

alterations in band intensity in cancer. The first hypermethylated

DNA fragment identified and characterized in most prostate and

some breast, but not in colon, cancers contained a sequence from

the HOX D Gene Complex, which is responsible for the

morphogenesis of the genitoexcretory apparatus [24,25,26].

Additional fingerprints yielded other altered bands belonging to
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the same homeobox gene family. Although the MS-AFLP method

provided an important clue to initiate the research on homeobox

genes in cancer based on the alterations in DNA methylation, not

all homeobox genes contain NotI sites.

Moreover, the relationship of DNA methylation status and

cancer has several major concerns that must be clarified. An issue

requiring resolution is if DNA methylation plays an active role in

carcinogenesis, rather than a passive role. On one hand, DNA

methylation alterations may occur progressively in cancer in a

directional manner by activating those genes with oncogenic

activity and/or inactivating those genes with tumor suppressor

activity and maintaining actively those changes in cancer cells. On

the other hand, DNA methylation changes may occur randomly,

even under normal conditions, and the cells that happen to possess

alterations which favor cell growth, may be selected during the

course of carcinogenesis. There is also the possibility that DNA

methylation is merely the result of carcinogenesis caused by an

altered expression of DNA-methyltransferase(s), without any

causal association with carcinogenesis. Other issues include

aging-dependent DNA methylation alterations and the uncoupling

of gene expression with the methylation state [27,28]. DNA

methylation patterns may change during aging, and this can

happen to cancer and normal cells complicating the comparison

among specimens belonging to different age groups. There are

also changes in DNA methylation that do not result in alterations

in gene expression, and therefore, their effects in carcinogenesis

are negligible. Because gene expression is functionally more

important than DNA methylation, we employed a more rigorous

and logical approach to identify homeobox genes involved in

carcinogenesis, by directly determining their expression.

Results

We constructed a SM RT-PCR system to analyze the

expression of homeobox genes. We designed two primers per

gene to amplify DNA fragments of different sizes in single exons

for the same gene group. For the 39 HOX genes in the HOX

Gene Complexes, which exhibit significantly high sequence

homology, primers were chosen for one conserved region

sequence and another unique region sequence in order to prevent

artificial recombinations among different gene transcripts [29].

For the other homeobox genes with lower sequence homology, we

used two unique primers. The list of the genes is shown in

Supplementary Table S1, together with the nucleotide sequences

of primers, their concentrations used, and the sizes of the amplified

DNA fragments. We were unable to design unique primer pairs to

discriminate the X-linked and Y-linked TGIF2L genes, and

therefore, both genes were amplified together. Additionally,

PAX1, PAX2, PAX5, PAX8, and LASS1 genes were incorporated

into the system because other members of their families possess a

homeodomain although they did not present it themselves.

Together with those 5 non-homeobox genes, the total SM RT-

PCR system covered 194 (195 if TGIF2LX and TGIF2LY were

counted separately) genes with some overlaps in 27 sets of

multiplex reactions. Using the homeobox SM RT-PCR system, we

examined the gene expression in normal and cancer cells of breast

and prostate. We placed an emphasis on the comparison between

primary culture of normal epithelial cells and established cancer

cell line cells, circumventing the heterogeneity and contamination

problems of tissues by the use of more homogeneous cells. Results

are shown in Figure 1. We identified 3-dozen homeobox genes

whose expression was altered in cancer cell line cells. They are

listed in Table 1. We were able to obtain, by SM RT-PCR, semi-

quantitative data on the expression of most of the homeobox genes

even though their mRNA levels were low in some cases. In

addition to genes with lost/diminished gene expression, genes with

enhanced gene expression were also identified.

We also carried out a genome-wide gene expression analysis in

normal and cancer cells of breast and prostate by DNA microarray

hybridization, using Illumina’s Sentrix Human-6 Expression

BeadChips. Data were used to sort out the genes by a function

of the frequency of the cell lines that exhibited an increased or

decreased gene expression. There were 73 genes and EST

sequences with enhanced gene expression in all the 5 breast and

3 prostate cancer cell lines when compared with the corresponding

normal epithelial cells. Among them, 37 showed a significant

increase in all cancer cell lines; these genes/EST sequences are

listed in Table 2. Because cancer cell line cells multiply much more

rapidly than normal cells, this list includes genes encoding for

centromere proteins, kinesin and kinetochore proteins, chromatin

proteins, cyclins and cell division cycle associated proteins, and

enzymes involved in DNA replication and nucleotide metabolism.

The list also includes v-myb myeloblastosis viral oncogene

homolog-like 2. Conversely, there were 67 genes and EST

sequences with diminished gene expression in all cancer cell lines

examined. Among them, 13, 9, and 10 showed a significant

decrease in 8 (all), 7, and 6 cancer cell lines, respectively. As

opposed to the upregulated genes, those downregulated genes

varied more widely, ranging from alpha-synuclein, a zinc finger

protein, a matrix metalloproteinase, and amylases, to dystrophin.

The list also includes genes for tumor protein p63, kallikrein-11,

and cytokeratin-14.

We performed real-time qRT-PCR using the same cDNA set.

Two dozens of promising candidate genes from the homeobox SM

RT-PCR screening were initially examined. These included

BAPX1 (NKX3-2), GBX2, HLXB9 (MNX1), LHX2 upregulated

genes and LASS3, NP_775756, CXorf43 (HDX), IRX1,

POU3F1, and RAX downregulated genes. As a control, we also

examined the expression of the DYM gene. This gene encodes

Dymeclin (Dyggve-Melchior-Clausen syndrome protein) [30] and

both SM RT-PCR and DNA microarray hybridization experi-

ments showed an abundant, ubiquitous expression in all the cells

and tissues examined [31]. Ct values were obtained for individual

reactions from the real-time qRT-PCR data. We also measured the

intensity of the SM RT-PCR bands using ImageQuant software

and calculated the log2 values. Similarly, we extracted the

fluorescence intensity of the corresponding genes from the DNA

microarray hybridization experiments and calculated the log2

values. We then plotted those values against the Ct values for

comparison. Representative results for BAPX1 (NKX3-2),

CXorf43 (HDX), HLXB9 (MNX1), IRX1, LASS3, and

NP_775756 are shown in Figure 2. The result for the DYM gene

is also shown on the top row. The differences in gene expression

observed by SM RT-PCR were confirmed by real-time qRT-PCR,

although some of them were not detected by DNA microarray

hybridization. Figure 2 also clearly demonstrates a higher degree

of linearity between the SM RT-PCR and real-time qRT-PCR

results than between the DNA microarray hybridization and real-

time qRT-PCR. This is reasonable because both SM RT-PCR and

real-time qRT-PCR are PCR-based techniques and the same pairs

of primers that were proven useful in the SM RT-PCR were used

in the real-time qRT-PCR experiments. As a next step, we

performed real-time qRT-PCR using cDNA prepared from clinical

specimens of breast cancer. Cancer cell lines provide a useful

starting point for the discovery and functional analysis of genes

involved in cancer. Alterations found in cancer cell lines, however,

may not necessarily be present in the original tumors. Those

changes may have been acquired during a long in vitro cultivation.

TSHZ2 and 3 Genes in Breast and Prostate Cancers
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Therefore, it was necessary to evaluate if the same differences were

also observed in clinical cancer specimens. We did this, using

cDNA prepared from 12 matched normal and tumor pairs of

breast tissues. Together with the two-dozen homeobox genes

including those ten described above, we also selected two-dozen

genes that exhibited frequent downregulation in the DNA

microarray hybridization experiments and determined their gene

expression in the clinical breast cancer specimens. The selected

genes included: ZNF537, AMY2A/2B (2 genes analyzed simul-

taneously), TP73L (TP63), CALML3, KRT14, PCSK5, CSTA,

CSPG2 (VCAN), DKFZP586H2123 (PAMR1) and FLRT2. The

DYM gene was used as a control to normalize the expression

levels. The differences between the normalized Ct values (minus

DYM Ct) of the matched normal and tumor pairs of breast tissues

were plotted. The differences between normal epithelial cells and

established cancer cell lines were also plotted. Several of the genes

exhibiting interesting gene expression patterns (MEOX1,

HOXA5, HOXA9, SNCA, VCAN, PAMR1, and MMP28 genes)

are shown in Figure 3.

Real-time qRT-PCR confirmed that all of the above-mentioned

gene expression differences in cancer cell lines were real. However,

only a subset of genes remained as candidates after performing

real-time qRT-PCR of breast cancer clinical specimens. The results

also showed that the NP_775756 and ZNF537 genes were the

most promising candidates among those examined in the

homeobox gene and other gene categories, respectively, because

their decreased expression in tumors was observed at the highest

frequency in breast cancer cases. When we searched for

information on those genes using the more recent version of the

Ensembl Human Genome Database, we were astounded to

discover that they were renamed as TSHZ2 and TSHZ3 and

categorized into the same 3-member gene family named Teashirt

(tsh). These genes encode for proteins with widely spaced zinc

finger motifs. The normal vs. cancer comparative expression levels

of these genes are also shown in Figure 3, together with the

expression level of the TSHZ1 gene.

While our project was underway, papers were published

reporting changes in DNA methylation of the HOX A Gene

Complex associated with breast cancer [32,33]. Novak et al. also

observed concomitant epigenetic silencing of the genes in the

HOX A Gene Complex. Because we only observed the

downregulation of HOXA9 and HOXA10 genes in this complex

by expression analysis of breast and prostate cancer cell lines, we

decided to examine, this time by real-time qRT-PCR, changes in

expression of several other HOXA and other additional

homeobox genes in clinical cases of breast cancer. The results

Figure 1. SM RT-PCR results of breast and prostate cells and tissues. The results of 27 sets of experiments are shown. cDNA sources are
abbreviated as follows: normal sample (NB) and primary tumor (TB) of breast tissue from an individual; normal sample (NP), and primary tumor tissues
(TP) of prostate from an individual; normal prostate tissue (NP) from a third individual; a hyperplastic prostate tissue (HyP) from a fourth individual;
primary cultures of normal mammary (MP) and prostate (PP) epithelial cells; and MCF7 (MCF), MDA-MB-468 (468), MDA-MB-231 (231), BT-20 (BT), T-
47D (T47), PC3 (PC), DU145 (DU), and LNCaP (LN) cancer cell lines. The genomic locations of the DNA fragments amplified from each individual gene
are also shown on the left side of gel pictures. The symbol M denotes DNA fragment size markers, and G heads the results of control genomic DNA.
Differential expression was observed with some homeobox genes.
doi:10.1371/journal.pone.0017149.g001

Table 1. Homeobox genes that exhibited gene expression alterations in breast and prostate cancer cell lines by SM RT-PCR.

Both in breast and
prostate cancer cells

UP

HLXB9 (MNX1) All 5 breast and 3 prostate cancer cell
lines

BAPX1 (NKX3-2), GBX2, LHX2 7 cancer cell lines

IPF1 6

PAX6 5

DOWN

LASS3, NP_775756 (TSHZ2) 8

CXorf43 (HDX), IRX1, POU3F1 7

HOP (HOPX) 6

C10orf48 (MKX), CRX, EVX2, MEOX1, PAX2, PAX8, PEPP2 (RHOXF2), VENTX2 (VENTX) 5

CDX1, HOXA10, IRX4, NANOG, PEPP1 (RHOXF1), PROX1, PRRX1 4

HOXA9, MEOX2 3

IRX2, LMX1A 2

Only in breast

DOWN

RAX 4 out of 5 cell lines

Only in prostate

DOWN

CUTL2 (CUX2), DLX5, EMX2, HOXD10, HOXD11, POU2F3 3 out of 3 cell lines

HOXD1, HOXD9 2

doi:10.1371/journal.pone.0017149.t001

TSHZ2 and 3 Genes in Breast and Prostate Cancers
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are summarized in Table 3. We were able to confirm that the

expression of many HOXA genes was lower in tumor tissues than

in the neighboring normal tissues. However, the expression of

those genes is not downregulated in a majority of breast/prostate

cancer cell line cells, compared to the expression levels of primary

culture of normal epithelial cells and/or normal tissues. In

addition to the HOXA genes, we also observed discrepancies

between cancer cell lines and clinical specimens in the expression

of several homeobox genes that were analyzed. Among the genes

found to be upregulated in cancer cell lines, GBX2 and IPF1 did

not exhibit such tendency among clinical breast cancer cases.

Among the downregulated genes in cancer cell lines, the

correlation was weak with POU3F1 and CXorf43 (HDX), and a

reverse tendency of upregulation was observed with CRX, HOP

Figure 2. Correlation between the band intensity observed from the SM RT-PCR or the fluorescence intensity from DNA microarray
hybridization and the Ct values obtained from the real-time qRT-PCR experiments. The log2 values of the band intensity (closed triangles)
or fluorescence intensity (open squares) were plotted along the Y-axis against the Ct values on the X-axis. The DYM gene was used as a control.
Negative and zero values obtained by microarray hybridization experiments were assigned the value of 0.1 for these graphs. The results for DYM were
enlarged and are shown of the right graph on the top row. A higher degree of linearity was observed between the results of SM RT-PCR and real-time
qRT-PCR than between the results of DNA microarray hybridization and real-time qRT-PCR.
doi:10.1371/journal.pone.0017149.g002

Table 2. Genes that exhibited gene expression alterations in breast and prostate cancer cell lines by DNA microarray hybridization.

UP

CNPM (C22orf18), CDCA3, RAD51AP1 (PIR51), EXO1, SPC24 (Spc24), NCAPH (BRRN1), MYBL2, E2F2, CDCA5, HELLS, TTK,
CDCA2, RRM2, SNG1 (SYNGR1), FLJ13909 (C16orf59), MCM10, ASF1B, CDCA2, POLE2, hmm18735 (ERCC6L), CANP
(FAM111B), ORC1L, dJ383J4.3 (CENPL), CDC25C, FLJ23311 (E2F8), PIF1, CDKN2C, C13orf3 (SKA3), TRIP (TRAIP), BCL2L12,
MGC2603 (C1orf135), KIFC1, FLJ13848 (NAA40), FLJ12973 (WDR76), RAD51, FLJ10520 (RFWD3), Hs.509236 (GNB2L1)

All the 5 breast and 3
prostate cancer cell lines

DOWN

ZF537 (TSHZ3), MMP28, AMY2A, DMD, TP73L (TP63), AMY2B, EDNRA, LOC163782 (KANK4), CALML3, SNCA, SERPINF1,
CAPN3, ALOX15B

All the 5 breast and 3
prostate cancer cell lines

DFZP586H2123 (PAMR1), DOC1 (FILIP1L), PTGS1, PCSK5, FLRT2, KRT14, CSTA, CSPG2 (VCAN), P2RY5 (LPAR6) 7 cancer cell lines

FJ23221 (C1orf54), TRIM22, DLL1, KIAA0450 (PLCH2), KCTD12, KLK11, DKK3, PTGS2, Hs.16515 (COBLL1), CCND2 6 cancer cell lines

doi:10.1371/journal.pone.0017149.t002
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(HOPX), and IRX4. Heterogeneity of cell population among

different specimens, altered expression during the in vitro

cultivation, or else, may be responsible for the differences.

Although the causes remain to be determined, we decided to

focus our attention on TSHZ2 and TSHZ3, the Teashirt family of

homeobox genes that exhibited the same inclination towards a

diminished expression in both established cancer cell lines and

clinical specimens with the highest frequency of all candidates.

We examined the DNA methylation status of TSHZ genes in

their promoter regions in normal and cancer cells from breast and

prostate tissues. The sodium bisulfite modification method was

utilized followed by PCR. The nucleotide sequences of the

amplified DNA fragments were directly determined without

cloning. For the majority of samples that exhibited some

methylation, we also determined the nucleotide sequences of the

amplified fragments after cloning into a plasmid vector in order to

evaluate the degree of methylation more accurately. Ten

independent clones were sequenced for each sample, and the

frequency of methylation was calculated. Results are schematically

shown in Figure 4. Individual cytosine residues from CpG

dinucleotides in the amplified DNA fragments are represented

by circles (as determined by direct DNA sequencing without

cloning) or by squares (as determined by cloning). The percentages

of methylated cytosines are indicated in grey scale (open circle/

square ,10% methylation, closed circle/square .90% methyla-

tion). The promoter region of the TSHZ1 gene, which is expressed

in both normal and cancer cells/tissues of breast and prostate, was

found unmethylated irrespectively of the normal/cancer status

(top panel). The TSHZ2 gene promoter region was also

unmethylated in all the cells and tissues examined with the

exception of the MDA-MB-231 breast cancer cell line cells (middle

panel). The methylation status of the TSHZ3 gene promoter

depended on the pathological state of the cells (bottom panel). It

was unmethylated in normal epithelial cells, as well as normal

tissues, of breast and prostate, whereas in all the cancer cell lines

examined the corresponding region was partially or entirely

methylated. We also examined 7 additional breast tumor tissues,

and found that several had some degree of methylation at the

TSHZ3 gene promoter region analyzed.

Discussion

Cancer is the result of a series of genetic and epigenetic mishaps

subjected to natural selection. All cancers involve a disruption of

normal restraints in cell proliferation, differentiation, and survival.

Two major routes exist that contribute to uncontrolled cell

proliferation; activation of proto-oncogenes and inactivation of

tumor suppressor genes [34]. Structural changes in critical

Figure 3. Relative expression levels of the selected genes in
normal epithelial cells vs. cancer cell line cells and matched
normal vs. cancer breast tissues. The expression of two-dozen
candidate genes selected from the SM RT-PCR and DNA microarray
hybridization screenings was determined in clinical samples. Only the
representative results are shown. RNA from twelve matched pairs of
normal and tumor tissues of breast was analyzed, in addition to the
normal breast and prostate epithelial cells and 5 breast and 3 prostate
cancer cell lines. Real-time qRT-PCR was employed. The expression of
the DYM gene was used to normalize the expression data. The
differences between the normalized Ct values (minus DYM Ct) of cancer
cells/tissues and those of normal cell/tissues were calculated and
plotted. The black diamonds, open squares, and grey triangles
represent the results of clinical cases, breast cancer cell lines, and
prostate cancer cell lines, respectively. The dots above the y = 0 line
indicate downregulation in tumor, whereas dots below indicate
upregulation.
doi:10.1371/journal.pone.0017149.g003

Table 3. Expression analysis of homeobox genes in clinical specimens of breast cancer by real-time qRT-PCR.

Gene Value Gene Value

Name .1 0, ,1 21, ,0 ,21 Name .1 0, ,1 21, ,0 ,21

HOXA5 11 1 0 0 HOXA3 10 2 0 0

HOXA7 10 2 0 0 HOXA9 10 2 0 0

MEOX1 10 2 0 0 HOXA10 7 3 2 0

HOXA11 6 4 0 1 PEPP1 9 1 1 1

PEPP2 6 3 1 2 IPF1 6 2 1 3

C10orf48 5 3 1 3 NP_116142 6 1 0 5

LASS3 4 3 2 3 NANOG 4 3 2 3

GBX2 5 1 3 3 POU3F1 5 1 2 4

CXorf43 2 4 2 4 CRX 5 0 3 4

BAPX1 2 3 1 6 LHX2 2 2 4 4

HOP 2 0 4 6 IRX4 1 1 3 7

HLXB9 1 0 1 7

The twelve matched normal and tumor tissue pairs of breast cancer were categorized by their subtractive values (normalized Ct values of cancer tissue – normalized Ct

values of the corresponding normal tissue). The positive and negative values represent downregulation and upregulation in cancer tissues, respectively.
doi:10.1371/journal.pone.0017149.t003

TSHZ2 and 3 Genes in Breast and Prostate Cancers
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proteins caused by gene mutations may either activate or

inactivate their function. The activation may also occur through

an increased gene copy number and enhanced gene expression

whereas the inactivation may also occur by decreasing the copy

number and downregulation of gene expression. Therefore,

changes in copy number and expression have been used as

landmarks to identify dozens of cancer-related genes. In this work

we searched for genes that exhibit consistent differences in

expression between normal epithelial cells and established cancer

cell line cells. We analyzed breast and prostate cancers, which

progress from an early, sex hormone-dependent, organ-confined

disease to a highly invasive, hormone-independent, metastatic

disease that invades regional lymph nodes and distant organs, such

as the skeletal system. Although they are similar, breast and

Figure 4. DNA methylation status of TSHZ 1, 2, and 3 gene promoter regions in normal and cancer breast/prostate cells and tissues.
The DNA methylation states of individual cytosine residues from CpG dinucleotides in the amplified DNA fragments are represented schematically.
The degree of methylation is indicated by increasing darkness with open and closed symbols correspond to unmethylated and fully methylated
cytosines. The squares and circles indicate the results obtained by nucleotide sequencing with and without cloning, respectively.
doi:10.1371/journal.pone.0017149.g004
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prostate cancers arise in two different systems. Therefore, we

aimed to identify genes that exhibited altered expression in breast,

prostate, or both cancers. We also decided to use normal and

cancer cells rather than tissues to circumvent the heterogeneity

and contamination problems of tissues. Additionally, we took two

different approaches: SM RT-PCR and DNA microarray

hybridization. The former was targeted to homeobox genes while

the latter was used for the genome-wide analysis.

The search resulted in the identification of dozens of genes that

exhibited altered gene expression in breast/prostate cancer. Many

of the HOXA genes were downregulated in clinical specimens of

breast cancer. However, they were excluded from the candidate

list because several breast/prostate cancer cell line cells did not

satisfy the criteria when compared with the expression levels of

primary cultures of normal epithelial cells and normal tissues. This

implicates that different selection criteria would have resulted in

different results. Amazingly, after real-time qRT-PCR screening

using clinical specimens of breast cancer the top candidates from

the two separate approaches turned out to belong to the same

Teashirt family of genes. When we constructed the SM RT-PCR

system of homeobox genes, ZNF537 (TSHZ3) was not annotated.

The NP_775756 (TSHZ2) gene was not listed among the top

candidates from the DNA microarray hybridization approach

because its expression was lower in the primary cultures of normal

epithelial cells and several dozens of better candidates were

identified. In fact we might have missed those interesting

homeobox genes if we had not performed both the SM RT-

PCR and DNA microarray hybridization experiments. Because

the TSHZ2 gene was selected from homeobox genes and the

TSHZ3 gene was selected from the sum of 46,000 genes/ESTs

and as there are only 3 members in the Teashirt gene family, we

have concluded that our finding is not a mere coincidence of one

in 3 millions (1/19461/46,00063 = 1/2,974,666). A decrease in

expression of the TSHZ2 and TSHZ3 genes was observed in

100% of the breast cancer clinical cases examined. The

downregulation of these genes may also be observed in several

other types of cancers, very probably including prostate cancer. In

comparison, the TP53 gene (p53) is altered in 40% of breast

carcinomas cases (Catalogue of Somatic Mutations in Cancer

(COSMIC) database: http://www.sanger.ac.uk/genetics/CGP/

cosmic/), and although germline alterations in the BRCA1 and

BRCA2 genes are involved in many cases of hereditary breast and

ovarian cancers, the hereditary form of these diseases account for

only 5 to 10% of the total cases.

Because the downregulation of mRNA stationary levels is likely

caused by decreased transcriptional activity, it is necessary to

examine the alterations in chromatin structure surrounding the

TSHZ2 and TSHZ3 gene promoters. As an initial step, we

examined changes in their DNA methylation. All three TSHZ genes

contain regions highly rich in CpG dinucleotides around exon 1,

suggesting that those regions represent CpG islands. Therefore, we

anticipated that the TSHZ2 and TSHZ3 promoters might be

hypermethylated in the non-expressor cancer cell line cells whereas

in the expressors they would be hypomethylated, as it has been

demonstrated with other tumor suppressor genes [27,28]. We also

expected no difference in the methylation status of the TSHZ1 gene

in the TSHZ2 and TSHZ3 expressor and non-expressor cells/

tissues. The DNA methylation analyses showed that the promoter of

the TSHZ1 gene is, as we expected, unmethylated in all the

examined cells and tissues. Furthermore, the methylation status of

the TSHZ3 gene promoter correlated well with its gene expression

(unmethylated in expressor cells/tissues and methylated in non-

expressor cells/tissues) as we also anticipated. On the contrary, the

results of TSHZ2 gene promoter were somewhat unexpected. It was

found unmethylated except in the MDA-MB-231 cells, suggesting

the presence of other gene silencing mechanisms than DNA

methylation. One possible mechanism may be a diminished or

abolished expression of an upstream transcription factor(s) respon-

sible for the TSHZ2 gene expression. In Drosophila, the Teashirt (tsh)

gene is required for the development of embryonic trunk segments

[35]. Additionally, tsh is also necessary for midgut morphogenesis,

the patterning of adult eyes, and the development of the proximal

portion of adult appendages [36,37,38]. In mice, TSHZ1 regulates

posterior identity in brain and cranial neural crest cells [39], and is

required for axial skeleton, soft palate and middle ear development

[40]. The three mouse Teashirt genes could rescue both the

homeotic and the segment polarity phenotypes of a tsh null fruitfly

mutant [41]. The mammalian genes are also expressed in domains

both dorsoventrally and rostrocaudally restricted, with major

changes in expression levels coinciding with compartment bound-

aries [42]. Mice that are null mutant for TSHZ3 exhibit congenital

pelvi-ureteric junction obstruction with defective smooth muscle

differentiation and absent peristalsis in the proximal ureter,

suggesting a role in organ development [43,44]. Recent reports

have correlated the TSHZ genes to human diseases: reduced

expression of TSHZ3 protein to Alzheimer disease [45] and

deletion of the TSHZ1 gene, which is located at the 18q22.3 critical

region, to 18q deletion syndrome [46]. Patients with the latter

syndrome display a multiple-anomaly disorder associated with

mental retardation, white matter anomalies in the brain, growth

hormone deficiency, congenital aural atresia, orofacial cleft, and

palate abnormalities.

Apparently Teashirt genes/proteins have never been associated

to carcinogenesis except that TSHZ1 protein was found reactive

with an autologous IgG from patients with colon cancer (NY-CO-

33 colon cancer antigen) [47]. Therefore, it will be interesting and

necessary to determine the role and significance of THSZ2 and

TSHZ3 transcriptional inactivation in cancer. We hypothesize

that their gene silencing may play an active role in carcinogenesis.

There already exists some evidence to support this. The Teashirt

proteins were found in the Wnt signaling pathway in Drosophila

and, in humans, as part of a gene-silencing complex in neuronal

cells. In Drosophila, the Wnt protein Wingless acts to stabilize

Armadillo inside cells where it binds to at least two DNA-binding

factors, which regulate specific target genes. One of the Armadillo-

binding proteins is the Teashirt protein [48]. Upon an

extracellular signal (e.g. Wg/Wnt), Arm/b-catenin seems to

recruit the Teashirt protein and stimulates the entry into the

nucleus, where the bipartite complex can collaborate with general

DNA-binding factors to regulate specific target genes of the

pathway. In humans the activation of gene transcription by b-

catenin plays a critical part in carcinogenesis, and actually, three

regulatory genes in the Wnt signaling pathway are found to be

mutated in primary cancers [49]. The study on human neuronal

cells revealed another role of Teashirt proteins as transcriptional

repressors [45]. The FE65 adaptor protein, which can bind to the

amyloid protein precursor, simultaneously recruits SET, a

component of the acetyl transferase inhibitor, and the Teashirt

protein, which in turn recruits histone deacetylases, to produce a

gene-silencing complex [45]. Interestingly, decreasing expression

of Teashirt (due to genetic or other causes) and increasing

expression of caspase-4, a target of the silencing complex, were

correlated with progressive cognitive decline in AD patients.

We do not know if the downregulation of TSHZ2 and TSHZ3

genes is the result of shutting down gene expression when normal

expressor cells dedifferentiate and become malignant or if it is the

result of transcriptional activation when the non-expressor stem

cells, which develop into cancer cells, differentiate into epithelial
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cells. Regardless, it is evident that the difference in gene expression

allows discrimination of normal, differentiated epithelial cells from

undifferentiated (dedifferentiated) cancer cells, and therefore, it is a

potentially useful diagnostic cancer marker. We do not know

whether Teashirt proteins work as activator or suppressor of

transcription in epithelial cells, either. However, it is likely that

decreased TSHZ gene expression not only results in the decline of

the TSHZ proteins but it also elicits multi-faceted changes in the

expression of downstream genes. The CASP4 gene may not be a

target gene in the epithelial cell system. Rather, one or several of

such genes that are shown to be either upregulated or downreg-

ulated in cancer cells in Table 2 may turn out to be the target genes.

Secondary changes in the protein profile may provide useful targets

for pharmacologically active compounds. In addition to elucidate

the downstream genes, there are many additional questions

regarding the functions of the Teashirt proteins in carcinogenesis.

We hope to provide definitive answers in future studies.

Materials and Methods

Systematic Multiplex RT-PCR (SM RT-PCR)
To measure the expression of 194 homeobox and related genes we

used the following total RNA samples: a normal and a primary

breast tumor tissue from a patient with invasive ductal carcinoma, a

normal and a primary carcinoma tissue of prostate from a patient

with prostate cancer, another normal prostate tissue, and a

hyperplastic prostate tissue, primary cultures of normal mammary

and prostate epithelial cells, and 5 mammary (BT-20, MCF7, MDA-

MB-231, MDA-MB-468, and T-47D) and 3 prostate (DU145,

LNCaP, and PC3) cancer cell lines. The normal and cancerous

human tissues were obtained from the Cooperative Human Tissue

Network (CHTN). The primary cultures of human epithelial cells

and the established cancer cell line cells were purchased from

Cambrex and American Type Culture Collection (ATCC),

respectively. We prepared cDNA by reverse-transcription using

oligo dT primers and the Advantage RT-for-PCR Kit (BD

Biosciences-Clontech). We followed the SM RT-PCR experimental

protocols described previously [29,50,51,52]. Complementary DNA

samples were used as templates to examine gene expression. Small

aliquots of the SM RT-PCR reaction products were loaded onto 8%

polyacrylamide gels and electrophoresed. The gels were stained with

ethidium bromide and TIFF-formatted pictures were taken.

DNA microarray hybridization
In order to determine the genome-wide gene expression, the

same cDNA preparations that were used for SM RT-PCR were

also employed in microarray hybridization experiments. The

samples analyzed were a normal breast tissue, a normal prostate

tissue, primary cultures of normal mammary and prostate

epithelial cells, and 5 mammary and 3 prostate cancer cell lines.

Illumina’s Sentrix Human-6 Expression BeadChips, which

contained probes from the entire 23,000 RefSeq collection and

an additional 23,000 other expressed sequences, were used. We

followed Illumina’s protocol to prepare biotinylated cRNA and we

hybridized with the BeadChips. Fluorescence intensity was

measured with Illumina’s BeadStation 500. Raw data were

generated and then normalized using the Beadscan 3.0 software.

Real-time qRT-PCR
To measure the expression of selected genes two sets of cDNA

were analyzed: the same set of cDNA from the cells and tissues that

were used during the DNA microarray hybridization experiments

and another set from 12 matched pairs of normal and tumor breast

tissues. The reagent was the Power SYBR Green PCR Master Mix

(Applied Biosystems) and the primer pairs were the same used in the

SM RT-PCR experiments. The PCR products yields were

monitored using the Mx3000p system (Stratagene) under default

conditions, with the exception of an increase in the annealing

temperature to 60uC instead of 55uC. Data were analyzed using the

MxPro software. Cycle threshold (Ct) values were obtained for each

individual reaction, and the Ct of the ubiquitously expressed DYM

gene was subtracted to obtain the normalized values.

DNA methylation analysis
DNA methylation status was determined for TSHZ1, 2, and 3

gene promoters, using genomic DNA from the same cells/tissues

analyzed for gene expression. We employed the sodium bisulfite

modification method followed by PCR and DNA sequencing as

previously described [53]. Briefly, DNA sequences surrounding the

transcription initiation sites of the TSHZ genes were retrieved from

the Ensembl Human Genome Database, and the CpG-rich regions

were identified. Genomic DNA was treated with sodium bisulfite

under the conditions that allowed the conversion of cytosine, but not

5-methylcytosine, to uracil [54]. The modified DNA was treated

with sodium hydroxide followed by ethanol precipitation. DNA

fragments containing multiple CpG dinucleotides from the TSHZ

gene promoters were PCR-amplified and directly sequenced, using

primers corresponding to the bisulfite-converted sequences without

CpG dinucleotides. The nucleotide sequences of the primers used

are:TSHZ1-F (GGGAGGAAAAGGATAGTTTGTAT), TSHZ1-

R (CAACTTTCTCTCCCCCTCTCTCCT), TSHZ2-F (GGAG-

GAGTTTGTTAATGTTTAG),TSHZ2-R (AAAATCTAAAAT-

TCACTCACTCACAC),TSHZ3-F (GGGGGATTGTTTGGT-

GTT), and TSHZ3-R (CATCTAACAATACCCAAACCCTAT).

The locations in the human genome of the amplified DNA

fragments are: TSHZ1 (Chr:18, 72923259-72923378), TSHZ2

(Chr:20, 51588877-51589110), and TSHZ3 (Chr:19, 31839537-

31839698) (Ensembl release 59-Aug 2010). The DNA methylation

status at individual CpG sites was manually annotated. For several

specimens, the PCR reaction products were also cloned into the

pCR2.1 plasmid vector, using the T-A cloning method. After DNA

transformation of competent Escherichia coli bacteria, plasmid DNA

was prepared from independent clones, and ten clones were

sequenced in order to obtain more accurate estimates of

methylation frequency.

Supporting Information

Table S1 The list of the genes analyzed by SM RT-PCR is

shown, together with the nucleotide sequences of primers, their

concentrations used, and the sizes of the amplified DNA

fragments.

(PDF)
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