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Abstract

Background: Latent inhibition (LI) reflects an adaptive form of learning impaired in certain forms of mental illness. Glutamate 
receptor activity is linked to LI, but the potential role of synaptic plasticity remains unspecified.
Methods: Accordingly, the present study examined the possible role of long-term depression (LTD) in LI induced by prior 
exposure of rats to an auditory stimulus used subsequently as a conditional stimulus to signal a pending footshock. We 
employed 2 mechanistically distinct LTD inhibitors, the Tat-GluA23Y peptide that blocks endocytosis of the GluA2-containing 
glutamate α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor, or the selective glutamate n-methyl-d-aspartate 
receptor 2B antagonist, Ro25-6981, administered prior to the acquisition of 2-way conditioned avoidance with or without tone 
pre-exposure. 
Results: Systemic LTD blockade with the Tat-GluA23Y peptide strengthened the LI effect by further impairing acquisition 
of conditioned avoidance in conditional stimulus-preexposed rats compared with normal conditioning in non-preexposed 
controls. Systemic Ro25-6981 had no significant effects. Brain region–specific microinjections of the Tat-GluA23Y peptide 
into the nucleus accumbens, medial prefrontal cortex, or central or basolateral amygdala demonstrated that disruption 
of glutamate α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor endocytosis in the central amygdala also 
potentiated the LI effect.
Conclusions: These data revealed a previously unknown role for central amygdala LTD in LI as a key mediator of cognitive 
flexibility required to respond to previously irrelevant stimuli that acquire significance through reinforcement. The findings 
may have relevance both for our mechanistic understanding of LI and its alteration in disease states such as schizophrenia, 
while further elucidating the role of LTD in learning and memory.
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Introduction
The flexible and efficient allocation of cognitive resources to guide 
behavior in a changing environment is important for survival. 
Latent inhibition (LI) is a learning phenomenon where repeated 
exposure to an inconsequential stimulus impairs the subsequent 
conditioning of this stimulus with reinforcement (Lubow, 1973). 
While learning to ignore irrelevant stimuli is considered an adap-
tive mechanism, pathological alteration of LI is associated with 
cognitive dysfunction in schizophrenia (Lubow and Weiner, 2010a).

The acquisition-failure theory of LI attributes the retarded 
conditioning to the pre-exposed stimulus to decreased associ-
ability (Lubow et al., 1976) or its salience (Pearce and Hall, 1980). 
Alternatively, the competition theory emphasizes opposing pro-
cesses between 2 conflicting associations, specifically conditional 
stimulus (CS)-no event acquired in pre-exposure and CS-US ac-
quired subsequently during conditioning, which compete for 
behavioral expression/retrieval (Weiner, 1990). Reconciliation of 
these 2 approaches postulates that CS pre-exposure attenuates 
subsequent acquisition of the CS–event association, which in 
turn competes with the original CS–no event association (Lubow 
and Weiner, 2010b). Behavioral, physiological, and pharmaco-
logical manipulations can promote or impair switching to re-
spond according to the stimulus reinforcement association and 
thereby weaken or strengthen the expression of LI (Weiner and 
Feldon, 1997; Weiner, 2003). Many of these accounts implicate 
changes in synaptic plasticity in different learning processes 
during LI, but there are no direct tests of this hypothesis.

Descriptions of the neural underpinnings of LI traditionally 
focus on the nucleus accumbens (NAc) and the action of dopa-
mine therein (Weiner and Arad, 2009). The switching model 
of LI (Weiner and Feldon, 1997), which implicates NAc circuits 
in resolving conflicts arising from 2 competing associations 
(CS-event/no event), is supported by an extensive literature on 
both the modulatory effects of dopaminergic drugs (Weiner 
et al., 1996; Schiller et al., 2006) and NAc lesions on aspects of 
LI (Weiner et al., 1996, 1999; Jongen-Rêlo et al., 2002; Pothuizen 
et al., 2005; Floresco, 2015). These studies show that lesions of 
the NAc shell can increase, whereas NAc core lesions can de-
crease, flexibility in LI (Weiner et al., 1996; Jongen-Rêlo et al., 
2002; Gal et al., 2005). In addition, the dopamine releaser am-
phetamine, which can produce/exacerbate psychotic-like 
symptoms in both animals and humans, disrupts LI at the 
conditioning stage, while typical and atypical antipsychotic 
drugs, scopolamine, and glutamate n-methyl-d-aspartate re-
ceptors (NMDAR) antagonists (phencyclidine, ketamine, and 
MK-801) produce persistent LI also via effects at conditioning 
(Gaisler-Salomon and Weiner, 2003; Weiner, 2003; Gaisler-
Salomon et al., 2008).

The use of specific inhibitors of synaptic plasticity provides 
an effective strategy for delineating detailed synaptic mech-
anisms underlying different learning paradigms (Citri and 

Malenka, 2008; Howland and Wang, 2008; Collingridge et  al., 
2010; Takeuchi et al., 2014). Long-term depression (LTD) is a form 
of synaptic plasticity involving activity-dependent weakening 
of excitatory neurotransmission at glutamate synapses. LTD 
is implicated in mediating cognitive and behavioral flexibility 
in tasks that involve a change in reinforcement contingencies, 
whereby previously acquired contingencies disrupt acquisition 
of behavioral responding guided by the current contingencies. 
Our group and others have shown that blocking LTD prior to 
conditioning impairs fear extinction (Dalton et al., 2008, 2012), 
spatial reversal learning (Kim et al., 2011; Dong et al., 2013), and 
natural forgetting (Hardt et al., 2014; Migues et al., 2016).

Based on these previous findings, we reasoned that LTD 
may participate in the changing reinforcement contingen-
cies in stimulus pre-exposed animals. In accordance with 
the competition theory (Weiner, 1990; Weiner and Feldon, 
1997), we hypothesized that disruption of LTD prior to con-
ditioning in an LI paradigm would have a selective detri-
mental effect on avoidance learning in rats pre-exposed to 
the CS by interfering with the cognitive flexibility required to 
overwrite a stimulus-no response association while having 
no effect in the non-preexposed (NPE) group where no prior 
association had been acquired. In the present study, LTD 
was blocked by either disrupting clathrin-dependent endo-
cytosis of GluA2-containing α-amino-3-hydroxy-5-methyl-
4-isoxazolepropionic acid receptors (AMPARs), the critical 
final step in LTD expression, using the Tat-GluA23Y peptide 
(Ahmadian et al., 2004; Brebner et al., 2005; Dalton et al., 2008, 
2012), or by inhibiting GluN2B subunit-containing NMDARs 
implicated in the initiation of LTD, using the selective an-
tagonist Ro25-6981 (Liu et  al., 2004). Initially, both LTD ma-
nipulations were administered systemically to examine the 
potential role of LTD in modulating LI of acquisition of 2-way 
active avoidance of a footshock predicted by an auditory tone 
stimulus. To further identify key brain regions where inhib-
ition of AMPAR endocytosis may mediate effects of LI, the Tat-
GluA23Y peptide was microinjected into the NAc and medial 
prefrontal cortex (mPFC), a key afferent projection to the NAc 
(George et al., 2010; Lingawi et al., 2016). Given our use of an 
avoidance paradigm to assess LI, we also included the central 
nucleus of the amygdala (CeA) due to its roles in active defen-
sive responses (Tillman et al., 2018) and the control of dopa-
minergic activity during appetitive and aversive learning (Ahn 
and Phillips, 2002; Steinberg et  al., 2020). A  less well-known 
function of the CeA is in allocating attention resources to cues 
when their predictive value changes (Holland and Gallagher; 
1993a, 2006; Lee et al., 2006). Extending this capacity to LI sug-
gests the CeA may play a similar role when familiar cues with 
minimal predictive value suddenly gain significance through 
reinforcement.

Significance Statement
Latent inhibition (LI) is a learning phenomenon whereby prior repeated exposure to inconsequential stimuli disrupts subsequent 
conditioning of such stimuli with reinforcement. Glutamate receptor activity is linked to LI, but the potential role of synaptic 
plasticity remains unspecified. Systemic disruption of long-term depression (LTD) using an interference peptide to inhibit AMPA 
receptor endocytosis strengthened the LI effect by further impairing avoidance learning in rats pre-exposed to the tone stimulus 
compared with the non-preexposed condition. Targeted peptide microinjections to disrupt LTD, specifically in the central amyg-
dala, replicated this potentiated LI effect. These findings are relevant to understanding the neural circuits underlying LI as well 
as the role of synaptic LTD in learning and memory. Given the prominence of aberrant LI in schizophrenia, these data may also 
have clinical relevance.
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Methods and Materials

Subjects

Male Sprague-Dawley rats (Charles River, Montreal, Canada) 
weighing 200-220 g on arrival were pair-housed in a colony room 
(temperature: 21°C ± 1°C) under a reverse light cycle (light off 
7:00 am–7:00 pm). Food and water were available ad libitum. After 
the i.v. surgery, the animals were isolated for 3 days to ensure 
that the surgical wound on their back was sufficiently healed 
before being housed again with their cage mate. All experiments 
followed the principles of laboratory animal care and were 
conducted in accordance with the standards of the Canadian 
Council on Animal Care and the Guidelines for the Care and Use 
of Mammals in Neuroscience and Behavioral Research (National 
Research Council 2003). All the experiments were approved by 
the Committee on Animal Care, University of British Columbia.

Surgery

Implantation of i.v. catheter
Rats were anaesthetized with isoflurane (oxygen flow rate: 2 L/
min; isoflurane: induction: 4%; maintenance: 1.5–2.5%; Baxter 
Corporation, Canada) and an indwelling silastic catheter (Dow 
Corning Corporation, US) was implanted with the proximal 
end inserted into the right jugular vein. The distal end was 
connected to a plastic screw-on connector (Plastics-One Inc., 
Roanoke, VA, USA) mounted on a square mesh (Plastics-One 
Inc., US) and secured by dental cement. The catheter was lo-
cated s.c. and the plastic connector exited through an incision 
between the scapulae. The i.v. catheter was flushed daily with 
a heparinized (30 IU/mL; LEO Pharma Inc., Canada) ampicillin 
solution (0.2 mL of 50 mg/mL; Novopharm, Canada) to prevent 
infection and keep the catheter patent.

Intracranial surgery
Rats were anaesthetized with isoflurane (oxygen flow rate: 2 L/
min; isoflurane: induction: 4%; maintenance: 1.5–2.5%) and 
mounted in a Kopf stereotaxic frame with the incisor bar set 
at 3.3  mm below the interaural line. Bilateral guide cannulas 
(23-gauge, Small Parts Inc. Miami Lake) were implanted, aimed 
1.5 mm above the NAc (anteroposterior [AP]: +1.65, mediolateral 
[ML]: ±1.2, dorsoventral [DV] −5.5), 1.5  mm above the cen-
tral amygdala (AP: −1.9; ML: ±4, DV: −6.7), 1.5  mm above the 
basolateral amygdala (AP: −2.1, ML: ±4.8, DV: −6.8), or 0.5  mm 
above the mPFC (AP: +2.1, ML: ±0.8, DV: −2.2). AP, ML, and DV 
coordinates were calculated relative to Bregma (Paxinos and 
Watson, 2013). Injection needles extended 1.5 mm beyond the 
guide cannula tip for NAc, CeA, and basolateral amygdala (BLA) 
experiments and 0.5  mm beyond the guide cannula tip for 
mPFC experiments. The cannulas were anchored to the skull 
with dental acrylic cement (Simplex; Kent Dental Supplies, 
Gillingham, Kent, UK) and 4 surgical screws. Stainless-steel ob-
turators (30-gauge, Small Parts Inc.) were inserted in the cannula 
to prevent occlusion.

LI Protocol

Each avoidance apparatus (41.8 × 25.5 × 16.2 cm; Med Associates, 
St. Albans, VT) is comprised of 2 compartments of equal di-
mension separated by a guillotine door. Each compartment was 
equipped with 4 photocells, a wall-mounted cue light, and a 
white noise generator (approximately 60 dB) on each rear end. 
The LI protocol consisted of 2 different phases. On day 1 and 2, 

there were 2 groups of animals pre-exposed to the test apparatus 
along with either: (a) the presentation of fifty 10-second con-
ditioned stimuli (CS: white noise presented at pseudo-random 
intervals (range 10–120 seconds, mean: 60 seconds) (pre-exposed 
rats, PE), or (b) the absence of auditory stimuli (NPE). Each ses-
sion lasted 60 minutes (15 minutes habituation + 45 minutes 
session). On day 3, 2-way avoidance training began with a 
15-minute habituation period followed by 100 CS-unconditioned 
stimuli footshock pairing trials presented at pseudo-random 
intervals. The auditory CS (10 seconds) was identical to the tone 
presented previously to the PE group. A  footshock (2 seconds, 
0.75 mA) was delivered at the end of the CS. An avoidance re-
sponse was defined by movement into the opposite compart-
ment prior to CS termination. Escape responses were defined 
as entry into the opposite compartment during the 2-second 
footshock. Movement after footshock termination constituted a 
response failure. The main dependent variable was the number 
of avoidance responses recorded during the 100-trial session.

Drugs

The selective GluN2B subunit antagonist Ro25-6981 (Sigma- 
Aldrich, Oakville, Canada) was dissolved in the vehicle (2% 
DMSO and 0.09% isotonic saline). The Tat-GluA23Y peptide was 
constituted of 9 amino acids (YKEGYNVYG) (Ahmadian et  al., 
2004) and was attached to a HIV-1-derived Tat peptide sequence 
(YGRKKRRQRRR) to cross the blood brain barrier and permeate 
cells (Schwarze et al., 1999). The scrambled peptide Tat-GluA2Sc 
was comprised of a scrambled sequence of the same 9 amino 
acids (VYKYGGYNE). Both Tat-GluA23Y and Tat-GluA2Sc were 
synthesized in the Wang laboratory. These peptides were diluted 
in 0.9% sterile saline for the i.v. administration and in phosphate 
buffer saline (0.05 M) for the intracerebral administration.

Drug Treatment

All drug treatments were administered exclusively on day 3 
prior to the initiation of 2-way avoidance training. Control as-
sessment of LI (NPE: n = 6; PE: n = 7) involved i.v. administra-
tion of saline 45 minutes prior the onset of avoidance training. 
A similar protocol was used for AMPAR endocytosis inhibitor 
experiments, with Tat-GluA23Y (2.25  nmol/g; NPE: n = 7, PE: 
n = 7) or the control peptide, Tat-GluA2Sc (2.25  nmol/g; NPE: 
n = 12, PE: n = 13) administered i.v. 45 minutes prior to starting 
the training session. GluN2B antagonist experiments involved 
i.p. injection of 6  mg/kg of Ro25-6981 (NPE: n = 6, PE: n = 12) 
or vehicle (NPE: n = 8, PE: n = 7) 15 minutes before placement 
into the apparatus. During intracerebral microinjection ex-
periments, injection needles (33-gauge, Small Parts Inc.) were 
inserted into guide cannulae. Tat-GluA23Y or Tat-GluA2Sc (22.5 
pmol/0.5 µL) was administered at a rate of 0.5 µL/min. At the 
end of the injection, the needles were left in place for 2 min-
utes to ensure diffusion and were then replaced by obturators. 
Animals received bilateral injections of 0.5  µL/side into the 
NAc (Tat-GluA23Y NPE: n = 7, PE: n = 7; Tat-GluA2Sc NPE: n = 6, 
PE: n = 8), 0.75  µL/side into the mPFC (Tat-GluA23Y NPE: n = 5, 
PE: n = 7; Tat-GluA2Sc NPE: n = 5, PE: n = 6), and 0.5 µL/side into 
the CeA (Tat-GluA23Y NPE: n = 6, PE: n = 8; Tat-GluA2Sc NPE: n = 7, 
PE: n = 7). To exclude possible effects of intra-CeA Tat-GluA23Y 
spreading into the BLA, 2 additional groups (NPE: n = 8, PE: 
n = 9) were tested on acquisition of 2-way avoidance following 
bilateral injections of Tat-GluA23Y (0.5  µL/side) into the BLA 
and compared with Tat-GluA23Y CeA treatment groups.
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Histology

After completion of each experiment, animals were deeply an-
aesthetized with isoflurane and brains were removed and stored 
in 20% w/v sucrose and 4% v/v paraformaldehyde solution for at 
least 48 hours. Coronal sections (30 µm) were stained with Cresyl 
violet (Fisher Scientific, Ottawa, Canada) and examined for in-
jection site location (supplementary Figure 1).

Statistical Analysis

The avoidance responses were analyzed using a repeated-
measures mixed general linear model (GLM) using SPSS (IBM), 
with 10-trial bins as the within-subject variable and exposure 
and drug as between-subject fixed effects. Acquisition of 
2-way avoidance was indicated by a main effect of trial bins, 
whereas LI was indicated by a main effect of exposure. To as-
sess the impact of drug interventions (Ro25-6981 vs vehicle, 
Tat-GluA23Y vs Tat-GluA2Sc) on LI, a significant drug by ex-
posure interaction was followed by simple main effects com-
parisons (SME) between drug treatment groups in PE and NPE 

groups, respectively, with Bonferroni correction for multiple 
comparisons. Escape responses were analyzed in experiments 
with a significant group effect on avoidance to confirm that 
these effects were not explainable by a nonspecific effect on 
locomotor activity. Differences were considered significant 
when P < .05.

Results

As expected, there was a significant difference in 2-way avoid-
ance acquisition between vehicle-treated PE and NPE rats, 
reflecting LI. Pre-PE to the CS slowed learning of avoidance re-
sponding to subsequent CS-US pairing compared with the NPE 
condition (Figure 1A, B; 2-way mixed GLM, main effect of trials 
F(9,99) = 6.345, P < .001; main effect of exposure F(1,11) = 8.252, 
P = .015; trials by exposure interaction F(9,99)  =  3.868, P < .001). 
Escape responses declined progressively over trials, with 
fewer escape responses in NPE vs PE rats (Figure 1C, D; main 
effect of trials F(9,99)  =  5.739, P < .001; main effect of ex-
posure F(1,11)  =  8.408, P = .014; trials by exposure interaction 
F(9,99) = 3.752, P < .001).

Figure 1. Latent inhibition (LI) of 2-way avoidance. (A) Strong LI was observed in our paradigm, as pre-exposure (PE, filled squares) to the CS significantly impaired ac-

quisition of avoidance responding relative to non-preexposed (NPE, empty circles) rats, as observed in 10 trial bins. Successful avoidance responses involved shuttling 

to the opposite side of the avoidance chamber during the 10-second tone presentation, which predicted a 2-second footshock. (B) Overall avoidance percentage across 

100 trials was significantly lower in PE vs NPE rats, reflecting LI. (C) Escape responses declined progressively over trials, with fewer escape responses in NPE vs PE rats. 

(D) Overall escape responses percentage across 100 trials was significantly lower in PE vs NPE rats. *P < .05, error bars represent SEM.

http://academic.oup.com/ijnp/article-lookup/doi/10.1093/ijnp/pyab011#supplementary-data
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Systemic administration of the AMPAR endocytosis inter-
ference peptide Tat-GluA23Y prior to conditioning further sig-
nificantly reduced avoidance learning in PE rats relative to PE 
rats treated with a scrambled control peptide. Importantly, Tat-
GluA23Y treatment had no measurable effect on performance in 
NPE rats, resulting in a much stronger LI effect (i.e., larger dif-
ference between PE and NPE groups) in the Tat-GluA23Y peptide 
condition (Figure 2A, B; 3-way mixed GLM, main effect of trials 
F(9,315) = 24.617, P < .001; main effect of exposure F(1,35) = 25.059, 
P < .001; main effect of drug F(1,35) = 4.256, P = .047; exposure 
by drug interaction F(1,35) = 4.365, P = .044; follow-up SME of 
drug in NPE F(1,33) = 0.001, P = .985; follow-up SME of drug in PE 
F(1,35) = 8.746, P = .006). Escape responses progressively declined 
over trials (Figure 2C, D; F(9,315) = 16.802, P < .001) with fewer es-
capes in NPE vs PE rats (F(1,35) = 13.580, P = .001), although this 
pattern was not seen in Tat-GluA23Y-treated PE rats. No signifi-
cant effect of Tat-GluA23Y treatment or interaction was observed 

(main effect of drug F(1,35) = 0.208, P = .651; exposure by drug 
interaction F(1,35) = 1.098, P = .302).

To investigate the specific role of the NMDAR GluN2B sub-
unit implicated in the induction of LTD, we systemically 
administered the GluN2B subunit-specific antagonist Ro25-
6981 prior to conditioning. GluN2B receptor antagonism did 
not affect acquisition of 2-way avoidance in PE or NPE rats, 
indicating no significant effect of Ro25-6981 on LI (Figure 3A, 
B; 3-way mixed GLM, main effect of trials F(9,261) = 35.361, 
P < .001; main effect of exposure F(1,29) = 17.375, P < .001; main 
effect of drug F(1,29) = 0.274, P = .604; exposure by drug inter-
action F(1,29) = 1.470, P = .235). Thus, blocking GluN2B-dependent 
NMDAR signaling did not recapitulate the effect observed with 
the Tat-GluA23Y peptide. As before, escape responses declined 
over trials, with fewer escapes in NPE vs PE rats, with no effect 
of Ro25-6981 treatment (data not shown, main effect of trials 
F(9,261) = 22.375, P < .001; main effect of exposure F(1,29) = 8.062, 

Figure 2. Systemic Tat-GluA23Y potentiates latent inhibition (LI) of 2-way avoidance. (A) The AMPA receptor endocytosis inhibitor Tat-GluA23Y (2.25  nmol/g, i.v., 

black, solid lines) was administered systemically to rats prior to conditioning. Rats pre-exposed (PE, squares) to the CS avoided significantly less than non-preexposed 

(NPE, circles) controls. Tat-GluA23Y markedly strengthened the LI effect by further impairing avoidance responding in PE rats (squares) relative to rats administered 

a scrambled control peptide (red, dashed lines), while having no effect in the NPE group (circles). (B) Overall avoidance percentage indicated a significant reduction of 

avoidances in Tat-GluA23Y-treated PE rats compared with the NPE group and the corresponding scrambled control, indicating a potentiation of LI. (C) Escape responses 

progressively declined over trials, with fewer escapes in NPE vs PE rats, although this was not observed in the PE GluA23Y group. No effect of GluA23Y treatment or 

interaction was observed. (D) Overall escape responses percentage was significantly lower in PE vs NPE rats, and no effect of GluA23Y treatment or interaction was 

observed. **P < .01, ***P < .001, error bars represent SEM.
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P = .008; main effect of drug F(1,29) = 2.042, P = .164; exposure by 
drug interaction F(1,29) = 0.418, P = .523).

To determine a locus of action for the observed effect of 
systemic Tat-GluA23Y peptide administration, separate experi-
ments were conducted in which the interference peptide was 
administered prior to conditioning via intracerebral micro-
injection to several key brain regions previously implicated in 
LI. Intra-NAc administration of the Tat-GluA23Y peptide did not 
alter the expression of LI relative to the control peptide (Figure 
4A, B; 3-way mixed GLM, main effect of trials F(9,216) = 29.043, 
P < .001; main effect of exposure F(1,24) = 5.057, P = .034; main 
effect of drug F(1,24) = 0.004, P = .951; exposure by drug inter-
action F(1,24) = 0.016, P = .901). Similarly, intra-mPFC administra-
tion of the Tat-GluA23Y peptide did not affect expression of LI 
relative to the control peptide (Figure 5A, B; 3-way mixed GLM, 

main effect of trials F(9,171) = 10.494, P < .001; main effect of ex-
posure F(1,19) = 10.857, P = .004; main effect of drug F(1,19) = 0.200, 
P = .660; exposure by drug interaction F(1,19) = 0.114, P = .740).

Microinjection of Tat-GluA23Y peptide into the CeA sig-
nificantly potentiated LI relative to the control peptide, as 
indicated by a profound impairment in the acquisition of 
2-way avoidance in PE rats, compared with intact condi-
tioning in their NPE counterparts and control PE rats (Figure 
6A, B; 3-way mixed GLM, main effect of trials F(9,216) = 27.351, 
P < .001; main effect of exposure F(1,24) = 39.223, P < .001; 
main effect of drug F(1,24) = 11.152, P = .003; exposure by drug 
interaction F(1,24) = 4.375, P = .047; follow-up SME of drug 
in NPE F(1,24) = 0.726, P = .403; follow-up SME of drug in PE 
F(1,24) = 15.896, P = .001). Escapes declined progressively over 
time with fewer escapes in NPE vs PE rats (Figure 6C, D; main 

Figure 4. Nucleus accumbens (NAc) administration of Tat-GluA23Y does not affect latent inhibition (LI) of 2-way avoidance. (A) Tat-GluA23Y (0.5 μL/hemisphere, 22.5 

pmol/0.5 μL, IC, black, solid lines) or scrambled control peptide (red, dashed lines) was administered into the NAc of rats prior to conditioning. Rats pre-exposed (PE, 

squares) to the CS avoided significantly less than non-preexposed (NPE, circles) controls irrespective of the drug treatment, with no effect on LI. (B) Overall avoidance 

percentage was significantly lower in PE vs NPE rats, with no effect of drug treatment. *P < .05, error bars represent SEM.

Figure 3. Ro25-6981 does not affect latent inhibition of 2-way avoidance. (A) The GluN2B receptor antagonist Ro25-6981 (6 mg/kg, i.p., black, solid lines) or vehicle (red, 

dashed lines) was administered systemically to rats prior to conditioning. Rats pre-exposed (PE, squares) to the CS avoided significantly less than non-preexposed 

(NPE, circles) controls irrespective of the drug treatment, with no effect on LI. (B) Overall avoidance percentage was significantly lower in PE vs NPE rats, with no effect 

of drug treatment. ***P < .001, error bars represent SEM.
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effect of trials F(9,216) = 13.877, P < .001; main effect of ex-
posure F(1,24) = 40.996, P < .001), while Tat-GluA23Y treatment 
tended to elevate escapes in all groups, indicating that drug 
treatment did not impair perception of a noxious stimulus or 
locomotor activity (main effect of drug F(1,24) = 9.139, P = .006; 
exposure by drug interaction F(1,24) = 3.860, P = .061).

To confirm this LI effect was mediated by drug action in 
the CeA and not due to spill over into the BLA, the Tat-GluA23Y 
peptide was administered directly into the BLA prior to con-
ditioning in separate groups of PE and NPE rats. BLA admin-
istration of Tat-GluA23Y did not recapitulate the significant 
impairment of avoidance learning following CeA administra-
tion of Tat-GluA23Y, confirming the CeA as the locus of action 
for the peptide (Figure 7; 3-way mixed GLM, main effect of trials 
F(9,243) = 19.200, P < .001; main effect of exposure F(1,27) = 27.396, 
P < .001; main effect of region F(1,27) = 4.459, P = .044; exposure by 
region interaction F(1,27) = 5.363, P = .028; follow-up SME of re-
gion in NPE F(1,27) = 0.019, P = .892; follow-up SME of region in PE 
F(1,27) = 10.954, P = .003).

Discussion

As expected, pre-exposure to a nonreinforced stimulus impaired 
subsequent conditioning of this stimulus with reinforcement 
compared with the non-preexposed condition. The present LI 
paradigm involved strong CS pre-exposure (100 CS presenta-
tions over 2 days) and therefore produced robust LI. Although 
avoidance conditioning in PE rats was significantly lower than 
in NPE rats throughout the 100 trials, PE rats still displayed a 
learning curve. In stark contrast, systemic administration of the 
Tat-GluA23Y peptide completely blocked avoidance conditioning 
in PE rats, with no apparent learning curve. The Tat-GluA23Y pep-
tide has been extensively validated in vivo across multiple brain 
regions as a specific inhibitor of clathrin-dependent endocytosis 
of GluA2-containing AMPARs, a critical step in LTD expression 
with no effect on basal synaptic transmission or LTP (Ahmadian 
et al., 2004; Brebner et al., 2005; Dalton et al., 2008; Yu et al., 2008; 
Ge et al., 2010; Dong et al., 2013).

Our results indicate that blocking LTD expression during the 
conditioning phase of a 2-way avoidance procedure potentiates 
LI by impairing avoidance learning to a pre-exposed CS. The ab-
sence of any disruptive effect of LTD blockade on conditioning 
with a novel CS in NPE rats excludes the possibility that this ef-
fect is due to a general impairment of associative learning per se 
or the capacity to detect and protect from aversive stimuli. This 
is consistent with intact fear conditioning under LTD blockade 
(Dalton et al., 2008, 2012) and extends this finding to active fear-
conditioned avoidance. Thus, peptide-mediated LTD blockade 
during conditioning resulted in behavioral perseveration in 
the LI paradigm or an impaired capacity of PE rats to switch re-
sponding from the initial CS-no event association to the CS-US 
association, consistent with a role for LTD in mediating behav-
ioral flexibility in response to changes in reinforcement con-
tingency. Similarly, in previous studies of LTD blockade at the 
conditioning stage, fear conditioning is acquired but not extin-
guished (Kim et al., 2007; Dalton et al., 2008, 2012), and the initial 
hidden platform location on a water maze, but not its reloca-
tion, is learned (Nicholls et al., 2008; Kim et al., 2011; Dong et al., 
2013). LTD is also required for natural forgetting of previous as-
sociations (Hardt et al., 2014; Migues et al., 2016).

Systemic blockade of LTD using the Tat-GluA23Y peptide pro-
duces similar effects on LI perseverance as dopamine blockers, 
NMDA antagonists, and cholinergic drugs (Weiner, 2003). As 
these drugs have known effects on synaptic plasticity, LTD rep-
resents a potential common mechanism by which such drugs 
may mediate their effect on LI, although other mechanisms 
may also be involved. Here we report significant treatment-
induced strengthening of LI compared with strong LI in con-
trols, whereas previous demonstrations of LI enhancement 
often involved weak or no LI in controls produced with fewer CS 
pre-exposure (Weiner, 2003), underscoring the robustness of our 
LTD blockade effect. As Tat-GluA23Y treatment entirely blocked 
conditioning in PE rats, an interesting question remains as to 
the effects of weaker pre-exposure protocols followed by LTD 
blockade in conditioning.

On the other hand, systemic administration of the GluN2B 
subunit-selective NMDAR antagonist, Ro25-6981, which 

Figure 5. Medial prefrontal cortex (mPFC) administration of Tat-GluA23Y does not affect latent inhibition (LI) of 2-way avoidance. (A) Tat-GluA23Y (1.0 μL/hemisphere, 

22.5 pmol/0.5 μL, IC, black, solid lines) or scrambled control peptide (red, dashed lines) was administered into the mPFC of rats prior to conditioning. Rats pre-exposed 

(PE, squares) to the CS avoided significantly less than non-preexposed (NPE, circles) controls irrespective of the drug treatment, with no effect on LI. (B) Overall avoid-

ance percentage was significantly lower in PE vs NPE rats, with no effect of drug treatment. **P < .01, error bars represent SEM.
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specifically impairs GluN2B-dependent LTD in vivo (Liu et  al., 
2004; Fox et  al., 2006; Ge et  al., 2010), did not recapitulate the 
potentiated LI effect observed with the Tat-GluA23Y peptide. 
Considering that systemically induced blockade of glutamatergic 
transmission using the non-selective NMDA-R blocker MK-801 
prior to conditioning potentiates LI (Gaisler-Salomon and 
Weiner, 2003; Weiner, 2003; Gaisler-Salomon et al., 2008), these 
results suggest that GluN2B-independent signaling may be in-
volved in both the observed LTD effect on LI as well as the effect 
of glutamatergic drugs. The possibility remains that localized 
micro-injections of Ro25-6981 targeting GluN2B-dependent 
LTD within a specific region of interest are required to affect 
LI. Therefore, while our findings with the Tat-GluA23Y peptide 
provide compelling evidence for the role of LTD expression in 
mediating the observed effect on LI, future studies are warranted 
to establish which mechanisms of LTD initiation are involved.

The NAc plays a central role in LI as well as in the modu-
lation of LI by dopaminergic drugs (Gray et al., 1997). Although 
systemic blockade of LTD using Tat-GluA23Y enhances LI similar 
to the effects of traditional neuroleptics, our microinjection ex-
periments fail to implicate NAc LTD in the LI facilitation. Our 
microinjections targeted the NAc core, where lesions enhance 
LI, with limited spread into the shell, where lesions disrupt LI. It 
is possible that incomplete LTD blockade in the shell accounts 
for the failure of our intra-NAc microinjections to modulate LI 
(Weiner et  al., 1996; Jongen-Rêlo et  al., 2002; Gal et  al., 2005). 
Brain regions that provide afferent projections to the NAc are 
also implicated in LI, including the mPFC (George et  al., 2010; 
Lingawi et  al., 2016) and BLA (Weiner et  al., 1995; Coutureau 
et al., 2001; Schiller and Weiner, 2004). We failed to observe an ef-
fect of intra-mPFC injection of the Tat-GluA23Y peptide on LI. We 
targeted the dorsal aspect of mPFC (anterior cingulate-prelimbic 

Figure 6. Central nucleus of the amygdala (CeA) administration of Tat-GluA23Y potentiates latent inhibition of 2-way avoidance. (A) Tat-GluA23Y (0.5 μL/hemisphere, 

22.5 pmol/0.5 μL, IC, black, solid lines) or scrambled control peptide (red, dashed lines) was administered into the CeA of rats prior to conditioning. Rats pre-exposed 

(PE, squares) to the CS avoided significantly less than non-preexposed (NPE, circles) controls. Intra-CeA Tat-GluA23Y markedly strengthened the LI effect, by further 

impairing avoidance responding in PE rats (squares) relative to rats administered a scrambled control peptide (red, dashed lines), while having no effect in the NPE 

group (circles). (B) Overall avoidance percentage indicated a significant reduction of avoidances in intra-CeA Tat-GluA23Y-treated PE rats compared with the NPE group 

and the corresponding scrambled control, indicating a potentiation of LI. (C) Escape responses progressively declined over trials, with fewer escapes in NPE vs PE rats, 

while intra-CeA GluA23Y treatment tended to elevate escapes. (D) Overall escape responses percentage was significantly lower in PE vs NPE rats, while intra-CeA Tat-

GluA23Y treatment increased escapes regardless of preexposure status. **P < .01, ***P < .001, error bars represent SEM.
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border), which, combined with the volume delivered (0.75  µL), 
likely spared ventral mPFC (infralimbic cortex). As ventral mPFC 
lesions may affect LI (George et al., 2010; Lingawi et al., 2016), 
a potential role for LTD in specific subregions of the mPFC re-
mains plausible and warrants further investigation.

Administration of the GluA23Y peptide to block LTD within 
the intra-CeA recapitulated the robust conditioning impairment 
in CS-PE groups following its systemic administration. This 
finding, in turn, suggests that LTD in the central amygdala may 
be a key mediator of cognitive flexibility that enables previously 
irrelevant stimuli to acquire significance through reinforcement. 
The CeA is the principal output structure of the amygdala and 
is required for expression of fear and defensive behaviors to 
threatening stimuli (LeDoux and Phillips, 1992; Gozzi et al., 2010; 
Haubensak et al., 2010; Steinberg et al., 2020). Accumulating evi-
dence supports a role for the CeA in both aversive and appetitive 
emotional learning and as a critical site of plasticity in some 
forms of Pavlovian learning (Samson and Paré, 2005; Samson 
et al., 2005; Tillman et al., 2018; Steinberg et al., 2020).

The CeA consists primarily of GABAergic neurons organized 
into an intricate microcircuit that controls the expression of 
conditioned fear as an active or passive response (Ciocchi et al., 
2010; Gozzi et  al., 2010; Haubensak et  al., 2010; Li et  al., 2013; 
Fadok et al., 2017; Yu et al., 2017). As this GABAergic neuronal 
circuitry does not undergo GluA2-dependent LTD, we propose 
that an excitatory input to a subpopulation of CeA neurons is 
initially potentiated during CS pre-exposure and must then 
undergo LTD during subsequent conditioning. One candidate 
might be threat-encoding excitatory inputs from the BLA that 
synapse onto CeA interneurons, which in turn initiate behav-
ioral responses via inhibitory action onto downstream targets 
(Babaev et  al., 2018). Consideration should also be given to a 
subpopulation of PKC+ GABAergic cells within the lateral region 
of the CeA as a possible target of these inputs, as these neurons 

cease to display action potentials during acquisition of condi-
tioned fear (Haubensak et al., 2010).

Our data suggest that PE rats in the control and ineffective 
treatment conditions express both the CS-no event and CS-US 
associations, whereas PE rats treated with either systemic 
or intra-CeA administration of the Tat-GluA23Y peptide re-
main exclusively under the behavioral control of the CS-no-
event association. Building on Weiner’s competition theory 
of LI, which emphasizes involvement of opposing processes 
between 2 conflicting associations competing for behavioral 
expression/retrieval, LTD in the CeA may mediate active inhib-
ition of neural circuitry that encodes the original stimulus-no 
event association. This, in turn, would permit the formation 
of a new association between this CS and reinforcement. In 
the absence of such an LTD mechanism to inhibit a prior as-
sociation with the same CS, as in the presence of the interfer-
ence peptide, the initial association would effectively compete 
with the establishment of a new more relevant acccociation. 
Through its interaction with the midbrain dopamine system 
(Ahn and Phillips, 2002; Steinberg et al., 2020), the CeA has also 
been linked to enhanced attention to cues following changes 
in their predictive value (Holland and Gallagher, 1993a, 2006; 
Fudge and Haber, 2000; Lee et  al., 2006; Tillman et  al., 2018). 
Accordingly, in the LI paradigm, CeA LTD may also prevent 
enhancement of attention to changes in stimulus salience 
required for successful conditioning, consistent with the 
acquisition-failure theory (Lubow et al., 1976; Pearce and Hall, 
1980). Thus, modulation of synaptic plasticity in the CeA may 
have far-reaching consequences for behavioral responses to 
threat under changing circumstances.

The LI paradigm used here involves the acquisition of an ac-
tive response to an aversive contingency. LI effects are observed 
in both passive fear paradigms and appetitive paradigms; there-
fore, further studies are required to determine whether the 

Figure 7. Basolateral amygdala administration of Tat-GluA23Y did not recapitulate the effect on LI observed following CeA administration. (A) Tat-GluA23Y (0.5 μL/

hemisphere, 22.5 pmol/0.5 μL, IC) was administered into the CeA (red, dashed lines) or BLA (black, dashed lines) to rats prior to conditioning. Rats pre-exposed (PE, 

squares) to the CS avoided significantly less than non-preexposed (NPE, circles) controls. Intra-BLA Tat-GluA23Y administration had no effects on avoidance responding 

and thus failed to recapitulate the significant effect on LI observed following intra-CeA administration. This confirmed the CeA as the locus of action Tat-GluA23Y, 

excluding spill over to the BLA. (B) Overall avoidance percentage indicated a potentiation of LI in intra-CeA but not intra-BLA Tat-GluA23Y-treated rats. **P < .01, 

***P < .001, error bars represent SEM.
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present finding generalizes to these circumstances. Although 
the CeA is implicated in certain forms of conditioned appetitive 
behavior (Hall et al., 2001; Holland and Gallagher, 2003; Steinberg 
et  al., 2020), neurotoxic lesions of the CeA failed to modulate 
LI in an appetitive procedure (Holland and Gallagher, 1993b). As 
the neural circuitry mediating conditioned fear differs from that 
subserving the effects of LI on appetitive learning, it remains 
to be determined whether disruption of LTD in the appropriate 
synapses would affect cognitive flexibility required for adapta-
tion of appetitive learning.

Interest in LI gains added significance through its link 
to schizophrenia and related disorders, giving rise to the 
“2-headed” LI model of schizophrenia (Weiner, 2003; Weiner 
and Arad, 2009). On one hand, LI deficits are observed in pre-
clinical models of schizophrenia symptoms, canonically 
induced by amphetamine administration, with disrupted con-
text processing highlighted as a key feature (Weiner, 1990; 
Gray et  al., 1991). Similarly, the clinical data generally sup-
port reduced LI in acute, non-/recently medicated, positive-
symptom schizophrenic patients compared with healthy 
controls (Lubow, 2010; Lubow and Weiner, 2010b). On the other 
hand, LI perseveration, or the inability to update behavior 
based on changing relationships between stimuli and out-
comes, is a core disturbance in chronic schizophrenia (Gal 
et al., 2009; Granger et al., 2016), implying that impaired LTD 
may be involved. Furthermore, the abnormally persistent LI 
observed in chronic schizophrenia patients may account for 
their impaired attentional set shifting, a form of disrupted 
cognitive flexibility (Weiner, 2003). LI abnormalities in schizo-
phrenia appear to depend on the state of the disorder (acute 
vs chronic), providing clinical context for our findings of po-
tentiated LI following LTD blockade, with implications for the 
positive, negative, and cognitive symptoms of schizophrenia 
(Weiner, 2003).

Finally, the present findings are consistent with preclinical and 
clinical studies that link dysfunction within the glutamatergic 
system and aberrant synaptic plasticity to schizophrenia. As 
mentioned, NMDA receptor antagonists, which induce persistent 
LI and model aspects of schizophrenia in rodents, support the 
hypo-glutamatergic hypothesis and the presence of impaired 
plasticity in schizophrenia (Gaisler-Salomon and Weiner, 2003; 
Weiner, 2003; Gaisler-Salomon et al., 2008). Consistent with this 
hypothesis, noninvasive human brain stimulation studies report 
reduced LTP and LTD in the motor cortex of schizophrenia pa-
tients (Hasan et  al., 2012; Bhandari et  al., 2016). Modulation of 
LTD provides a potent mechanism for targeting aberrant LI and 
deserves consideration as a potential therapeutic strategy for 
key symptoms in schizophrenia arising from abnormal stimulus 
processing. In summary, the present findings have relevance 
both for our mechanistic understanding of LI and its alteration 
in pathological states such as schizophrenia, while further 
elucidating the role of LTD in learning and memory.
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