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Abstract Forests provide biodiversity, ecosystem, and economic services. Information on

individual trees is important for understanding forest ecosystems but obtaining individual-level

data at broad scales is challenging due to the costs and logistics of data collection. While advances

in remote sensing techniques allow surveys of individual trees at unprecedented extents, there

remain technical challenges in turning sensor data into tangible information. Using deep learning

methods, we produced an open-source data set of individual-level crown estimates for 100 million

trees at 37 sites across the United States surveyed by the National Ecological Observatory

Network’s Airborne Observation Platform. Each canopy tree crown is represented by a rectangular

bounding box and includes information on the height, crown area, and spatial location of the tree.

These data have the potential to drive significant expansion of individual-level research on trees by

facilitating both regional analyses and cross-region comparisons encompassing forest types from

most of the United States.

Introduction
Trees are central organisms in maintaining the ecological function, biodiversity, and the health of the

planet. There are estimated to be over three trillion individual trees on earth (Crowther et al., 2015)

covering a broad range of environments and geography (Hansen et al., 2013). Counting and mea-

suring trees are central to understanding key environmental and economic issues and has implica-

tions for global climate, land management, and wood production. Field-based surveys of trees are

generally conducted at local scales (~0.1–100 ha) with measurements of attributes for individual trees

within plots collected manually. Connecting these local scale measurements at the plot level to

broad scale patterns is challenging because of spatial heterogeneity in forests. Many of the central

processes in forests, including change in forest structure and function in response to disturbances

such as hurricanes and pest outbreaks, and human modification through forest management and

fire, occur at scales beyond those feasible for direct field measurement.

Satellite data with continuous global coverage have been used to quantify important patterns in

forest ecology and management such as global tree cover dynamics and disturbances in temperate

forests (e.g., Bastin et al., 2018). However, the spatial resolution of satellite data makes it difficult
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to detect and monitor individual trees that underlie large scale patterns. Individual level data is

important for forest ecology, ecosystem services, and forestry applications because it connects sets

of remote sensing pixels to a fundamental ecological, evolutionary, and economic unit used in analy-

sis. Without grouping to the crown level, it becomes difficult to compare remotely sensed and field-

based measurements on individual trees, since field surveys have no corresponding concept of pix-

els. In addition, characteristics such as species identity, structural traits, growth, and carbon storage

potential are properties of individuals rather than pixels. Delineation of crowns also serves as a first

step in species classification (Fassnacht et al., 2016), foliar trait mapping (Zheng et al., 2021), and

analyses of tree mortality (Stovall et al., 2019).

High-resolution data from airborne sensors have become increasingly accessible, but converting

the data into information on individual trees requires significant technical expertise and access to

high-performance computing environments (Aubry-Kientz et al., 2019; Puliti et al., 2020). This pre-

vents most ecologists, foresters, and managers from engaging with large scale data on individual

trees, despite the availability of the underlying data products and broad importance for forest ecol-

ogy and management. In response to the growing need for publicly available and standardized air-

borne remote sensing data over forested ecosystems, the National Ecological Observatory Network

(NEON) is collecting multi-sensor data for more than 40 sites across the United States. We combine

NEON sensor data with a semi-supervised deep learning approach (Weinstein et al., 2019;

Weinstein et al., 2020b) to produce a data set on the location, height, and crown area of over 100

million individual canopy trees at 37 sites distributed across the United States. To make these data

readily accessible, we are releasing easy to access data files to spur biological analyses and to facili-

tate model development for tasks that rely on individual tree prediction. We describe the compo-

nents of this open-source data set, compare predicted crowns with hand-labeled crowns for a range

of forest types, and discuss how this data set can be used in forest research.

Results

The NEON crowns data set
The NEON Crowns data set contains tree crowns for all canopy trees (those visible from airborne

remote sensing) at 37 NEON sites. Since subcanopy trees are not visible from above, they are not

included in this data set. We operationally define ‘trees’ as plants over 3 m tall. The 37 NEON sites

represent all NEON sites containing trees with co-registered RGB and LiDAR data from 2018 or

2019 (see Figure 1 and Appendix 1 for a list of sites and their locations). Predictions were made

using the most recent year for which images were available for each site.

The data set includes a total of 104,675,304 crowns. Each predicted crown includes data on the

spatial position of the crown bounding box, the area of the bounding box (an approximation of

crown area), the 99th quantile of the height of LiDAR returns within the bounding box above ground

level (an estimate of tree height), the year of sampling, the site where the tree is located, and a con-

fidence score indicating the model confidence that the box represents a tree. The confidence score

can vary from 0 to 1, but based on the results from Weinstein et al., 2020b, boxes with less than

0.15 confidence were not included in the data set.

The data set is provided in two formats: (1) as 11,000 individual files each covering a single 1 km2

tile (geospatial ‘shapefiles’ in standard ESRI format); and (2) as 37 csv files, each covering an entire

NEON site. Geospatial tiles have embedded spatial projection information and can be read in com-

monly available GIS software (e.g., ArcGIS, QGIS) and geospatial packages for most common pro-

gramming languages used in data analysis (e.g., R, Python). All data are publicly available, openly

licensed (CC-BY), and permanently archived on Zenodo (https://zenodo.org/record/

3765872) (Weinstein et al., 2020a; Weinstein et al., 2020c; Weinstein et al., 2020b).

To support the visualization of the data set, we developed a web visualization tool using the

ViSUS WebViewer (https://visus.org//) to allow users to view all of the trees at the full site scale with

the ability to zoom and pan to examine individual groups of trees down to a scale of 20 m (see

http://visualize.idtrees.org, Figure 2). This tool will allow the ecological community to assist in identi-

fying areas in need of further refinement within the large area covered by the 37 sites.
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Materials and methods

Crown delineation
The location of individual tree crowns was estimated using a semi-supervised deep learning work-

flow (Figure 3) developed by Weinstein et al., 2020b, Weinstein et al., 2019, which is imple-

mented in the ‘DeepForest’ Python package (Weinstein et al., 2020c). We extend the workflow by

filtering trees using the LiDAR-derived canopy height model (CHM) to remove objects identified by

the model with heights of <3 m (Supplementary material). The deep learning model uses a one-shot

object detector with a convolutional neural network backbone to predict tree crowns in RGB imag-

ery. The model was pre-trained first on ImageNet (Deng et al., 2009) and then using weak labels

generated from a previous published LiDAR tree detection algorithm using NEON data from 30 sites

(Silva et al., 2016). The model was then trained on 10,000 hand-annotated crowns from seven

NEON sites (Figure 1). Hand-annotations included any vegetation over 3 m in height, including

standing dead trees. The LiDAR derived 3 m threshold is important in sparsely vegetated land-

scapes, such as oak savannah and deserts, where it was difficult for the model to distinguish

Figure 1. Locations of 37 NEON sites included in the NEON crowns data set and examples of tree predictions shown with RGB imagery for six sites.

Clockwise from bottom right: (1) OSBS: Ordway-Swisher Biological Station, Florida (2) DELA: Dead Lake, Alabama, (3) SJER: San Joaquin Experimental

Range, California, (4) WREF: Wind River Experimental Forest, Washington, (5) BONA: Caribou Creek, Alaska and (6) BART: Bartlett Experimental Forest,

New Hampshire. Each predicted crown is associated with the spatial position, crown area, maximum height estimates from co-registered LiDAR data,

and a predicted confidence score.

Weinstein et al. eLife 2021;10:e62922. DOI: https://doi.org/10.7554/eLife.62922 3 of 18

Tools and resources Ecology

https://doi.org/10.7554/eLife.62922


between trees and low shrubs in the RGB imagery. We chose this approach because it is flexible

enough to allow the data set to be updated and improved by integrating new data and modeling

approaches and because it can be effectively applied at large scales with the remote sensing data

available from NEON. This required a flexible method that: (1) avoided hand-tuned parameteriza-

tions for each site or ecosystem (Weinstein et al., 2020b), (2) accounted for the highly variable data

spanning more than 10,000 tiles that included RGB artifacts and sparse LiDAR point densities, and

(3) did not rely on site-specific or species information for allometric constraints on crown size

(Duncanson et al., 2015; Fischer et al., 2020). For details of the underlying algorithms, see

Figure 2. The Neon crowns data set provides individual-level tree predictions at broad scales. An example from Bartlett Forest, NH shows the ability to

continuously zoom from landscape level to stand level views. A single 1 km tile is shown. NEON sites tend to have between 100 and 400 tiles in the full

airborne footprint.
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Weinstein et al., 2019, Weinstein et al., 2020b. Relaxing each of these constraints opens areas of

future improvement, especially once species information is available for each label (Maschler et al.,

2018). For example, Duncanson and Dubayah, 2018 showed that site-specific allometric functions

can be effective at Teakettle Canyon (TEAK) in predicting tree location and measuring growth over

time.

Evaluation and validation
The DeepForest method has been compared with leading tree crown detection tools that use an

array of sensor data and algorithmic approaches. Weinstein et al., 2020b compared the approach

to three commonly used LiDAR algorithms (Coomes et al., 2017; Li et al., 2012; Silva et al., 2016)

in the lidR package (Roussel et al., 2020) and showed that DeepForest generalized better across

forest types with higher precision and recall. Weinstein et al., 2020c evaluated DeepForest using

the data from a recent crown delineation comparison from a tropical forest in French Guiana

(Aubry-Kientz et al., 2019). The original paper competed five leading methods (e.g., Ferraz et al.,

2016; Hamraz et al., 2016; Williams et al., 2020b) with the authors submitting data to an evalua-

tion data set kept private by the evaluation team. We repeated this setup and found that DeepFor-

est marginally outperformed all previously tested algorithms, despite the fact that the crown

evaluation data used convex polygons and DeepForest used bounding boxes to delineate tree

crowns.

In this paper, we further improved the delineation method by incorporating a 3 m height filter

using the NEON LiDAR-derived canopy model (NEON ID: DP3.30015.001). To validate this addition,

we compare predictions to the same set of image-annotated bounding boxes used in

Weinstein et al., 2020b (21 NEON sites, 207 images, 6926 trees). Annotations were filtered to 3 m

in height by comparing bounding boxes. In rare cases, there were obvious trees that were missed by

the height threshold. We choose to maintain these rare occurrences as a measure of cross-sensor

Figure 3. Workflow diagram adapted from Weinstein et al., 2020c. The workflow for model training and development are identical to

Weinstein et al., 2020c with the exception of extracting heights from the canopy height model for each bounding box prediction.
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error when defining ‘tree’ based on an arbitrary lidar-derived height measure. We defined a true

positive crown as a predicted bounding box with greater than 50% intersection-over-union (the area

of box intersection divided the area of box union of the two boxes) between the predicted and

ground truth (image-annotated) bounding box. From the true positives and the total number of sam-

ples we calculated crown recall and precision. Crown recall is the proportion of image-annotated

crowns matched to a crown prediction and crown precision is the proportion of predictions that

match image-annotated crowns. The workflow yielded a bounding box recall of 79.1% with a preci-

sion of 72.6%. Tests indicate that the model generalizes well across geographic sites and forest con-

ditions (Figure 4; Weinstein et al., 2020c; Weinstein et al., 2020b). There is a general bias toward

undersegmenting trees in dense stands where multiple individual trees with similar optical character-

istics are grouped into a single delineation. Adding the LiDAR threshold in this implementation

resulted in predictions that were 7.0% more precise, but 0.2% less accurate on average (Figure 4).

The decrease in recall is due to sparse LiDAR coverage in the CHM model where trees in the evalua-

tion data were clearly taller than 3 m were missed in the evaluation data set.

We also compared crowns delineated by the algorithm to field-collected stems from NEON’s

Woody Vegetation Structure data set. This data product contains a single point for each tree with a

stem diameter �10 cm. We filtered the raw data to only include live trees likely to be visible in the

Figure 4. Precision and recall scores for the algorithm used to create the NEON crowns data set (red points), as well as the DeepForest model from

Weinstein et al., 2020a (blue points). Evaluation is performed on 207 image-annotated images (6926 trees) in the NEONTreeEvaluation data set

(https://github.com/weecology/NeonTreeEvaluation). The small drop in recall in the LiDAR thresholding is due to the sparse nature of the LiDAR cloud

which can occasionally miss valid trees over 3 m. Overlapping points show areas without change between the methods.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Illustration of the LiDAR threshold for minimum predicted tree height.

Figure supplement 2. Illustration and discussion of attempts to incorporate LiDAR into DeepForest algorithm.
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canopy (see Figure 5—figure supplement 1). These overstory tree field data help us analyze the

performance of our workflow in matching crown predictions to individual trees by scoring the pro-

portion of field stems that fall within a prediction. Field stems can only be applied to one prediction,

so if two predictions overlap over a field stem, only one is considered a positive match. This test pro-

duces an overall stem recall rate at 69.4%, which is similar to the bounding box recall rate from the

image-annotated data (Figure 5). The analysis of stem recall rate is conservative due to the chal-

lenge of aligning the field-collected spatial data with the remote sensing data (Figure 5—figure sup-

plement 1). We found several examples of good predictions that were counted as false positives

due to errors in the position of the ground samples within the imagery. The two outliers in OSBS are

trees whose most recent field data (2015–2017) are labeled ‘Live’ but have little discernable crowns

Figure 5. Overstory stem recall rate for NEON sites with available field data. Each data point is the recall rate for a field-collected plot. NEON plots are

either 40m � 40 m ‘tower’ plots with two 20 � 20 m subplots, or a single 20 m � 20 m ‘distributed’ plot. See NEON sampling protocols for details. For

site abbreviations see Appendix 1 for complete table.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Description of workflow for filtering data to only include live trees likely to be visible in the canopy.
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during leaf-on flights in 2019. It is possible that these trees have since died. In the case of two of the

12 missed trees, they are labeled ‘disease damaged’ and are not recorded in subsequent surveys.

Capturing mortality events remains an area of further work, as RGB-based detection requires visible

crowns.

To assess the utility of our approach for mapping forest structure, we compared remotely sensed

predictions of maximum tree height to field measurements of tree height of overstory trees using

NEON’s Woody Plant Vegetation Structure Data. We used the same workflow described in Fig-

ure 5—figure supplement 1 for determining overstory status for both the stem recall and height

verification analysis. Predicted heights showed good correspondence with field-measured heights of

reference trees. Using a linear-mixed model with a site-level random effect, the predicted crown

height had a root mean squared error (RMSE) of 1.73 m (Figure 6). The relationship is stronger in

forests with more open canopies (SJER, OSBS) and predictably more prone to error in forests with

denser canopies (BART, MLBS). There is a persistent trend of taller predictions from the remote

sensing data as compared with field measured heights. This results in part from tree growth since

field measurement due to the temporal gap between field data collection and remote sensing acqui-

sition. For example, 73.8% of the field data for Bartlett Forest (BART; RMSE = 1.68 m) came from

2015 to 2017, but the remote sensing data is from 2019. In addition, previous work to compare field

heights to remote sensing data usually first identify trees that are visible from an overhead

Figure 6. Comparison of field and remote sensing measurements of tree heights for 11 sites in the National Ecological Observatory Network. Each

point is an individual tree. See text and Figure 5—figure supplement 1 for selection criteria and matching scheme for the field data. The root mean

squared error (RMSE) of a mixed-effects model with a site level random effect is 1.73 m.
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perspective canopy (e.g., Puliti et al., 2020), whereas all the trees above 10 cm are sampled in

NEON plots. This makes it necessary to infer which crowns are visible (for details for implementation

see Figure 5—figure supplement 1). This process can lead to overestimation of heights if the tree

identified in the field data is overtopped by a larger tree, leading to a higher predicted than mea-

sured field height. Given the data available, an average RMSE of 1.73 m suggests that overstory

height measures are reasonably accurate across the data set.

Discussion

Using the NEON crowns data set for individual, landscape, and
biogeographic scale applications
This data set supports individual-level cross-scale ecological research that has not been previously

possible. It provides the unique combination of information spanning the entire United States, with

sites ranging from Puerto Rico to Alaska, with continuous individual-level data within sites at scales

hundreds of times larger than what is possible using field-based survey methods. At the individual

level, high-resolution airborne imagery can inform analysis of critical forest properties, such as tree

growth and mortality (Clark et al., 2004; Stovall et al., 2019), foliar biochemistry (Chadwick and

Asner, 2016; Wang et al., 2020), and landscape-scale carbon storage (Graves et al., 2018b).

Because field data on these properties are measured on individual trees, individual level tree detec-

tion allows connecting field data directly to image data. In addition, growth, mortality, and changes

in carbon storage occur on the scale of individual trees such that detection of individual crowns

allows direct tracking of these properties across space and time. This allows researchers to under-

stand questions like how individual level attributes relate to mortality in response to disturbance and

pests and how the spatial configuration of individual trees within a landscape influences resilience.

As a result, this individual level data may be useful for promoting fire resistance landscapes and com-

bating large scale pest outbreaks. While it is possible to aggregate information solely at the stand

level, we believe that individual level data opens new possibilities in large scale forest monitoring

and provides richer insights into the underlying mechanisms that drive these patterns.

At landscape scales, research is often focused on the effect of environmental and anthropogenic

factors on forest structure and biodiversity (Denslow, 1995). For example, understanding why tree

biomass and traits vary across landscapes has direct applications to numerous ecological questions

and economic implications (e.g., Laubhann et al., 2009). Often this requires sampling at a number

of disparate locations and either extrapolation to continuous patterns at landscape scales, or

assumptions that the range of possible states of the system are captured by the samples. Using the

individual level data from this data set, we can now produce continuous high-resolution maps across

entire NEON sites for enabling landscape scale studies of multiple ecological phenomena (Figure 7).

For example, previous work has found that functional and species diversity at local scales promotes

biomass and tree growth (Barrufol et al., 2013; Liang et al., 2016). Similar findings have been

reported for phylogenetic diversity at local scales (Satdichanh et al., 2019). Especially when combin-

ing with species data, using the crown data to investigate the scale and strength of these effects will

inform the mechanisms of community assembly, ecological stability, and forest productivity. These

landscape scale responses can then be combined with high resolution data on natural and anthropo-

genic drivers (e.g., topography, soils, and fire management) to model forest dynamics at broad

scales.

By focusing on detecting individual trees, this approach to landscape scale forest analysis does

not require assumptions about spatial similarity, sufficiently extensive sampling, or consistent

responses of the ecosystem to drivers across spatial gradients. This is important because the hetero-

geneity of forest landscapes makes it difficult to use field plot data on quantities such as tree density

and biomass to extrapolate inference to broad scales (Marvin et al., 2014). To illustrate this chal-

lenge, we compared field-measured tree densities of NEON field plots to estimated densities of

10,000 remotely sensed plots of the same size placed randomly throughout the landscapes across

footprints of the airborne data. We attempted to change the Woody Vegetation data as little as pos-

sible (i.e., compared with the more refined filtered data in previous analyses) in order to obtain esti-

mates of tree cover in a plot from the field data. To be included in this analysis, trees needed to

have valid spatial coordinates and a minimum height of 3 m. Some older data lacked height
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estimates, in which case we used a minimum DBH threshold of 15 cm. In each simulated plot, we

then counted the total number of predicted tree crowns to create a distribution of tree densities at

the site level (Figure 8). Comparing the field plot tree densities with the distribution from the full

site shows deviations for most sites, with NEON field plots exhibiting higher tree densities than

encountered on average in the airborne data for some sites (e.g., Teakettle Canyon, CA) and lower

tree densities than from remote sensing in others (e.g., Ordway-Swisher Biological Station). While

this kind of comparison is inherently difficult due to differing thresholds and filters for data inclusion

in field versus remotely sensed data, it highlights that even well stratified sampling of large land-

scapes as was done with NEON plots (see NEON technical documents for NEON.DP1.10098) can

produce differing tree attribute estimates than continuous sampling from remote sensing data.

Combining representative field sampling with remote sensing to produce data products like the

NEON Crowns data set provides an approach to addressing this challenge to improve estimations

of the abundance, biomass, and size distributions across large geographic areas.

The NEON Crowns data set supports the assessment of cross-site patterns to help understand

the influence of large-scale processes on forest structure at biogeographic scales. For example, ecol-

ogists are interested in how and why forest characteristics such as abundance, biomass, and allome-

tric relationships vary among forest types (e.g., Jucker et al., 2017) and how these patterns covary

across environmental gradients (Feldpausch et al., 2011). Understanding these relationships is

important for inferring controls over forest stand structure, understanding individual tree biology,

and assessing stand productivity. For example, are local patterns of density and structural biomass

primarily the result of historical mechanisms, such as dispersal and adaptation, or local mechanisms

such as nutrient availability? By providing standardized data that span near-continental scales, this

data set can help inform the fundamental mechanisms that shape forest structure and dynamics. For

example, we can calculate tree allometries (e.g., the ratio of tree height to crown area) on a large

Figure 7. Tree density maps for Teakettle Canyon, California (left) and Ordway Swisher Biological Station, Florida (right). For each 100 m2 pixel, the

total number of predicted crowns were counted.

The online version of this article includes the following figure supplement(s) for figure 7:

Figure supplement 1. Illustrations of data quality challenges in remote sensing data.
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number of individual trees across NEON sites and explore how allometry varies with stand density

and vegetation type (Figure 9). This analysis shows a continental-scale relationship, with denser for-

ests exhibiting trees with narrower crowns for the same tree height compared with less dense for-

ests, but also clustering and variation in the relationship within vegetation types. For example,

subalpine forests illustrate relationships between tree density and allometry that are distinct from

other forest types. By defining both general biogeographic patterns, and deviations therein, this

data set will allow the investigation of factors shaping forest structure at macroecological scales.

In addition to these ecological applications, the NEON Crowns data set can also act as a founda-

tion for other machine learning and computer vision applications in forest informatics, such as tree

health assessments, species classification, or foliar trait estimation both within NEON sites

(Wang et al., 2020) and outside of NEON sites (Schneider et al., 2020). In each of these tasks, indi-

vidual tree delineation is the first step to associate sensor data with ground measurements. How-

ever, delineation requires a distinct set of technical background and computational approaches and

thus many ecological applications skip an explicit delineation step entirely (Williams et al., 2020a).

In addition, the growing availability of continental scale data sets of high resolution remote sensing

imagery opens up the possibility for broad scale forest monitoring of individual trees (Brandt et al.,

2020; Schneider et al., 2020) that can be supported by this data set. Just as we used weak annota-

tions generated from unsupervised LiDAR algorithms, future developers can use this data set to train

in the multiple data types provided by the NEON Airborne Observation Platform across a broad

range of forest types. While our crown annotations are not perfect, they are specifically tailored to

one of the largest data sets that allows pairing individual tree detections with information on species

Figure 8. Comparison of tree counts between the field-collected NEON plots and the predicted plots from the data set. For the remote sensing data,

10,000 simulated 40 m2 plots were calculated for each site for the full AOP footprint for each year. To mimic NEON sampling, two quadrants were

randomly sampled in each simulated plot. No plots on water, bare ground, or herbaceous land classes were included in the comparison. We selected

three sites from three NEON domains to show a sample of sites across the continental United States. Both distributed and tower NEON plots were

used for these analyses.
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identity, tree health, and leaf traits through NEONs field sampling, and we believe they are suffi-

ciently robust to serve as the basis for broad scale analysis.

Limitations and further technical developments
An important limitation for this data set is that it only provides information on sun-exposed tree

crowns. It is therefore not appropriate for ecological analyses that depend on accurate characteriza-

tion of subcanopy trees and the three-dimensional structure of forest stands. Fortunately, a number

of the major questions and applications in ecology are primarily influenced by large individuals

(Enquist et al., 2020). For example, biomass estimation is largely driven by the canopy in most eco-

systems, rather than mid or understory trees that are likely to be missed by aerial surveys. Similarly,

habitat classification and species abundance curves can depend on the dominant forest structure

that can be inferred from coarse resolution airborne data (Shirley et al., 2013) and could be

improved using this data set. It may be possible to establish relationships between understory and

canopy measures using field data that could allow this data set to be used as part of a broader anal-

ysis (Bohlman, 2015; Duncanson et al., 2014; Fischer et al., 2020). However, this would require

significant additional research to validate the potential for this type of approach at continental

scales.

We experimented with avenues to combine RGB information and a LiDAR CHM to create a jointly

learned input and found that no combination of data fusion outperformed the current pipeline (Fig-

ure 4—figure supplement 2). The lack of improvement when directly incorporating LiDAR data into

the CNN is likely due to a combination of geographic variation in tree shape and LiDAR coverage,

sparse LiDAR point densities (~6 pts/m at many NEON sites), and a lack of joint RGB and LiDAR

Figure 9. Individual crown attributes for predictions made at each NEON site. For site abbreviations see Appendix 1. Crown area is calculated by

multiplying the width and height of the predicted crown bounding box. Crown height is the 99th quantile of the LiDAR returns that fall inside the

predicted crown bounding box. Sites are colored by the dominant forest type to illustrate the general macroecological relationship among sites in

similar biomes.
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data for initial pretraining. Most LiDAR based methods are evaluated on data from a single forest

type with point densities ranging from ~15 pts/m (e.g., Duncanson and Dubayah, 2018) to over 100

pts/m (e.g., Aubry-Kientz et al., 2019). As instrumentation improves to support collecting higher

density LiDAR consistently at larger scales and algorithms are improved to allow generalization

across forest types, we anticipate updating the data set with improved delineation of the sunlit can-

opy and begin to add subcanopy trees.

An additional limitation is the uncertainty inherent in the algorithmic detection of crowns. While

we found good correspondence between image-based crown annotations and those produced by

the model for many sites, there remained substantial uncertainty across all sites and reasonable lev-

els of error in some sites. It is important to consider how this uncertainty will influence the inference

from research using this and similar data sets. The model is biased toward undersegmentation,

meaning that multiple trees are prone to being grouped as a single crown. It is also somewhat con-

servative in estimating crown extent wherein it tends to ignore small extensions of branches from

the main crown. These biases could impact studies of tree allometry and biomass if the analysis is

particularly sensitive to crown area. When making predictions for ecosystem features such as bio-

mass, it will be important to propagate the uncertainty in individual crowns into downstream analy-

ses. While confidence scores for individual detections are provided to aid uncertainty propagation,

the use of additional ground truth data may also be necessary to infer reliability.

One aspect of individual crown uncertainty that we have not addressed is the uncertainty related

to image-based crown annotations and measurement of trees in the field (Graves et al., 2018a). To

allow training and evaluating the model across a broad range of forest types, we used image-based

crown annotations. This approach assumes that crowns identifiable in remotely sensed imagery accu-

rately reflect trees on the ground. This will not always be the case, as what appears to be a single

crown from above may constitute multiple neighboring trees, and conversely, what appears to be

two distinct crowns in an image may be two branches of a single large tree (Graves et al., 2018a).

Distinguishing individual trees, especially when considering species with multi-bole stems, can be

subjective, even during field surveys. Targeted field surveys will be always needed to validate these

predictions and community annotation efforts will allow for assessment of this component of uncer-

tainty. In particular, combining terrestrial LiDAR sampling with airborne sensors is a promising route

to both validate the number of stems and establish subcanopy diversity (Calders et al., 2020). In

addition, when co-registered hyperspectral data are available, it may help to separate neighboring

trees in diverse forests, provided it does not cause lumping of neighboring trees of the same spe-

cies. Weighing these tradeoffs across a range of forest types remains an open area of exploration.

The machine learning workflow used to generate this data set also has several areas that could

be improved for greater accuracy, transferability, and robustness. The current model contains a sin-

gle class ‘Tree’ with an associated confidence score. This representation prevents the model from

differentiating between objects that are not trees and objects for which sufficient training informa-

tion is not available. For example, the model has been trained to ignore buildings and other vertical

structures that may look like trees. However, when confronted by objects data that has never been

encountered, it often produces unintuitive results. Examples of objects that did not appear in the

training data, and as a result were erroneously predicted as trees, include weather stations, floating

buoys, and oil wells. Designing models that can identify outliers, anomalies, and ‘unknown’ objects is

an active area of research in machine learning and will be useful in increasing accuracy in novel envi-

ronments. In addition, NEON data can sometimes be afflicted by imaging artifacts due to co-regis-

tration issues with LiDAR and raw RGB imagery (Figure 7—figure supplement 1). This effect can

lead to distorted imagery that appears fuzzy and swirled and lead to poor segmentation. An ideal

model would detect these areas of poor quality and label them as ‘unknown’ rather than attempting

to detect trees in these regions.

Given these limitations, we view this version of the data set as the first step in an iterative process

to improve cross-scale individual level data on trees. Ongoing assessment of these predictions using

both our visualization tool and field-based surveys will be crucial to continually identify areas for

improvements in both training data and modeling approaches. While iterative improvements are

important, the accuracy of the current predictions illustrates that this data set is sufficiently precise

for addressing many cross-scale questions related to forest structure. By providing broad scale

crown data we hope to highlight the promising integration between deep learning, remote sensing,
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and forest informatics, and provide access to the results of this next key step in ecological research

to the broad range of stakeholders who can benefit from these data.
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Appendix 1

NEON site abbreviations

Site name Site ID Domain number State Latitude Longitude

Abby Road ABBY D16 WA 45.76243 �122.33033

Bartlett Experimental Forest BART D01 NH 44.06388 �71.28731

Blandy Experimental Farm BLAN D02 VA 39.06026 �78.07164

Caribou-Poker Creeks Research Watershed BONA D19 AK 65.15401 �147.50258

LBJ National Grassland CLBJ D11 TX 33.40123 �97.57

Rio Cupeyes CUPE D04 PR 18.11352 �66.98676

Delta Junction DEJU D19 AK 63.88112 �145.75136

Dead Lake DELA D08 AL 32.54172 �87.80389

Disney Wilderness Preserve DSNY D03 FL 28.12504 �81.4362

Guanica Forest GUAN D04 PR 17.96955 �66.8687

Harvard Forest HARV D01 MA 42.5369 �72.17266

Healy HEAL D19 AK 63.87569 �149.21334

Lower Hop Brook HOPB D01 MA 42.47179 �72.32963

Jones Ecological Research Center JERC D03 GA 31.19484 �84.46861

Jornada LTER JORN D14 NM 32.59068 �106.84254

Konza Prairie Biological Station KONZ D06 KS 39.10077 �96.56309

Lajas Experimental Station LAJA D04 PR 18.02125 �67.0769

Lenoir Landing LENO D08 AL 31.85388 �88.16122

Mountain Lake Biological Station MLBS D07 VA 37.37828 �80.52484

Moab MOAB D13 UT 38.24833 �109.38827

Niwot Ridge Mountain Research Station NIWO D13 CO 40.05425 �105.58237

Northern Great Plains Research Laboratory NOGP D09 ND 46.76972 �100.91535

Klemme Range Research Station OAES D11 OK 35.41059 �99.05879

Ordway-Swisher Biological Station OSBS D03 FL 29.68927 �81.99343

Red Butte Creek REDB D15 UT 40.78374 �111.79765

Rocky Mountain National Park, CASTNET RMNP D10 CO 40.27591 �105.54592

Smithsonian Conservation Biology Institute SCBI D02 VA 38.89292 �78.1395

Smithsonian Environmental Research Center SERC D02 MD 38.89008 �76.56001

San Joaquin Experimental Range SJER D17 CA 37.10878 �119.73228

Soaproot Saddle SOAP D17 CA 37.03337 �119.26219

Santa Rita Experimental Range SRER D14 AZ 31.91068 �110.83549

Talladega National Forest TALL D08 AL 32.95046 �87.39327

Lower Teakettle TEAK D17 CA 37.00583 �119.00602

West St Louis Creek WLOU D13 CO 39.89137 �105.9154

Woodworth WOOD D09 ND 47.12823 �99.24136

Wind River Experimental Forest WREF D16 WA 45.82049 �121.95191

Yellowstone Northern Range (Frog Rock) YELL D12 WY 44.95348 �110.53914
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