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Abstract

It is demonstrated that repeated superovulation has deleterious effects on mouse ovaries and cumulus cells. However, little is known 
about the effects of repeated superovulation on early embryos. Epigenetic reprogramming is an important event in early embryonic 
development and could be easily disrupted by the environment. Thus, we speculated that multiple superovulations may have adverse 
effects on histone modifications in the early embryos. Female CD1 mice were randomly divided into four groups: (a) spontaneous 
estrus cycle (R0); (b) with once superovulation (R1); (c) with three times superovulation at a 7-day interval (R3) and (d) with five 
times superovulation at a 7-day interval (R5). We found that repeated superovulation remarkably decreased the fertilization rate. 
With the increase of superovulation times, the rate of early embryo development was decreased. The expression of Oct4, Sox2 and 
Nanog was also affected by superovulation in blastocysts. The immunofluorescence results showed that the acetylation level of 
histone 4 at lysine 12 (H4K12ac) was significantly reduced by repeated superovulation in mouse early embryos (P < 0.01). Acetylation 
level of histone 4 at lysine 16 (H4K16ac) was also significantly reduced in pronuclei and blastocyst along with the increase of 
superovulation times (P < 0.01). H3K9me2 and H3K27me3 were significantly increased in four-cell embryos and blastocysts. We 
further found that repeated superovulation treatment increased the mRNA level of histone deacetylases Hdac1, Hdac2 and histone 
methyltransferase G9a, but decreased the expression level of histone demethylase-encoding genes Kdm6a and Kdm6b in early 
embryos. In a word, multiple superovulations alter histone modifications in early embryos.
Reproduction (2019) 157 511–523

Introduction

With rapid socio-economic development, more and 
more young people have reproductive health problems 
that are induced by many factors such as environmental 
pollution, unhealthy lifestyle and increasing incidence 
of chronic diseases. Approximately, 10–15% couples 
worldwide at childbearing age suffer from infertility 
and sterility. The use of ARTs (assisted reproductive 
techniques) for the treatment of human infertility/
subfertility is rapidly increasing, although the successful 
incidence is not as high as expected. Until now, ART is 
the best treatment for infertility. Approximately, 5–10% 
of newborn babies each year are produced by ART 
in some developed countries (Sunderam et  al. 2015, 
European IVF-Monitoring Consortium et  al. 2016). 
Thus, the health of ART children has become a major 
concern. Previous studies reported that a high frequency 

of chromosomal abnormalities (Van Steirteghem et  al. 
2002), rare congenital malformations (Hansen et  al. 
2002, Bonduelle et al. 2005) and alterations of cognitive 
and motor development (Stromberg et al. 2002, Kallen 
et al. 2005) in children may be associated with ART, but 
how that happens is not clear.

Epigenetic status changes saliently during 
preimplantation embryo development and 
gametogenesis in which epigenetic modifications 
are sensitive to environmental changes (Erhardt et  al. 
2003, van der Heijden et  al. 2005, Wang & Dey 
2006, Zhang et  al. 2009). In recent years, a number 
of studies have shown that ART manipulations such 
as superovulation, vitrification and in vitro culture can 
induce changes of epigenetic modifications in embryos 
and fetus (El Hajj & Haaf 2013, Ventura-Junca et  al. 
2015). For example, superovulation and vitrification 
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alter H4K12ac (histone 4 lysine 12 acetylation) and 
H3K9ac (histone 3 lysine 9 acetylation) in ICM (inner 
cell mass) and TE (trophectoderm) (Bakhtari et  al. 
2014), and superovulation affects DNA methylation 
pattern of line-1 in blastocyst (Liang et al. 2013). In the 
clinic, many women would experience more than one 
exogenous hormone-stimulated cycle before getting 
a baby. Animal studies have demonstrated that multi-
superovulation alters ovarian structure and function in 
the rhesus monkey, as well as mitochondrial distribution 
and function in mouse ovaries and cumulus cells (Chao 
et al. 2005, Dong et al. 2014, Kalthur et al. 2016, Xie 
et  al. 2016). Although the influence of superovulation 
on DNA methylation is dose dependent (Market-Velker 
et al. 2010), the effect of repeated superovulation at low 
dose on epigenetics in embryos is still not well known. So 
we hypothesized that repeated superovulation may have 
adverse effects on epigenetic modifications in embryos.

Histone modification is one of the most important 
epigenetic modifications, which plays a critical role in 
early embryonic development (Adenot et  al. 1997, Li 
2002, Morgan et al. 2005, Santos et al. 2005, Bogliotti 
& Ross 2012, Aoshima et al. 2015). It is demonstrated 
that H3K4me3 (tri-methylation at histone 3 lysine 4) 
and H3K27me3 (tri-methylation at histone 3 lysine 
27) are reprogrammed in early embryos, which is very 
important for embryo development (Liu et  al. 2016, 
Zhang et al. 2016). H3K9me2 (di-methylation at histone 
3 lysine 9) is an important marker of heterochromatin 
which can repress the genes expression (Sridharan 
et  al. 2013). H3K9me2 regulates DNA methylation 
by recruiting PGC7 to chromatin in the early embryos 
(Nakamura et al. 2012). There is a dynamic change of 
H3K9me2 in early embryonic development. H4K12ac 
is associated with cell division (Shang et al. 2016) and 
is important for chromatin decondensation in zygotes 
and early embryonic development (van der Heijden 
et  al. 2006, Paradowska et  al. 2012). H4K16ac is 
involved in chromatin structure remodeling (Grigoryan 
et  al. 2018) and early embryonic development (van 
der Heijden et  al. 2006). So we tested the effects of 
multi-superovulation on histone modifications such as 
H4K12ac, H4K16ac, H3K27me3 and H3K9me2 in the 
early embryos. We found that repeated superovulations 
altered histone modifications in the early embryos. 
To elucidate how these happen, we further examined 
the mRNA expression of histone deacetylases (Hdac1, 
Hdac2), acetylases (Gnc5, Hat1), methyltransferase 
(G9a) and histone demethylases (Kdm6a, Kdm6b) in the 
early embryos.

Materials and methods

Ethics statement

Animal care and use were conducted in accordance with the 
guideline of Qingdao Agricultural University, China. Mice 

were housed in a temperature-controlled room with proper 
darkness–light cycles and fed a regular diet. All experiments 
and the study protocol were approved by the Ethics Committee 
of Qingdao Agricultural University.

Superovulation

Female CD1 mice (5  weeks of age) were purchased from 
the Center of Experimental Animals of Qingdao and fed in a 
temperature- and humidity-controlled room at a light cycle of 
12 h light and 12 h darkness. Diet and water were supplied ad 
libitum. Female CD1 mice were randomly divided into four 
groups (Fig. 1A): (a) natural estrus cycle (R0); (b) intraperitoneal 
injection with 8 IU PMSG (Ningbo Hormone Product Co. Ltd., 
China) and 8 IU hCG (Ningbo Hormone Product Co. Ltd., 
China) for once (R1); (c) intraperitoneal injection with 8 IU 
PMSG and 8 IU hCG for three times at a 7-day interval (R3); (d) 
intraperitoneal injection with 8 IU PMSG and 8 IU hCG for five 
times at a 7-day interval (R5).

Zygote collection and embryo culture

Females were mated with fertile males to produce zygotes at 
the last time of hCG injection. The same males were used in 
each treatment, and all the males were purchased from the 
Center of Experimental Animals of Qingdao. If the virginal 
plug was observed in the next morning, females were killed by 
cervical dislocation 20 h after hCG administration. Fertilized 
eggs surrounded with cumulus cells were collected from 
oviduct ampulla. After that, cumulus cells were removed using 
1 mg/mL hyaluronidase in the M2 medium. To collect fertilized 
eggs of R0, pre-estrus mice were selected and mated with 
males. Then, fertilized eggs from the above four groups were 
cultured in KSOM + AA culture medium under liquid paraffin 
oil at 37°C with 5% CO2. We obtained PN4 (8 h) fertilized 
eggs, two-cell-stage embryos (24 h), four-cell-stage embryos 
(48 h) and blastocysts (84 h and 108 h).

Antibodies and immunofluorescence

Antibodies for detecting H4K12ac (catalog No. 39927) and 
H4K16ac (catalog No. 39727) were purchased from Santa 
Cruz Biotechnology. The antibody of H3K9me2 was purchased 
from Bioworld Technology (catalog No. BS7234) and 
H3K27me3 was purchased from Abcam (catalog No. ab6002). 
Antibodies of FITC (catalog No. FITC1) and Cy3 (catalog No. 
L0419) were purchased from Sigma. Immunofluorescence 
was performed according to previous protocols (Ma et  al. 
2014). Briefly, embryos were fixed in 4% paraformaldehyde 
for 40 min and then treated with 0.5% Triton X-100 for 20 min 
after three washes using washing buffer (PBS with 0.1% Tween 
20 and 0.01% Triton-100). After blocking using 1% BSA for 
1 h, embryos were incubated with the primary antibody (1:50) 
overnight at 4°C. After washing five times using washing 
buffer, embryos were then incubated with the secondary 
antibody (1:200) for 2 h at room temperature. Then, embryos 
were incubated with Hoechst 33342 (propidium iodide/4,6-
diamino-2-phenylindole) for 20 min to counterstain DNA after 
washing three times using washing buffer. Finally, the embryos 
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were mounted on glass slides with DABCO and examined 
using a laser scanning confocal microscope (Leica TCS SP5).

Quantitative fluorescence intensity

Stained embryos were scanned using the Leica TCS SP5 
confocal microscope. For each antibody detection, the same 
excitation wavelength was used, including FITC excitation 
wavelength of 488 nm, Cy3 excitation wavelength of 561 nm. 
We unified the background value in the process of laser 
scanning. To quantify fluorescence intensity, we put all the 
Z-stacks together. The fluorescence intensity was analyzed and 
treated using ImageJ.

Calculation of blastocyst cells

Cell number of blastocysts was counted as previously 
described (Van der Elst et al. 1998). Briefly, blastocysts were 
incubated in rabbit anti-mouse serum for 30 min, and then 
incubated in solution supplemented with 1:5 guinea-pig 
serum and PI for 5 min. After that, blastocysts were fixed using 
4% paraformaldehyde for 40 min, and then treated with 0.5% 
Triton X-100 for 20 min. Then, blastocysts were incubated with 
Hoechst 33342 for 20 min after washing three times using 
washing buffer. Finally, the blastocysts were mounted on glass 
slides with DABCO. The TE and ICM cells were stained in 
red and blue, respectively. Blastocysts were scanned using a 
laser scanning confocal microscope (Leica TCS SP5). The cell 
numbers were counted using ImageJ.

RNA extraction and quantitative real-time 
PCR (qRT-PCR)

Total RNA was extracted using EZ-10 Spin Column Total RNA 
Isolation Kit (Sangon Biotech, Shanghai, China) according to 
the manufacturer’s instruction. A total of 50–150 embryos were 
collected for the RNA extraction of each sample, depending on 
their developmental stages. cDNA was synthesized using the 
HiScript IIQ RT SuperMix (Vazyme, Nanjing, China) according 
to the manufacturer’s instructions. The synthesized cDNA was 
used as the template for qRT-PCR or stored at −80°C until used. 
Primers were shown in Table 1. qRT-PCR was carried out using 
the Applied Biosystems 7500 Sequence Detection System. 
Amplification was performed in the 20 μL volume containing 
10 μL of SYBR Green Master Mix (Vazyme), 0.4 μL of primers 
(10 mM), 0.4 μL of ROX Reference Dye 2, 2 μL of cDNA and 
7.2 μL of RNase free H2O. PCR amplification conditions were as 
follows: the reaction was initiated at 95°C for 10 min, followed 
by 40 cycles of denaturing at 95°C for 15 s, annealing at 60°C 
for 30 s and extension at 72°C for 20 s. Values were normalized 
against the expression level of GAPDH (reference). Relative 
expression values were calculated with the 2−ΔΔCt method. 
Values of gene expression were means of three replicates.

Statistical analysis

The expression of genes, cell numbers and fluorescence 
intensity were represented as mean ± s.d. Differences were 
evaluated by one-way analysis of variance. The differences of 
data that were presented as a percentage were calculated with 

Figure 1 Effects of multiple superovulations on embryonic development. (A) Schedule of superovulation; (B) average number of eggs retrieved 
from each mouse after mating with males; (C) the incidence of oocytes with the 1st PB; (D) the cell number of blastocysts. The number of 
blastocysts tested was 67, 73, 64 and 74 in R0, R1, R3 and R5 groups, respectively. (E and F) Effects of multiple superovulations on embryonic 
quality were also examined via checking the expression of the genes, such as pluripotency-related genes Oct4, Sox2, Nanog and apoptosis-
related genes Bcl2, Bax and Casp3.
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one-way ANOVA test. If the P value was <0.05, the difference 
between groups was considered significant.

Results

Repeated superovulation reduced the potency of early 
embryonic development

Zygotes were collected from oviducts 20 h after 
hCG injection and cultured in vitro to monitor the 
developmental process of early embryos. The average 
number of eggs per mouse (including fertilized and 
unfertilized) was higher in superovulated groups 
compared to that of R0 group, but it was decreased 
with the increase of superovulation times (P < 0.01, 
Fig.  1B). However, it appeared that the decrease in 
the percentage of oocytes with the first polar body (1st 
PB) was a consequence of repeated superovulation 
(P < 0.00001). Superovulation times had adverse effects 
on the percentage of oocytes with the 1st PB (Fig. 1C, 
P < 0.00001). The rate of pronucleus was higher in R0 
group than that in R1, R3 and R5 groups (P < 0.01, 
Table  2). With the increase of superovulation times, 
there was a significant decrease in the rate of pronucleus 
formation in R1, R3 and R5 groups (P < 0.05, Table 2).

The rate of pronucleus of R0 group was 91.3 ± 4.14%, 
while pronucleus rates were 50.4 ± 5.19%, 66.4 ± 6.15% 
and 42.7 ± 9.45% in R1, R3 and R5 groups, respectively. 
The cleavage rate was also significantly decreased with 
the increase of superovulation times (P < 0.05, Table 2). 
The incidence of two-cell embryos (Fig. 2B) in R5 group 

(85.4 ± 7.56%) was obviously lower than that in R0 group 
(97.9 ± 2.52%, P < 0.01), but it was similar between 
R1 group (91.9 ± 2.99%) and R3 group (91.7 ± 5.12%, 
P = 0.943). With the increase of superovulation times, 
the incidence of four-cell embryos had a significantly 
decreasing trend (P < 0.01). A similar trend was observed 
at the blastocyst stage (P < 0.01). The four-cell embryo 
rate of R0, R1, R3 and R5 groups were 94.6 ± 3.32%, 
80.1 ± 5.37%, 77.0 ± 5.13% and 59.1 ± 9.31%, 
respectively. The frequency of blastocyst in R0 group 
was 82.9 ± 8.19%, which was significantly higher than 
that in R1, R3 or R5 group (52.0 ± 8.16%, 44.8 ± 10.46% 
and 37.7 ± 10.69%, respectively). Meanwhile, embryos 
derived from superovulation treatment had a higher 
incidence of death and developmental block during in 
vitro culture (Fig. 2 and Table 2). We also found that the 
cell number of blastocyst was significantly affected by 
superovulation, and ICM cell number was significantly 
decreased with the increase of superovulation times 
(P = 0.035153, Fig.  1D). To further understand the 
effects of superovulation on embryonic development, 
we investigated the expression of Oct4, Sox2 and 
Nanog. The expression levels of these genes were 
similar among R1, R3 and R5 groups, although it was 
lower compared to R0 group (Fig. 1E). However, there 
was a decreased trend of these genes expression with 
the increase of superovulation times (Fig.  1E). The 
expression of genes related to apoptosis, such as Bax, 
Bcl2 and Casp 3 was not affected by superovulation in 
blastocysts (Fig. 1F). These results suggest that repeated 
superovulation may reduce embryonic development 

Table 2 Early embryonic development in vitro. Data are presented as percent ± s.d.

n
8 h 24 h 48 h 84 h 108 h

Pronucleus Death Block 2-Cell Death Block 4-Cell Blastocyst
R0 1956 91.33 ± 4.14a 1.79 ± 1.51c 1.73 ± 1.34c 97.95 ± 2.52a 8.83 ± 6.64b 3.18 ± 2.60b 94.55 ± 3.32a 26.57 ± 6.44a 82.92 ± 8.19a

R1 4195 50.40 ± 5.19b 4.51 ± 4.89c 8.16 ± 3.87a 91.85 ± 2.99b 28.55 ± 6.39a 6.78 ± 3.85b 80.14 ± 5.37b 12.34 ± 3.49b 51.98 ± 8.16b

R3 4973 66.44 ± 6.15c 12.03 ± 5.70b 4.11 ± 2.77b 91.73 ± 5.17b 27.53 ± 7.93a 14.53 ± 5.66a 77.03 ± 5.13b 5.53 ± 2.03c 44.76 ± 10.46c

R5 2025 42.73 ± 9.45d 21.04 ± 6.74a 8.01 ± 4.35a 85.39 ± 7.56c 11.85 ± 9.71b 11.85 ± 9.71ab 59.06 ± 9.31c 8.68 ± 4.94bc 37.72 ± 10.69d

Different letters mean P value <0.05 between groups. Pronucleus (%) = no. of eggs with pronucleus/total; no. of eggs embryo (%) = no. of 
embryos/no. of eggs with pronucleus.

Table 1 The sequence of primers used in RT-PCR.

Gene
Primer (5′–3′)

Size (bp)Forward Reverse
Hdac1 TTCCAACATGACCAACCA AGCATCCTCAAGTTCTCAA 78
Hdac2 CCAGAACACTCCAGAATA CATCTCCACTGTCTTCAT 131
G9a TCATCTGCGAGTATGTAG CGAAGAGGTAAGAATCATC 75
Kdm6a (UTX) CAGTATAAGTTAGCAGTGGAA GCGTTCTCAGAAGACAAT 157
Kdm6b (Jmjd3) GACGAGCCTGCCTACTAC TGCCATTCTCACTTGTAACG 76
Hat1 AAGTGTAACACCAACACAGCA CGAAAGCAGTTTCATCATCCCC 127
Gcn5 AAGGCCAATGAAACCTGCAAG CTCACAGCTACGGCACAACTC 117
Oct4 GGCTTCAGACTTCGCCTCC AACCTGAGGTCCACAGTATGC 211
Sox2 GCGGAGTGGAAACTTTTGTCC CGGGAAGCGTGTACTTATCCTT 157
Nanog TCTTCCTGGTCCCCACAGTTT GCAAGAATAGTTCTCGGGATGAA 100
Bax ATGCGTCCACCAAGAAGCTGAG CCCCAGTTGAAGTTGCCATCAG 166
Bcl2 ATGATAACCGGGAGATCGTG GACGGTAGCGACGAGAGAAG 294
Casp 3 GACTGGGATGAACCACGACCC TCTGACTGGAAAGCCGAAAC 205
Gapdh GACAAAATGGTGAAGGTCGGT GAGGTCAATGAAGGGGTCG 120
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potential and embryonic quality in a superovulation 
time-dependent manner.

Repeated superovulation altered histone acetylation 
level in the early embryos

Proper histone modification is crucial for early embryo 
development, so we used immunofluorescence to 
examine the histone acetylation levels of H4K12ac and 
H4K16ac. The fluorescence intensity of H4K12ac was 
significantly stronger in R0 group than that in R1, R3 
and R5 groups at the pronuclear stage (Fig. 3A). Similar 
results were observed at two-cell, four-cell and blastocyst 
stages (Fig.  3D, F and G). We further quantified the 
relative fluorescence intensity of H4K12ac and found 
that the relative fluorescence intensity of H4K12ac was 
lower in embryos of R1, R3 and R5 group compared to 
that of R0 group (P < 0.05), but there was no significant 
difference among R1, R3 and R5 groups (Fig. 3B, C, E, 
H and I).

We found that H4K16ac was not affected by multiple 
superovulations in paternal pronucleus except for R3 
group having a weaker fluorescence and relative low 
fluorescence intensity (P < 0.05; Fig.  4A and C). But 

the H4K16ac level was clearly decreased in maternal 
pronucleus (P < 0.05; Fig. 4C). At the two-cell and four-
cell stages, the fluorescence level of H4K16ac in R5 
group was obviously weaker than that in R0, R1 or R3 
group (Fig. 4D and F). The relative fluorescence intensity 
of H4K16ac was also significantly lower in R5 group 
compared to that in R0, R1 or R3 group (P < 0.01; Fig. 4E 
and H). Blastocysts from superovulated mice had a lower 
H4K16ac level compared to that in R0 group (P < 0.01; 
Fig. 4G and I). These results indicate that superovulation 
obviously alters histone acetylation of H4K12 and 
H4K16 in preimplantation embryos and the effect of 
superovulation on histone acetylation of H4K16 shows 
a superovulation time-dependent manner.

Repeated superovulation altered di-methylation 
of H3K9 and tri-methylation of H3K27 in the 
early embryos

We further examined the effects of repeated superovulation 
on histone methylations. At the pronuclear phase, there 
was no difference of di-methylation of H3K9 (H3K9me2) 
level in maternal pronucleus among R0, R1, R3 and R5 
groups (Fig.  5A and C). At the two-cell embryo stage, 

Figure 2 Representative images of in vitro-cultured embryos. Embryonic morphology images were acquired at 8, 24, 48, 84 and 108 h of culture. 
(A) Prokaryotic embryos at the PN4 phase; (B) two-cell stage embryos; (C) four-cell stage embryos; (D and E) blastocysts at 84 h and 108 h. Arrow 
indicates normal embryos at different stages, black arrowhead indicates dead embryos and white arrowhead refers to the blocked embryos. 
Scale bars = 100 μm.
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the H3K9me2 level was significantly increased with 
the increase of superovulation times (P < 0.05; Fig.  5B 
and D). Although H3K9me2 level was higher in 4-cell 
embryos and blastocysts, there was no difference among 
R1, R3 and R5 groups (P > 0.05; Fig. 5E, F, G and H).

There was a significant increase for tri-methylation of 
H3K27 (H3K27me3) in R5 group at the pronucleus and 
two-cell embryo stages (P < 0.05; Fig. 6A, B, C and D). 
When embryos developed to the four-cell and blastocyst 
stages, the tri-methylation level of H3K27 was still 
higher in embryos experienced superovulation (P < 0.05; 
Fig. 6E, F, G and H), and the changes of the H3K27me3 
level was at a superovulation time-dependent manner. It 
can be concluded from these results that superovulation 
has deleterious effects on H3K9me2 and H3K27me3 in 
early embryonic development. Furthermore, the effect 
of superovulation on H3K27me3 is in a superovulation-
time-dependent manner.

Multi-superovulation altered mRNA expressions of 
relative genes in the early embryos

We further examined mRNA expressions of genes 
encoding histone deacetylases HDAC1/2, acetylases 
GCN5 and HAT1, histone methyltransferases G9a and 
histone demethylases KDM6a/b, which regulate histone 
acetylation and methylation level at different stages of 
embryonic development.

At the pronuclear stage, the mRNA expression of 
both histone deacetylases Hdac1 and Hdac2 was 
higher in R1, R3 and R5 groups than in R0 group 
(P < 0.05; Fig. 7A). But the increased fold in R5 group 
was lower than that in R1 and R3 groups (Fig.  7A). 
At the two-cell embryo stage, the expression of 
Hdac1 and Hdac2 was also higher in R1, R3 and 
R5 groups than in R0 group, and the increased 
fold had a decreasing trend with increasing times 

Figure 3 Acetylation levels of H4K12 in the early embryos. Fluorescence intensity of H4K12ac in early embryos was examined using confocal 
microscopy. (A) Pronuclear embryos at the PN4 phase, n = 42 (R0), n = 45 (R1), n = 44 (R3), n = 40 (R5); (B and C) average fluorescence intensity 
of pronucleus; (D) two-cell stage embryos, n = 52 (R0), n = 50 (R1), n = 57 (R3), n = 49 (R5); (E) average fluorescence intensity of two-cell stage 
embryos; (F) four-cell stage embryos, n = 39 (R0), n = 43 (R1), n = 45 (R3), n = 41 (R5); (H) blastocysts, n = 49 (R0), n = 47 (R1), n = 43 (R3), n = 45; 
(G and I) average fluorescence intensity of 4-cell stage embryos and blastocysts. Scale bars (prokaryotic embryos, four-cell stage embryos, 
blastocysts) = 25 μm. Scale bars (two-cell stage embryos) = 50 μm. Data present as mean ± s.d. Different letters indicate P < 0.05 between groups.
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of superovulation (P < 0.05; Fig.  7B). The higher 
expression level of Hdac1 and Hdac2 was maintained 
to the four-cell embryo (P < 0.05) and blastocyst 
(P < 0.05) stages. There was also a decreased trend 
of the mRNA expression level of Hdac1 and Hdac2 
with increased superovulation times in four-cell 
embryos and blastocysts though the difference was 
not significant (P > 0.05; Fig. 7C and D). Meanwhile, 
we found that the expression of Gcn5 and Hat1 in 
blastocysts was similar among R1, R3 and R5 groups, 
but it was lower when compared to that in R0 group 
(Fig. 7E). These indicate that deacetylases may play a 
key role in the decrease of histone acetylation with 
the increase of superovulation times.

There was no significant change in the expression 
of G9a, Kdm6a and Kdm6b among the R1, R3 and R5 
groups at the pronuclear stage (P > 0.05; Fig. 7F). At the 

two-cell and four-cell embryo stages, the expression 
of G9a was significantly increased in R1, R3 and R5 
groups compared to that of R0 group (P < 0.05; Fig. 7G 
and H). The expression of Kdm6a and Kdm6b was not 
affected by superovulation (Fig. 7G and H) at the two-
cell and the four-cell embryo stages. In blastocysts, 
superovulation increased the expression of G9a in R1, R3 
and R5 groups, but with the increase of superovulation 
times, there was a significantly decreased trend of G9a 
expression, especially for R3 group (P < 0.05; Fig.  7I). 
The expression of Kdm6a and Kdm6b was reduced 
by superovulation in blastocysts, especially Kdm6b in 
R1, R3 and R5 groups (P < 0.05; Fig.  7I). These results 
indicate that multi-superovulation alters histone 
modifications by influencing the expression of histone 
deacetylases, methyltransferase and demethylases in 
mouse early embryos.

Figure 4 Acetylation levels of H4K16 in the early embryos. Fluorescence intensity of H4K16ac in early embryos was tested using confocal 
microscopy. (A) Pronuclear embryos at the PN4 phase, n = 44 (R0), n = 43 (R1), n = 42 (R3), n = 42 (R5); (B and C) average fluorescence intensity 
of pronucleus. (D) two-cell stage embryos, n = 50 (R0), n = 55 (R1), n = 52 (R3), n = 53 (R5); (E) average fluorescence intensity of two-cell stage 
embryos; (F) four-cell stage embryos, n = 37 (R0), n = 44 (R1), n = 50 (R3), n = 47 (R5); (H) blastocyst embryos, n = 50 (R0), n = 46 (R1), n = 47 (R3), 
n = 50; (G and I) average fluorescence intensity of four-cell stage embryos and blastocysts. Scale bars = 25 μm. Data present as mean ± s.d. 
Different letters indicate P < 0.05 between groups.
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Discussion

Superovulation is one of the most important technologies 
in ART and is widely used in human and animals to get 
more available oocytes. In the clinic, many women 
experience more than one exogenous hormone 
stimulation cycle to obtain a healthy baby. Similarly, 
repeated superovulation is also used in animals to 
increase the utilization rate of good females. But studies 
have shown that ovarian stimulation has an adverse effect 
on granulosa cell apoptosis (Tarin et al. 2001, Combelles 

& Albertini 2003) and mitochondrial copy number in 
cumulus cells (Xie et al. 2016). Superovulation can also 
lead to changes in cytoplasmic distribution of organelles 
in oocytes, spindle abnormalities, abnormal expression 
of octamer-binding transcription factor 4 (Oct4) and a 
decrease of oocyte development potential (Kalthur et al. 
2016). Van Blerkom and Davis confirmed that repeated 
ovarian stimulation in mice significantly increases the 
frequency of spindle defects and causes chromosome 
errors (Wilding et al. 2001). Superovulation also alters 

Figure 5 Di-methylation of H3K9 level in the early embryos. Fluorescence intensity of H3K9me2 in the early embryos was tested using confocal 
microscopy. (A) Pronuclear embryos at the PN4 phase, n = 47 (R0), n = 47 (R1), n = 49 (R3), n = 50 (R5); (B) average fluorescence intensity of 
pronucleus; (C) two-cell stage embryos, n = 51 (R0), n = 52 (R1), n = 52 (R3), n = 54 (R5); (D) average fluorescence intensity of two-cell stage 
embryos; (E) four-cell stage embryos, n = 39 (R0), n = 41 (R1), n = 44 (R3), n = 43 (R5); (F) average fluorescence intensity of four-cell stage 
embryos; (G) blastocysts, n = 47 (R0), n = 47 (R1), n = 47 (R3), n = 43; (H) average fluorescence intensity of blastocysts. Scale bars = 25 μm. Data 
present as mean ± s.d. Different letters indicate P < 0.05 between groups.
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nuclear maturation, cAMP in oocytes, ultrastructure of 
oocytes and the expression of Epab and Pabpc1 (Hyttel 
et  al. 1989, Wang et  al. 2006, Dadarwal et  al. 2015, 
Ozturk et al. 2016). Furthermore, a recently published 
paper demonstrated that repeated superovulation 
decreases 5-methylcytosine level in mouse oocytes (Xiao 
et al. 2019). The compromised oocyte quality may be an 
important reason for the decrease in the percentage of 
oocytes with the 1st PB and the rate of pronucleus at 
a superovulation time-dependent manner. For example, 

a recent study found repeated superovulation disturbs 
spindle organization and chromosome alignment during 
oocyte maturation (Xiao et  al. 2019). Previous studies 
showed that superovulation increased the percentage 
of immature oocytes and decreased the fertilization 
rate, pronuclear rate and embryonic developmental 
potential (Ishibashi & Aoki 1977, Evans & Armstrong 
1984, Sartori et al. 2010, Kon et al. 2014, Taiyeb et al. 
2017). To avoid the effects of males on embryonic 
development, we used the same WT males in our 

Figure 6 Tri-methylation of H3K27 level in the early embryos. Fluorescence intensity of H3K27me3 in the early embryos was examined using 
confocal microscopy. (A) Pronuclear embryos at the PN4 phase, n = 50 (R0), n = 50 (R1), n = 49 (R3), n = 50 (R5); (B) average fluorescence 
intensity of female pronucleus; (C) two-cell stage embryos, n = 53 (R0), n = 54 (R1), n = 54 (R3), n = 54 (R5); (D) average fluorescence intensity of 
two-cell stage embryos; (E) four-cell stage embryos, n = 44 (R0), n = 44 (R1), n = 44 (R3), n = 43 (R5); (F) average fluorescence intensity of four-cell 
stage embryos; (G) blastocysts, n = 46 (R0), n = 47 (R1), n = 46 (R3), n = 43; (H) average fluorescence intensity of blastocysts. Scale bars = 25 μm. 
Data present as mean ± s.d. Different letters indicate P < 0.05 between groups.
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experiments in each group. Our data also suggest that 
multiple superovulations decrease early embryonic 
development potentials, such as a lower blastocyst 
rate and a higher incidence of arrested embryos. In the 
human being, ART increases the risk of miscarriage, 
preterm delivery and low birth weight (De Geyter et al. 
2006), which suggests that embryonic development 
potential may be compromised by ART manipulation. 
These results demonstrate that superovulation decreases 
the embryonic developmental potential.

To activate the zygotic genome, chromatin structure 
remodeling is required after fertilization. Epigenetic 
modifications play a pivotal role in regulating 
chromatin structure (Eckersley-Maslin et  al. 2018). It 
is demonstrated that zygotic genome activation (ZGA) 
is regulated by histone modifications, miRNAs, DNA 
methylation, and so on (Zenk et  al. 2017, Eckersley-
Maslin et  al. 2018). H4K12ac is an important histone 
modification in sperm and it is inherited by paternal 
pronucleus after fertilization (van der Heijden et  al. 
2006). For the maternal pronucleus, there is an increase 
of H4K12ac until the fusion of maternal and paternal 
pronuclei (Vieweg et al. 2015). H4K12ac is enriched at 
CTCF-binding sites and transcription start sites of genes 
involved in the developmental processes (Arpanahi 
et  al. 2009) and gene activation in early embryos 
(Paradowska et al. 2012). For example, genes activated 
by H4K12ac at the four-cell embryo stage are mainly 
associated with gene expression, histone fold and DNA-
dependent transcription. Genes activated by H4K12ac 
at the eight-cell embryo and blastocyst stage are 
involved in developmental processes (Paradowska et al. 
2012). H4K16ac is another crucial acetylation at lysine 

16 of histone 4 which can disrupt high-order chromatin 
structure and activate gene transcription in vivo and in 
vitro (Wu et al. 2011). H4K16ac is also very important 
for embryogenesis in humans and mice (Gupta et  al. 
2008, Lin et al. 2013). Histone deacetylases of HDAC1 
and HDAC2 are important enzymes regulating histone 
acetylation and early embryo development (Ma & 
Schultz 2016). When fertilized embryos are treated with 
an inhibitor of HDAC, the blastocyst rate is significantly 
reduced (Ma et al. 2001). In the present study, we tested 
the mRNA expressions of Hdac1 and Hdac2 in embryos 
at different stages and found that the expression of 
Hdac1 and Hdac2 was higher in the early embryos 
from superovulation groups. This indicates that the 
abnormal expression of Hdac1 and Hdac2 may play a 
key role in the reduced H4K12ac and H4K16ac levels 
in early embryos.

Histone methylation is another important histone 
modification which plays an important role in the early 
embryos. H3K9me2 widely exists in the genome and 
undergoes great changes in cell differentiation (Lienert 
et al. 2011, Chen et al. 2012). In preimplantation mouse 
embryos, H3K9me2 has an important contribution 
to silencing retrotransposon to protect the genomes 
(Hatanaka et al. 2015). PGC7 suppresses the conversion 
of 5mC to 5hmC in early embryos via binding to histone 
H3K9me2, too (Nakamura et al. 2012). We found that 
repeated superovulation increased H3K9me2 in early 
embryos, which may be caused by the increase of 
G9a (Tachibana et al. 2002). H3K27me3 locates at the 
promoter regions of genes involved in developmental 
processes and represses genes’ expression in the 
early embryos (Shpargel et  al. 2012). In early embryo 

Figure 7 Expressions of Hdac1, Ddac2, G9a, Kdm6a and Kdm6b in the early embryos. The expressions of Hdac1, Ddac2, G9a, Kdm6a and 
Kdm6b in the early embryos at different stages were examined using qRT-PCR. (A) Expressions of Hdac1 and Hdac2 in the PN4 phase embryos 
(150 embryos, n = 3); (B) expressions of Hdac1 and Hdac2 in two-cell stage embryos (130 embryos, n = 3); (C) expressions of Hdac1 and Hdac2 
in four-cell stage embryos (130 embryos, n = 3); (D) expressions of Hdac1 and Hdac2 in blastocysts (50 embryos, n = 3); (E) expressions of 
acetylases, such as Hat1 and Gcn5; (F) expressions of G9a, Kdm6a and Kdm6b in the PN4 phase embryos (150 embryos, n = 3); (G) expressions 
of G9a, Kdm6a and Kdm6b in two-cell stage embryos (130 embryos, n = 3); (H) expressions of G9a, Kdm6a and Kdm6b in four-cell stage 
embryos (130 embryos, n = 3); (I) expressions of G9a, Kdm6a and Kdm6b in blastocysts (50 embryos, n = 3). Data present as mean ± s.d. Different 
letters indicate P < 0.05 between groups.
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development, there is a dynamic change of H3K27me3 
at different stages. In blastocyst, H3K27me3 is lower 
than in other stage embryos (Liu et  al. 2016). But the 
signal of H3K27me3 in early embryos derived from 
superovulation was significantly higher compared to 
that of non-stimulated mouse embryos. The increase of 
H3K27me3 was in a superovulation time-dependent 
manner. The dynamic change of H3K27me3 in the early 
embryos is mainly regulated by histone demethylases 
KDM6 and JmjC (Jumonji-C) (Shpargel et  al. 2012). 
Therefore, the decreased expression of Kdm6a and 
Kdm6b may be essential for the higher signal of 
H3K27me3 in the early embryos.

Our data suggest that the alteration of histone 
modifications in early embryos may affect chromatin 
structure remodeling, which regulates ZGA. After 
fertilization, ZGA is the most important event as it initiates 
embryonic development. Embryos would be blocked at 
the two-cell stage in mice if the zygotic genome is not 
activated after fertilization. If ZGA is compromised, it 
would decrease embryonic development potentials, 
such as a lower blastocyst rate and a higher incidence 
of blocked embryos (Jachowicz et al. 2017). Therefore, 
it is plausible that multiple superovulations may affect 
embryonic quality and development through influencing 
chromatin structure and ZGA.

In summary, we found that repeated superovulations 
altered histone modifications in early embryos via 
increasing the expressions of Hdac1, Hdac2 and G9a 
and decreasing the expressions of Kdm6a and Kdm6b. 
The alteration of histone modifications may play a 
pivotal role in compromised embryonic development. 
However, it is not clear how multiple superovulations 
regulate gene expressions and histone modifications. 
Furthermore, what pathways mediate the alteration of 
histone modifications in this model remains ambiguous. 
It is demonstrated that the ovarian structure and 
mitochondrial function in cumulus cells are affected by 
multiple superovulations. Therefore, the dysfunction of 
mitochondria in cumulus cells might play an important 
role in mediating the effects of multiple superovulations 
on epigenetic marks. More studies are needed to 
investigate the mechanism underlying the effect of 
repeated superovulations on embryonic development 
and offspring health.
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