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ARTICLE

ABSTRACT
When conducting biological investigations, experts constantly integrate their conceptual 
and quantitative understanding of variation with the design and analysis of the investiga-
tion. This process is difficult for students, because curricula often treat these concepts as 
separate components. This study describes the effect of a curricular intervention aimed at 
improving students’ conceptual and quantitative understanding of variation in the context 
of experimental design and analysis. A model-based intervention curriculum consisting of 
five short modules was implemented in an introductory biology laboratory course. All stu-
dents received the regular laboratory curriculum, and half of the students also received 
the Intervention curriculum. Students’ understanding of variation was assessed using a 
published 16-question multiple-choice instrument designed and validated by the research 
team. Students were assessed before and after the intervention was implemented, and 
normalized gain scores were calculated. Students who received the intervention showed 
significantly higher normalized gains than students who did not receive the intervention. 
This effect was not influenced by students’ gender or exposure to prior statistics courses 
and persisted into and through the following semester’s laboratory course. These results 
provide support for the use of model-based approaches to improve students’ understand-
ing of biological variation in experimental design and analysis.

INTRODUCTION
Experts constantly cycle between conceptual and quantitative modes of thinking when 
running biological investigations. They connect their knowledge about sources of vari-
ation with statistical concepts and then incorporate that understanding into the pro-
cesses of experimental design and data analysis (Dasgupta et al., 2014; Altman and 
Krzywinski, 2015). The ability to integrate quantitative thinking into biological prob-
lems has been nationally prioritized as a core competency for undergraduate biology 
students (American Association for the Advancement of Science, 2011). However, the 
integration of conceptual and quantitative thinking can be difficult for students. 
Undergraduate students often have trouble identifying sources of variation and under-
standing how variation is represented in statistical expressions (delMas et al., 2007; 
Shtulman and Schulz, 2008). These difficulties can cause students to make incorrect 
attributions of the sources of variation in data they have collected and therefore mis-
interpret experimental results (Dasgupta et al., 2014).

One reason for the difficulties that students experience with integrating their con-
ceptual and quantitative understanding of variation during biological investigations is 
that statistical concepts are not commonly integrated into most introductory biology 
laboratory courses (Metz, 2008; Colon-Berlilngeri and Burrowes, 2011). Curricula 
have been generated that aim to improve undergraduate students’ ability to design 
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experiments (Dasgupta et al., 2014; Marsan et al., 2016), 
understand the role of variation in genetics or evolution (Bray 
Speth et al., 2014), or apply their statistical skills (Metz, 2008; 
Marsan et al., 2016). These curricular interventions tend to 
focus on improving students’ understanding in a specific area 
rather than making connections between conceptual under-
standing of sources of variation, quantitative expressions of 
variation, and biological investigations. We have previously 
described a curricular intervention (Biological Variation in 
Experimental Design and Analysis [BioVEDA] curriculum) 
designed for introductory undergraduate biology laboratory 
courses. The BioVEDA curriculum uses a model-based approach 
to enable students to identify sources of variation in an experi-
ment, integrate that knowledge with statistical expressions of 
variation, and use their knowledge to inform experimental 
design and data analysis (Dewey et al., 2020). This current 
work describes the impact of that curriculum on students’ 
understanding of variation in the context of experimental 
design and analysis.

Biologists Integrate Conceptual and Quantitative 
Understanding of Variation
Variation is inherent to all biological investigations (Altman and 
Krzywinski, 2015). Understanding variation and how it impacts 
experimental design and analysis requires a complex merging 
of multiple ideas and perspectives. For example, in statistics, 
variation is often defined as “a measurement of the amount that 
data deviate from a measure of center, such as with the inter-
quartile range or standard deviation” (Makar and Confrey, 
2005, p. 28). In biology, understanding variation has been 
described as requiring the integration of a set of “interconnected 
processes including recognizing that phenotypic and genotypic 
variation exists within populations, that variation is inherited 
by offspring in units (i.e., alleles), and that gene expression 
changes over time (development) and is modulated by both 
temporal and spatial environmental variation” (Batzli et al., 
2016, p. 3). When engaging in experimental design and data 
analysis, biology researchers must combine their understanding 
of the biological ideas about variation (conceptual) with their 
statistical ideas about variation (quantitative).

During the design phase of an investigation, a researcher 
must consider the sources of variation that may impact exper-
imental outcomes (e.g., endogenous, environmental, or exper-
imental variation) and decide which sources of variation are 
important to control for and include in their designs. Endoge-
nous variation refers to the genetic and/or phenotypic varia-
tion in model organisms. This type of variation can be mini-
mized or leveraged by controlling the genetic background of 
the organisms or changing the size of the sample population 
in the study. Environmental and experimental variation are 
both types of exogenous variation, variation that is external to 
the study organism(s). Environmental variation includes the 
environmental conditions (e.g., temperature, humidity, food 
type) that may impact the organisms in the study. The impact 
of environmental variation is often regulated by making envi-
ronmental conditions as similar as possible between different 
samples. Experimental variation, also referred to as measure-
ment error, can be minimized by increasing the number of 
technical replicates and averaging the measurement values or 
by choosing more precise instruments if available. Recogniz-

ing, anticipating, and accounting for variation requires a con-
ceptual understanding of variation in biology and is essential 
to producing experimental results that are generalizable yet 
precise (Altman and Krzywinski, 2015).

Variation is also integral to the representations and statistical 
analyses used to make sense of data. Researchers may use 
mathematical representations, such as mean or SD, or graphical 
representations to describe the data and the variation present in 
the data (Krzywinski and Altman, 2013, 2014). Information 
obtained from the graphical and mathematical representations, 
as well as a researcher’s knowledge about sources of variation, 
helps to guide the choice of statistical tests and inform the inter-
pretation of those tests (Krzywinski and Altman, 2013; Altman 
and Krzywinski, 2015). This quantitative understanding of vari-
ation is necessary for researchers to draw accurate conclusions 
about their data.

Students’ Difficulties with Understanding Variation
Variation has been described as a concept that is integral to a 
student’s ability to reason, make sense of, and master topics in 
both statistics and biology (Batzli et al., 2016; Patel and Pfann-
kuch, 2018). Much of the work that has been done exploring 
students’ difficulties with biological variation has focused on 
their struggles in understanding the role of endogenous varia-
tion in genetics and evolution (e.g., Nehm and Ridgway, 2011; 
Dauer et al., 2013; Bray Speth et al., 2014; Zhao and Schuchardt, 
2019). These studies have shown that students fail to under-
stand how variation arises as the result of changes to DNA 
during copying and how those changes lead to variation within 
a population forming the basis for evolution (Nehm and 
Ridgway, 2011; Dauer et al., 2013; Bray Speth et al., 2014; 
Zhao and Schuchardt, 2019). More fundamentally, most chil-
dren and most adults deny the existence of within-species vari-
ation, and both groups are less likely to identify traits internal 
to the organism (e.g., organ shape) as variable (Shtulman and 
Schulz, 2008). These difficulties with identifying endogenous 
variation may partly explain why students have trouble recog-
nizing sources of variation beyond experimental error and 
accounting for that variation in experimental design (Kuhn and 
Dean, 2004; Dasgupta et al., 2014). The tendency to focus on 
experimental error can cause students to make incorrect 
assumptions when interpreting their data (Dasgupta et al., 
2014). For example, a lack of fit between predictions and results 
is attributed to errors in measuring or data collection (Dasgupta 
et al., 2014). Instead of evaluating whether the ideas about the 
phenomenon that led to a prediction are incorrect, students 
look for ways to reduce experimental error (e.g., being more 
careful, using a better instrument).

The issues that students have with experimental design and 
interpretation resulting from conceptual difficulties in under-
standing sources of variation are further exacerbated by the 
challenge of evaluating and comparing variation quantitatively 
in statistical applications. Students’ difficulties with understand-
ing quantitative expressions of variation and how they connect 
to features of variation in scientific phenomena have been well 
documented (delMas et al., 2007; Garfield and Ben-Zvi, 2007). 
Students may be able to compute measures of variation (e.g., 
SD), but they are not able to make connections between the 
research components and the components of the mathematical 
expression (e.g., distance of each measurement from the mean 
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and sample size; Garfield and Ben-Zvi, 2007). Thus, even 
though students might be shown how to calculate a t-statistic 
using differences between means and average SD, the concep-
tual idea that the differences between means are being com-
pared with the average variation in the samples is lost. This may 
explain why students have difficulty factoring in the effect of 
sample size and variation in the population when interpreting 
significance tests, leading to incorrect conclusions about their 
data (Castro Sotos et al., 2007; Hicks et al., 2021). If students do 
not factor in sample size when making interpretations of statis-
tical results, they may also be unlikely to consider sample size 
when designing their experiments (e.g., Dasgupta et al., 2014).

Part of the reason that students may have difficulty with 
using statistics and understanding variation in experimental 
design and analysis is that statistics is often taught separately 
from biology laboratory courses (Metz, 2008; Remsburg et al., 
2014; Olimpo et al., 2018). Thus, the biological and statistical 
ideas about variation are separated by course structure. A few 
curricular interventions have been developed that are situated 
in biology laboratory and lecture courses (Metz, 2008; 
Colon-Berlilngeri and Burrowes, 2011; Remsburg et al., 2014; 
Marsan et al., 2016; Olimpo et al., 2018). These curricula tend 
to focus on building specific siloed skills in experimental design, 
interpretation of statistical representations, and/or statistical 
analysis of data. With this approach, quantitative reasoning is 
separated from conceptual understanding of variation, which 
can cause students to have difficulty transferring their knowl-
edge to more complex or novel situations (Schuchardt and 
Schunn, 2016; Eichenlaub and Redish, 2018). When discus-
sions and representations of variation are situated in real-world 
biological data as part of a model-based approach, students 
demonstrate better understanding of the sources of variation 
and develop better representations of variation (Lehrer and 
Schauble, 2004). Therefore, the BioVEDA curriculum uses a 
model-based approach (Svoboda and Passmore, 2013) across 
five short (25- to 40-minute) modules to integrate the explora-
tion of sources of variation in biological investigations with the 
development of mathematical representations used in statistical 
analyses. These modules have been designed to be highly 
adaptable to multiple laboratory curriculum contexts.

Model-Based Curricular Approaches
“Models” and “modeling” are terms that are used in both science 
and statistics. Statistical models are defined as descriptive repre-
sentations of how variables within a system relate to one 
another mathematically (Pfannkuch et al., 2016). Statistical 
models need to include a mathematical or computational repre-
sentation that allows for a statistical test of how well the model 
represents the real-world system (Pfannkuch et al., 2016). In 
contrast, in science, a conceptual model is defined as a set of 
ideas about a scientific phenomenon that can be used to provide 
explanations and make predictions (Svoboda and Passmore, 
2013). Scientific conceptual models may include mathematical 
representations of the relationships between variables, but they 
are not required, and scientific conceptual models often also 
include other representations of the mechanisms or processes 
that connect the objects within the system (Dauer et al., 2013).

Both scientific conceptual models and statistical models are 
built through an iterative modeling cycle (Halloun, 2007; 
Pfannkuch et al., 2016). In both cases, participants engage in 

the modeling cycle to develop better understanding of a real-
world phenomena (Svoboda and Passmore, 2013; Pfannkuch 
et al., 2016). Scientists iteratively construct representations and 
develop theories about a phenomenon as they collect or are 
provided with data about the phenomenon (Halloun, 2007; 
Svoboda and Passmore, 2013). In scientific modeling, during 
the observation phase of the cycle, scientists gather data about 
a real-world phenomenon and decide which entities, processes, 
or relationships to include in the model. During the generation 
phase, scientists form ideas about the phenomenon that are rep-
resented in multiple ways. Representations for the same phe-
nomenon should have features in common, but no one repre-
sentation will provide a complete description or explanation of 
the phenomenon (Hestenes, 2010). Taken together, the repre-
sentations constitute the scientist’s mental model, the descrip-
tion and explanation of the patterns and mechanisms in the 
scientific phenomenon. In the verification phase, the scientist 
checks the model against observations and data produced 
through experiments. In the evaluation phase, the scientist 
revises or accepts the original model based on the new findings 
(Halloun, 2007; Passmore et al., 2009). During this phase, the 
new and original models are compared or the scientist’s model 
is compared with other models to decide which model best fits 
the known data about the phenomenon.

Some curricula that have been described as model based 
only ask students to engage with specific phases of the scientific 
modeling cycle. For example, one curriculum situated in biol-
ogy has students examine representations (e.g., picture of DNA, 
graph of data, picture of life cycle) to develop the idea that sci-
entific models are simplified representations of ideas or pro-
cesses that are composed of objects and relationships between 
objects (Dauer et al., 2013). Students draw concept map–type 
pictures that represent the relationships between objects as part 
of their study of the genetic basis of evolution (Dauer et al., 
2013). These concept maps are revised over time in response to 
peer feedback and additional instruction and are referred to as 
students’ models of the genetic basis of evolution. Students are 
thus engaging in the representation and evaluation phases of 
the modeling cycle, but do not participate in model generation 
or verification. In another curriculum, students compare exist-
ing scientific models to determine which model best fits a set of 
data and then reject, accept, or make revisions to the model 
(Stewart et al., 2005). In this curriculum, students are partici-
pating only in the evaluation phase of the modeling cycle, 
determining which of two competing models to accept and 
whether the model needs revisions. Neither curriculum as 
described has students engage in the process of using data anal-
ysis to build conceptual models and then test and revise the 
initial model as necessary. However, there are model-based cur-
ricula in biology that do have students participate in the full 
modeling cycle (Schuchardt and Schunn, 2016; Malone et al., 
2017; Hester et al., 2018). One of these was designed for use in 
undergraduate biology laboratory classes with the goal of hav-
ing students develop an understanding of mechanisms underly-
ing biological phenomena (Hester et al., 2018).

The statistical modeling cycle shares features with the scien-
tific modeling cycle. Statistical modeling involves data model-
ing (generating a statistical model that fits the data; e.g., line of 
best fit), data generation, assessment of fit, revision of model if 
needed, and finally, application to real-world phenomena 
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(Pfannkuch et al., 2016). The key difference is that scientific 
modeling seeks to generate and evaluate a conceptual model 
that explains the mechanisms of scientific phenomena, while 
statistical modeling seeks to generate and evaluate a statistical 
model that describes the relationships between variables. Cur-
ricula are starting to be developed that ask students to engage 
in statistical modeling as well (Pfannkuch et al., 2018). As with 
biology, different curricula focus on different aspects of the sta-
tistical modeling cycle (reviewed in Pfannkuch et al., 2018). 
Many of these curricula have been developed to teach statistics 
in mathematics courses at the middle and high school levels.

Use of the full modeling cycle in a model-based curriculum 
is supported by theory about the pedagogical advantages of 
invention (Schwartz and Martin, 2004) and multiple repre-
sentations (Ainsworth, 2008). Based on theoretical work on 
transfer, iterative inventions of multiple representations 
around a central concept should support students in transfer-
ring their understanding to new contexts (Nokes-Malach and 
Mestre, 2013). If one of these representations includes mathe-
matical equations, then such an approach should allow stu-
dents to connect conceptual and mathematical concepts, aid-
ing in mathematical sense-making and thus problem solving 
(Eichenlaub and Redish, 2018). This approach has been suc-
cessful at the high school level in both biology and physics 
curricula, resulting in students displaying increased concep-
tual understanding (Wells et al., 1995; Schuchardt and 
Schunn, 2016; Malone et al., 2017) and being better able to 
transfer their knowledge to novel problems and flexibly switch 
between conceptual and quantitative problem-solving 
approaches (Malone, 2008; Schuchardt, 2016; Schuchardt 
and Schunn, 2016).

Therefore, model-based instruction that focuses on variation 
has the potential to build understanding of variation from both 
statistical and biological perspectives. Model-based instruction 
has been used with upper elementary and lower middle school 
students to develop multiple representations of variation of a 
biological phenomenon (Lehrer and Schauble, 2004). These 
students are able to progress from pictorial to graphical to 
mathematical representations of variation, increasing both their 
understanding of endogenous and/or exogenous variation 
within a sample and their ability to describe how their represen-
tations depict this variation (Lehrer and Schauble, 2004). Per-
haps because of their age, they were not asked to relate their 
representations to canonical mathematical expressions of varia-
tion or apply them to problem solving. Moreover, they did not 
integrate their models of variation with experimental design 
and analysis. Model-based approaches to instruction of statis-
tics in college biology laboratory courses have not been imple-
mented and assessed.

Study Objectives
The BioVEDA curriculum is designed to allow undergraduate 
students in a biology laboratory context to develop a model of 
the connections between the sources of variation in biological 
investigations and quantitative expressions of variation 
throughout experimental design and analysis (described in 
detail in Dewey et al., 2020). The modeling that students 
engage in shares attributes with both statistical and scientific 
modeling. Like scientific modeling, the model that students 
build is a conceptual model, a set of ideas about variation in the 

context of experimental design and analysis. These ideas 
include identification of sources of variation, how measurement 
strategies impact variation, how variation can be represented 
mathematically and graphically, and how statistical tests factor 
in variation when comparing two samples. Like statistical mod-
els, the model students are building is descriptive (not mecha-
nistic), but it can be used to make predictions about the impacts 
of experimental design strategies and the results of analyses. 
Students engage in specific aspects of the modeling cycle, 
including building representations and conceptual models of 
variation from data, making predictions based on these models, 
and refining their representations and models by analyzing 
additional data (Figure 1). A more detailed description of the 
curriculum is provided below.

The current study explores the effect of the BioVEDA curric-
ular intervention using a quasi-experimental design. This study 
will first address whether the model-based curricular interven-
tion affects students’ understanding of biological variation in 
experimental design and analysis. Then, because previous 
research has shown that different factors such as gender (Metz, 
2008; Maloney et al., 2013) and prior knowledge (Kalyuga, 
2007; Metz, 2008) can impact learning and performance on 
assessments, this study will explore how students’ gender, prior 
statistics exposure, and incoming knowledge (as measured by 
pretest score) affect the impact of the curricular intervention. 
Finally, this study will investigate whether any effect of the cur-
ricular intervention persists into a later introductory biology 
laboratory course where students are asked to design and run 
their own experiments.

METHODS
Study Context
This study was conducted in the context of a required two-se-
mester-long introductory biology laboratory course for under-
graduate biology majors at a large midwestern R1 university. 
The first-semester course (BIOL 1961) is divided into multi-
ple sections of approximately 20 students taught primarily by 
graduate student teaching assistants (GTAs). On average, 
there were 16 sections for each of the semesters of data col-
lection in this study. Students in this course meet twice a 
week for 3 hours. During the first 6 weeks of the course, 
termed “Bootcamp,” students are taught basic laboratory 
skills and introduced to different project areas within which 
they can choose to run a project during the second-semester 
course (BIOL 3004), which is designed as a course-based 
undergraduate research experience (Auchincloss et al., 2014). 
At the end of Bootcamp, students pick which project area they 
would like to work on and begin “Project-Specific Training,” 
which lasts through the rest of the first-semester course 
(Figure 2). Students generally enroll in these lab courses 
during freshman or sophomore year. The student pool 
enrolled in these courses is 65% female, 20% domestic stu-
dents of color, and ∼20% first-generation college students. 
The curricular intervention of this study was implemented 
during the first 6 weeks of BIOL 1961 (Figure 2). While stu-
dents learned about and used statistics to analyze their own 
data in BIOL 3004, no curricular intervention was done in 
this course. The rest of the methods will focus on BIOL 1961. 
This study is approved under the University of Minnesota 
Institutional Review Board no. STUDY00003137.
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Curriculum Description
Traditional Curriculum. The Traditional curriculum taught 
during Bootcamp is based on a lab manual containing detailed 
procedures for laboratory exercises that students complete in 
class in a largely scripted manner. The Traditional curriculum 
content includes laboratory techniques, experimental design, 
and data analysis. All students received instruction in the Tradi-
tional curriculum. Topics related to statistics such as measure-
ment, graphing of data, t-tests, the meaning of the p value, and 
the effect of sample size were covered in the Traditional curric-
ulum and taught via direct instruction that focused on proce-
dures.

Intervention Curriculum. The Intervention curriculum con-
sisted of five short (25- to 40-minute) modules that served as 
replacements for or supplements to Traditional curriculum 
activities during Bootcamp. The topics covered by these mod-
ules were also taught in the Traditional curriculum as described 
earlier, however the Intervention modules were taught via a 

student-centered model-based approach 
with all topics connected to the concept of 
variation. These modules have students 
build conceptual and quantitative compo-
nents of a model for biological variation 
that is situated in and applied to experi-
mental design and analysis (Figure 1). A 
complete description of these modules has 
been published elsewhere (Dewey et al., 
2020), but brief descriptions of the activi-
ties are presented in the following sec-
tions, and examples of task instructions 

Research Design
Using an iterative design-based approach, five short curricular 
modules were developed that ask students to build a model of 
biological variation and apply this model to experimental 
design and analysis. A quasi-experimental design was used to 
implement this curricular intervention. Half of the sections 
had instruction as usual in laboratory exercises designed by 
the course coordinators (referred to as the “Traditional” curric-
ulum). For the other half of the sections, instruction in the 
Traditional curriculum was supplemented by the five interven-
tion modules (referred to as the “Intervention” curriculum). 
All GTAs participated in weekly course-preparation meetings 
facilitated by the course coordinators that supported the pro-
cedural implementation of the Traditional curriculum. Tradi-
tional GTAs also received 4 hours of professional development 
on student-centered pedagogy, while GTAs implementing the 
Intervention curriculum received four hours of curriculum-spe-
cific professional development (Hicks et al., Unpublished 
data).

FIGURE 1. BioVEDA curriculum: Developing a model of variation in experimental design and analysis.

FIGURE 2. Placement of tasks and assessments throughout the two-semester course 
sequence.
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and samples of student work are provided in Supplemental 
Table S1. The first three modules (A, B, and C1) focus on build-
ing an understanding of sources of variation in biological exper-
iments and connecting that understanding to mathematical and 
graphical representations. The last two modules (C2 and D) 
have students examine the effect of sample size on variation 
and then use their model of variation to make connections to 
the calculation and interpretation of statistical tests (specifically 
the t-test). While the activities within the modules are designed 
as a coherent whole, the data and investigation context used in 
these modules, as well as the order of the modules, can change, 
making the curriculum highly adaptable. The modules are let-
tered to reflect the conceptual order in which they were devel-
oped (i.e., Modules A, B, C1, C2, and D). However, because the 
order of implementation is designed to be somewhat flexible, 
the modules are described in the order in which they were 
implemented in this laboratory course to align with the Tradi-
tional Curriculum.

Module A: Identifying Sources of Variation. Module A asks stu-
dents to identify different sources of variation within a biologi-
cal experiment (i.e., endogenous, experimental, or environ-
mental variation) and then outline different measurement 
strategies that would deal with the different sources of varia-
tion. Students discuss and use two different measurement strat-
egies to generate data. Once their data are collected, they dis-
cuss the impact of these measurement strategies on the data 
and which strategy might be more appropriate given different 
relative weightings of sources of variation. This activity helps 
students build their conceptual understanding of variation 
(Figure 1).

Module C1: Generating Mathematical Representations of 
Data. Module C1 asks students to develop mathematical 
expressions that capture variation in data. Students generate 
two mathematical expressions that represent the central ten-
dency and spread of the data collected in module A. Students 
discuss the relationship between data spread and sources of 
variation in their experiment. This module lays the foundation 
for making connections between statistical tests and the pres-
ence of variation in the data to inform data analysis, building 
up the quantitative components of students’ model of variation 
(Figure 1).

Module C2: Applying Mathematical Representations of 
Data. Module C2 asks students to explore the impact of sample 
size on the mathematical representations of data they devel-
oped in module C1. Student first discuss their ideas about the 
relationship between sample size, mean, and SD. Then students 
use data to check their understanding of these relationships. 
This activity primes student to think about the role of sample 
size in experimental design and how it interacts with variation, 
helping students make connections between the conceptual and 
quantitative components of their model of variation (Figure 1).

Module D: Statistical Analysis of Data. Module D asks students 
to apply the model of variation they have generated to a statis-
tical test (specifically a t-test) to understand why variation 
makes statistical tests necessary and how central tendency and 
spread of data comparisons are represented in the mathemati-

cal formula. Students identify components of the t-statistic 
based on the mathematical expressions they developed in mod-
ule C1. Students then run a t-test and use graphical representa-
tions to discuss how to interpret the results based on the amount 
of variation present in the sample. This activity helps students 
connect multiple ideas about variation and its role in the inter-
pretation of experimental results (Figure 1).

Module B: Generating Graphical Representations of Data. Mod-
ule B asks students to connect the mathematical expressions of 
variation they developed to graphical representations of varia-
tion. This helps students form a more complete representation 
of the model of variation (Figure 1). Students use data to gen-
erate graphical representations, specifically aiming to visualize 
the mean and the variation in the data of both control and 
experimental conditions. Students then discuss which graphs 
best represent the quantitative information generated from 
applying mathematical expressions of central tendency and 
data spread.

Data Collection. The BioVEDA assessment was used to evalu-
ate the effectiveness of the intervention curriculum (Hicks et al., 
2020). The BioVEDA assessment has questions that specifically 
target students’ understanding of biological variation, how that 
variation is represented in statistical equations, and the applica-
tion of the conceptual and quantitative knowledge of variation 
to experimental design and analysis. No other published assess-
ment on statistics (e.g., Comprehensive Assessment of Out-
comes in Statistics; delMas et al., 2007), biostatistics (e.g., Sta-
tistical Reasoning in Biology Concept Inventory; Deane et al., 
2016), or experimental design (e.g., Biological Experimental 
Design Concept Inventory; Deane et al., 2017) adequately cov-
ers these topic areas. The BioVEDA assessment has been shown 
to measure a single construct (variation in experimental design 
and analysis; Hicks et al., 2020). Rasch analysis has demon-
strated that the items have a range of difficulty that can capture 
the ability range of this population (Hicks et al., 2020) More-
over, this instrument is able to distinguish between groups of 
students who should have different ability levels (undergradu-
ate students who have not yet taken a college biology labora-
tory course, undergraduate students who have completed 1 
year of a college biology laboratory course, and graduate stu-
dents; Hicks et al., 2020). Sample items from the published 
instrument are included in Supplemental Table S2.

Assessment data were collected from students enrolled in 
either BIOL 1961 or BIOL 3004. All students were asked to take 
the assessment electronically via Qualtrics at four different time 
points: on the first day of BIOL 1961, at the end of Bootcamp (6 
weeks into the semester), at the beginning of BIOL 3004, and at 
the end of BIOL 3004 (Figure 2). When taking the assessment, 
students were given the opportunity to opt out of having their 
data used in the study. Approximately 10% of students or fewer 
opted out each semester. Students were also asked about their 
previous experiences with statistics and to self-identify gender 
on the assessment.

Data were collected over the course of four semesters (Fall 
2018–Spring 2020). Analysis of the impact of the curriculum on 
students enrolled in BIOL 1961 included data from the Fall 
2018, Fall 2019, and Spring 2020 semesters. School closing due 
to a weather event disrupted instruction for BIOL 1961 students 
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in Spring 2019. Bootcamp was concluded before the switch to 
online instruction in Spring 2020. Analysis of the long-term 
impact of the intervention included data from students enrolled 
in BIOL 1961 in Fall 2018 and Fall 2019 who took BIOL 3004 in 
Spring 2019 and Spring 2020, respectively. Students were 
incentivized to complete the assessment through the awarding 
of course points that made up less than 0.5% of the course 
grade. Students who opted out of the study could still earn 
points for completing the assessment. To ensure that students 
were not simply guessing on the assessments, a “gotcha” ques-
tion was included that told students which answer to choose. 
Any student who answered the gotcha question incorrectly was 
excluded from the study (fewer than 10% of students answered 
the gotcha question incorrectly). In addition to the use of the 
gotcha question to identify guessing, the pre-1961 and 
post-Bootcamp scores were examined for any extreme differ-
ences that would indicate that a student was likely guessing on 
the post-Bootcamp assessment but answered the gotcha ques-
tion correctly by chance. An extreme difference was defined as 
a having a pre-1961 score of 75% or higher (answered at least 
12 questions correctly) but a post-Bootcamp score of 31.25% or 
lower (answered five or fewer questions correctly). Two stu-
dents were found to have an extreme difference between their 
pre-1961 and post-Bootcamp assessment scores and were 
excluded. In total, 527 students took both the pre-1961 and 
post-Bootcamp assessments (146 from Fall 2018, 133 from Fall 
2019, 248 from Spring 2020). There were 127 students who 
took the assessment at all four time points (57 from the Fall 
2018 Cohort and 70 from the Fall 2019 Cohort).

Data Analysis. Normalized gain scores, [(Postscore% − Pre-
score%)*100/(100 − Prescore%)], were calculated to assess 
students’ change in understanding between pre-1961 and 
post-Bootcamp (Hake, 1998). Normalized gain scores were 
used as opposed to regular gain scores to account for differ-
ences in how much each student was able to gain based on the 
pre scores. Given that the data collected for this study are nested 
(i.e., students are nested within a specific TA), an unconditional 
hierarchical linear model was run to determine where there was 
between-TA variation in students’ normalized gain scores that 
needed to be explained using a multilevel model. The chi-
square test for the variance of random effects was not signifi-
cant, τ00 = 11.389, χ2(40) = 47.684, p = 0.19. The intraclass 
correlation coefficient of the model was 0.007, meaning that TA 
differences only accounted for 0.7% of the variation in students’ 
normalized gain scores. These results indicate that there is not 
enough variation between TAs to warrant the use of a hierarchi-
cal analysis (Raudenbush and Bryk, 2002). The additional anal-
yses used to address the three research questions of this study 
are described in the next section.

Effect of the Intervention on Students’ Understanding. A 
two-sample t-test was used to compare the normalized gain 
scores of students in the Traditional and Intervention curricu-
lum groups. Two-sample t-tests were also used to compare the 
pre scores of students in the Traditional and Intervention curric-
ulum groups and determine whether the average normalized 
gain of each curriculum group was significantly different from 
zero. The normalized gain scores and pre-1961 scores met the 
assumptions for a t-test (i.e., normality, homogeneity of vari-

ance). Cohen’s d was used to assess the effect sizes for all t-test 
analyses. A value of 0.2 indicates a small effect, a value of 0.5 
indicates a medium effect, and a value of 0.8 indicates a large 
effect (Cohen, 1998).

Impact of Gender, Prior Statistics Exposure, and Pretest 
Score on the Effect of the Intervention. Students were asked 
to self-identify gender, and five students who identified as non-
binary were excluded from the gender analysis. A two-sample 
t-test was used to compare the pre-1961 scores of men and 
women. An analysis of variance (ANOVA) was used to assess 
the possible interaction between curriculum condition and stu-
dent gender on normalized gain scores. These data met all the 
assumptions for the t-test and ANOVA. Cohen’s d was used to 
assess the effect size for the t-test analyses. The effect size for 
the ANOVA was determined using the generalized eta-squared 
(η2

G). A value of 0.01 indicates a small effect, a value of 0.06 
indicates a medium effect, and a value of 0.14 indicates a large 
effect (Vacha-Haase and Thompson, 2004).

When split by whether a student had previously taken a sta-
tistics course, students’ pre-1961 scores did not meet the 
assumption of homogeneity of variance. Therefore, a Welch’s 
t-test was used to assess whether students’ pre-1961 scores dif-
fered based on whether a student had previously taken a statis-
tics course. Students’ normalized gain scores met the assump-
tions for an ANOVA, so an ANOVA was used to assess the 
possible interaction between curriculum condition and whether 
a student had previously taken a statistics course on the normal-
ized gain scores. Cohen’s d for Welch’s t-test was used to assess 
the effect size for the t-test analysis. This Cohen’s d uses the 
average variance rather than the pooled variance of the sam-
ples and is evaluated using the same cutoffs as the regular 
Cohen’s d (Cohen, 1998). The effect size for the ANOVA was 
determined using η2

G.
To explore a potential interaction between curriculum con-

dition and students’ pretest scores on normalized gain scores, 
students’ pre-1961 scores were split into three groups using 
the tertiles (i.e., thirds) of the distribution of scores. Students 
with scores in the bottom third of the pre-1961 scores (scored 
less than 43.75%) were designated as the “Low” pretest group. 
Students with scores in the middle third of the pre-1961 scores 
(scored between 43.75% and 56.25%) were designated as the 
“Medium” pretest group. Students with scores in the top third 
of the pre-1961 scores (scored above 56.25%) were desig-
nated as the “High” pretest group. When split by pretest score 
group, students’ normalized gain scores did not meet the 
assumption of homogeneity of variance. Therefore, a Krus-
kal-Wallis analysis was performed on the pretest group vari-
able and the curriculum group variable for each pretest group. 
Dunn’s post hoc test was used to explore significant differences 
within each of these variables, and p values were adjusted 
using the Bonferroni multiple testing correction method. The 
effect size for the Kruskal-Wallis analysis was determined 
using eta-squared based on the H statistic (η2

H). A value of 0.01 
indicates a small effect, a value of 0.06 indicates a medium 
effect, and a value of 0.14 indicates a large effect (Vacha-
Haase and Thompson, 2004). The effect sizes for the Dunn’s 
post hoc test comparisons were determined using Cohen’s d 
for a Welch’s t-test to account for the heterogeneity of the vari-
ances in these data.
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Persistence of the Intervention Curriculum Effect. A two-
way repeated-measures ANOVA was performed to explore the 
effect of the Intervention curriculum over time (i.e., into and 
through BIOL 3004) on students’ percent scores on the assess-
ment. The effect size for the repeated-measures ANOVA was 
determined using η2

G. Post hoc pairwise t-test comparisons 
were performed to further investigate differences found through 
the two-way repeated-measures ANOVA, and p values were 
adjusted using the Bonferroni multiple testing correction 
method. The effect size of these post hoc pairwise t-tests was 
determined using Cohen’s d. The assumption of normality was 
met for the two-way repeated-measures ANOVA. The assump-
tion of sphericity was evaluated while running the two-way 
repeated-measures analysis. The analysis was corrected using 
the Greenhouse-Geisser epsilon for any variable that violated 
the assumption of sphericity.

An alpha level of 0.05 was used to determine statistical sig-
nificance for all analyses. All analyses were performed in R v. 
4.0.1 (R Core Team, 2020) using the packages hlmer (Dahlke, 
2020) and rstatix (Kassambara, 2020).

RESULTS
Students in the Intervention Curriculum Show an Increase 
in Normalized Gains
Students in the Traditional curriculum group showed an aver-
age normalized gain of −0.56% (Mpre = 49.8%, Mpost = 52.3%), 
which was not statistically different from zero, t(252) = −0.21, 
p = 0.83, Cohen’s d = 0.01. Students in the Intervention curric-
ulum group showed much larger normalized gains (MNgain = 
7.6%; Mpre = 50.5%, Mpost = 55.7%) that were statistically differ-
ent from zero, t(273) = 3.38, p < 0.001, Cohen’s d = 0.2. The 
difference between these two groups was statistically signifi-
cant, t(525) = 2.37, p = 0.02, with a small effect size (Cohen’s d 
= 0.21; Figure 3). There was no significant difference in the 
pre-1961 scores between the two groups of students, MTrad = 
49.8%, MInt = 50.5%, t(525) = 0.54, p = 0.59, Cohen’s d = 0.05. 

Pre and post scores by topic area (Hicks et al., 2020) are reported 
in Table 1. The pre to post difference for Traditional students 
ranged from −2 for interpreting p values to +5 for representing 
observed variation in a data set. The pre to post difference for 
Intervention students ranged from +1 for interpreting p values 
to +10 for understanding how observed variation impacts the 
outcome of statistical tests.

Normalized Gains Are Not Affected by Gender or 
Prior Statistics Exposure
Potential interactions were explored between curriculum condi-
tion and student gender and prior statistics exposure.

Men (n = 192) scored slightly higher than women (n = 330) 
on the pre-1961 assessment, MMen = 51.9%, MWomen = 49.1%; 
t(520) = −1.98, p = 0.048, Cohen’s d = 0.18. However, there was 
no significant interaction between gender and curriculum con-
dition on students’ normalized gain scores, F(1, 518) = 0.006, 
p = 0.94, η2

G < 0.001. There was also no main effect of gender on 
students’ normalized gain scores, F(1, 518) = 0.631, p = 0.43, 
η2

G = 0.001, suggesting that men and women benefited equally 
from the Intervention curriculum.

Students were also asked about their prior statistics 
exposure on the assessment. Approximately 40% of students 
had taken a statistics course previously, either in high school 
or college. There was no significant difference in the pre-
1961 scores between students who had taken a statistics 
course and those who had not, MNoStats = 51%, MStats = 49%; 
t(496.2) = 1.25, p = 0.21, Cohen’s d = 0.11. Additionally, 
there was no significant interaction between prior statistics 
exposure and curriculum condition on students’ normalized 
gain scores, F(1, 523) = 0.002, p = 0.96, η2

G < 0.001. There 
was also no main effect of prior statistics exposure on stu-
dents’ normalized gain scores, F(1, 523) = 0.1, p = 0.76, η2

G < 
0.001. Students benefited equally from the Intervention 
curriculum regardless of whether they had prior exposure to 
statistics.

Students’ Pretest Scores Impact Their Normalized Gains
Given previous work showing the importance of pre knowl-
edge on test performance (Kalyuga, 2007), the possibility of 
an interaction between students’ pre-1961 scores and their 
curriculum condition on normalized gain scores was tested. 
There were statistically significant differences in the normal-
ized gains among the pretest groups with a small to medium 
effect size, Kruskal-Wallis test, H(2) = 26.54, p < 0.001, η2

H = 
0.05. For both the Traditional and Intervention curricula, stu-
dents in the Low pretest group, NTrad = 74, NInt = 66, showed 
greater normalized gains than students in the High pretest 
group, NTrad = 67, NInt = 82; Dunn’s post hoc test, Traditional: 
MLow = 15%, MHigh = −20.7%, z = −3.07, p.adjust = 0.006, 
Cohen’s d = 0.75; Intervention: MLow = 18.8%, MHigh = −2.6%, 
z = −4.37, p.adjust < 0.001, Cohen’s d = 0.55 (Figure 4). There 
was no significant difference in normalized gains between 
the Traditional and Intervention students in the Low pretest 
group, MTradLow = 15%, MIntLow = 18.8%, H(1) = 1.03, p = 0.31, 
η2

H < 0.001. There were marginally significant differences 
with small effect sizes between the normalized gains of Tra-
ditional and Intervention students in the Medium pretest 
group, NTrad = 112, NInt = 126, MTradMed = 1.2%, MIntMed = 8.4%, 
H(1) = 3.07, p = 0.08, η2

H = 0.01, and the High pretest group, 

FIGURE 3. The Intervention curriculum improves students’ 
understanding of variation in biological investigations. Average 
normalized gain scores are compared between students in the 
Traditional curriculum group and students in the Intervention 
curriculum group. Significance determined using a two-tailed 
t-test. Bar ± error bar = mean ± SEM. Normalized gain scores 
ranged from −200% to 100%.
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TABLE 1.  Pre-1961 and post-Bootcamp percent scores separated by assessment content area for Traditional and Intervention students

Investigative 
phase Topic

Assessment 
questions

Traditional Intervention

Pre-1961 score 
(SEM)

Post-Bootcamp 
score (SEM)

Pre-1961 score 
(SEM)

Post-Bootcamp 
score (SEM)

Experimental 
design

Identifying sources of variation 
in an experiment

1, 7 58 (2.1) 61 (2.3) 57 (2.1) 64 (2)

Controlling for different 
sources of variation in an 
experiment

2, 3, 4, 6 66 (1.6) 70 (1.7) 69 (1.6) 72 (1.6)

Understanding the relationship 
between sample size and 
genetic variation in a 
biological data set

5 78 (2.6) 77 (2.6) 76 (2.6) 79 (2.5)

Data analysis Representing observed 
variation in a data set

13, 14 46 (2.2) 51 (2.2) 44 (2) 53 (2.2)

Understanding how observed 
variation impacts the 
outcome of statistical tests

8, 9, 10, 11 36 (1.6) 40 (1.7) 37 (1.6) 47 (1.6)

Interpreting p values generated 
by statistical tests

12, 14, 15, 16 41 (1.6) 39 (1.5) 42 (1.6) 43 (1.5)

MTradHigh = −20.7%, MIntHigh = −2.6%, H(1) = 3.19, p = 0.07, η2
H 

= 0.02. Intervention students made slightly higher gains than 
Traditional students in the Medium pretest group and lost 
less of their knowledge than the Traditional students in the 
High pretest groups (Figure 4).

The Intervention Curriculum Produces Sustained Learning 
Gains over Time
The Intervention curriculum was implemented in the first 6 
weeks of the first-semester course. The persistence of the 
effect of the Intervention curriculum into and through the sec-
ond semester course, where TAs and course structure have 
changed, was investigated. Matched data from 127 students 
who took the assessment at all four time points were used for 
this analysis. The pre-1961 scores of the 127 students who 
took the assessment at all four time points were significantly 
higher than the pre-1961 scores of the 400 students who did 
not take the assessment at all four time points, Mprepost = 49.3%, 
Mallfour = 52.9%, t(525) = −2.18, p = 0.03, Cohen’s d = 0.22. 
However, there was no significant difference between the pre-
1961 scores for the Traditional (N = 56) and Intervention (N = 
71) students who took the assessment at all four time points, 
MTrad = 51.5%, MInt = 54%, t(125) = 0.89, p = 0.37, Cohen’s d = 
0.16. For Intervention students, the post-Bootcamp scores for 
students who took the assessment at all four time points were 
significantly higher than for students who did not, Mprepost = 
53.1%, Mallfour = 63.2%, t(272) = −4.2, p < 0.001, Cohen’s d = 
0.58. For Traditional students, there was no significant differ-
ence between the post-Bootcamp scores for these groups, 
Mprepost = 51.8%, Mallfour = 53.9%, t(75.952) = −0.71, p = 0.48, 
Cohen’s d = 0.12.

There was no significant interaction between curriculum 
condition and time point, F(3, 375) = 2.015, p = 0.11, η2

G = 
0.005. However, this analysis did show a small effect of cur-
riculum condition wherein students in the Intervention 
group had higher scores on average than the Traditional stu-
dents, F(1, 125) = 6.675, p = 0.011, η2

G = 0.035, and a small 
effect of time where students’ scores increased over time, 
F(3, 375) = 12.856, p[GG] < 0.001, η2

G = 0.033. Intervention 
students’ percent scores on the assessment were significantly 
higher at all three post-intervention time points (post hoc 
pairwise t-tests; Figure 5).

FIGURE 4. Incoming pretest score and curriculum condition 
impact students’ normalized gain scores. Kruskal-Wallis tests were 
used to compare normalized gain scores across the two curricu-
lum groups within three different pretest score categories. Effect 
sizes were determined using generalized eta-squared based on the 
H-statistic (η2

H
). There was no significant difference found between 

the curriculum conditions in the Low pretest score group. 
Differences between curriculum conditions in the Medium and 
High pretest score groups were marginally significant, with small 
effect sizes, and were therefore included on the graph. Dunn’s post 
hoc test with a Bonferroni correction was used to compare 
normalized gains between the Low and High pretest score groups 
within each curriculum condition. Effect sizes were determined 
using Cohen’s d. Bar ± error bar = mean ± SEM.
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DISCUSSION
This study assessed the effectiveness of a model-based curricu-
lar intervention aimed at improving students’ understanding of 
biological variation in experimental design and data analysis. 
Students who received the curricular intervention showed sig-
nificantly higher normalized gains compared with students who 
did not receive this intervention. The modules of the Interven-
tion curriculum ask students to generate representations and 
explanations that connect biological variation to principles of 
experimental design and analysis. In contrast, the Traditional 
curriculum uses a largely procedural and siloed approach to 
carrying out experimental design and data analysis. Impor-
tantly, the Intervention curriculum modules did not require a 
large investment of instructional time (2.5 hours over 36 hours 
of instruction), yet still resulted in significant, albeit small, 
gains in students’ understanding. One topic where Intervention 
students showed high gains was understanding how observed 
variation impacts the outcome of statistical tests. This study 
provides quantitative support for the efficacy of connecting sta-
tistics to concepts (Wild and Pfannkuch, 1999) and extends 
work using a model-based approach for statistics with middle 
school students to undergraduate students, complementing the 
qualitative observations reported in previous studies (Lehrer 
and Schauble, 2004). Significantly, the BioVEDA curriculum is 
a relatively inconspicuous, but focused intervention that can be 
layered over existing course curricula to yield lasting effects on 
student understanding of important ideas about variation in 
experimental biology.

The normalized gains achieved by students who received 
the Intervention in this study are small, representing an aver-
age gain per student of one question on a 16-question assess-
ment. Metz (2008) reported an average normalized gain of 
25% (nearly three questions on an 11-question survey) using 
an inquiry-based approach to teaching statistics in an introduc-
tory biology lecture and laboratory course. However, their 

intervention lasted for an entire semester, while our interven-
tion was a 2.5-hour intervention implemented over the course 
of 6 weeks. In an intervention that was of similar length to 
ours, Marsan et al. (2016) reported gains of one question on 
two different assessments (one on experimental design and 
one on graphical interpretation.) For a 1-hour intervention, 
gains of 0.6–0.8 questions were reported on a 12-question 
assessment (Olimpo et al., 2018). A fourth intervention in a 
biology course (7–8 hours over the course of two semesters) 
did not produce significant learning gains (Remsburg et al., 
2014). Combined, the data from these different interventions 
suggest that both course structure and the time spent on statis-
tics are important for considering how to effectively integrate 
statistics instruction into biology laboratory courses.

The learning gains observed as a result of the BioVEDA 
intervention were not consistent across topics, with students in 
both the Intervention and Traditional groups performing poorly 
on interpreting p values on the pretest and not achieving learn-
ing gains on the posttest for this topic. This is a difficult topic 
that many postgraduates also fail to understand (Haller and 
Krauss, 2002; Goodman, 2008). Additionally, this topic was 
addressed at the end of the BioVEDA intervention, meaning stu-
dents had less time to integrate this knowledge into their model 
through iteration. Developing additional modules to address 
challenging topics and extending the curriculum throughout 
the first-semester course is a promising future direction.

Traditional students did receive instruction in experimental 
design and data analysis on many of the same topics as the 
Intervention students. However, their instruction on these top-
ics was siloed and focused on procedures (e.g., how to perform 
a statistical test). The instruction was not designed around con-
structing a conceptual model of variation with respect to exper-
imental design and analysis. This may explain why Traditional 
students showed no significant normalized gains on the Bio-
VEDA assessment, despite having pretest scores similar to those 
of the Intervention group. Others have suggested that compart-
mentalized and procedural instruction hinders students’ ability 
to apply concepts and skills to novel questions (Wild and Pfann-
kuch, 1999; Schuchardt and Schunn, 2016; Eichenlaub and 
Redish, 2018).

Although both Intervention and Traditional students showed 
knowledge gains over time, the differential effect of the Inter-
vention persisted into and through the next semester laboratory 
course (BIOL 3004; Figure 5). Students who received the Inter-
vention curriculum showed significantly higher scores on the 
assessment at the beginning and end of BIOL 3004. Interest-
ingly, Intervention students who took the assessment at all four 
time points had higher post-Bootcamp scores than students 
who did not take all four assessments. This was not observed 
for Traditional students, perhaps because most students did not 
show gains with the Traditional curriculum. The difference in 
post-Bootcamp scores for the Intervention students could be a 
sampling artifact or could suggest a difference between stu-
dents who took the assessment at all four time points and those 
who did not. For example, students who took the assessment at 
all four time points could be more motivated students and per-
haps engaged with the curriculum more (Chi and Wylie, 2014). 
Metz (2008) noted the same difference in a longitudinal study 
of the effect of a statistics curriculum and discussed the chal-
lenges of capturing data from students who may be struggling 

FIGURE 5. The effect of the Intervention curriculum persists into 
and through BIOL 3004. This analysis only includes students who 
had scores at all four time points. Matched percent scores are 
compared between students in the Traditional curriculum group 
(n = 56) and students in the Intervention curriculum group (n = 71). 
Significance determined using post hoc pairwise t-tests with a 
Bonferroni correction. Points ± error bars = mean ± SEM. Percent 
scores ranged from 6.25% to 100%.



CBE—Life Sciences Education • 21:ar11, Spring 2022 21:ar11, 11

Effect of the BioVEDA Curriculum

with the curriculum. This highlights a complex problem in edu-
cational research of how to assess and report on the effective-
ness of interventions for all students. We conclude from our 
data that the Intervention was effective in increasing some stu-
dents’ understanding in a way that persisted into the future.

Previous work has shown that factors such as gender, prior 
statistics exposure, and incoming knowledge can have impacts 
on students’ learning (Kalyuga, 2007; Metz, 2008; Maloney 
et al., 2013). Women in our course scored slightly lower than 
men on the pre-1961 assessment but showed similar normal-
ized gains. This is an important finding, given that previous 
studies have reported that women learn less and underperform 
on science tests when compared with men (e.g., Hake, 1998; 
Salehi et al., 2019). Metz (2008) also reported no effect of gen-
der, suggesting that the specific curricular approaches being 
used in these studies do not explain gender difference. One 
explanation that is often provided for gender differences on 
assessments is that women experience greater stereotype threat 
and higher anxiety on mathematics assessments (Maloney 
et al., 2013; Salehi et al., 2019). In both this study and the work 
done by Metz (2008), the pre–post design keeps the effect of 
these factors on the performance of men and women consistent 
at both time points.

There was no significant difference in the pre-1961 scores 
between students who had taken a prior statistics course (M = 
49%) and students who had not (M = 51%). This curricular 
intervention did not result in an interaction between prior statis-
tics exposure and curriculum condition on students’ normalized 
gains. However, Metz (2008) did report an effect of prior statis-
tics courses, with those who had not taken a prior statistics 
course gaining more. Notably, the students in that study dis-
played a larger difference in the pretest scores (M = 64% for 
those who had prior statistics exposure; M = 43% for those who 
did not). Moreover, that curricular intervention was more simi-
lar to a traditional stand-alone statistics course with siloed intro-
duction of topics that might be taught in these courses. The mod-
el-based Intervention curriculum in this study provided a new 
way to look at statistics topics by presenting them as representa-
tions and consequences of biological variation as opposed to 
teaching procedures for performing calculations, which is a com-
mon approach in many statistics classes (Pfannkuch et al., 2018). 
Thus, the approach to statistics was novel for both students who 
had taken statistics and those who had not, which might explain 
why both groups benefited equally from the intervention.

There was a relationship between students’ pretest scores 
and curriculum group on students’ normalized gains in this 
study. Similar to Metz (2008), we found that students with 
lower pretest scores showed stronger gains than students with 
higher pretest scores. However, our data also suggest that stu-
dents with the highest pretest scores (i.e., highest pre-1961 
scores) were negatively impacted by the Traditional curriculum 
(Figure 4), showing an average normalized gain of about −20%, 
which corresponds to a loss of three questions on a 16-question 
assessment. In contrast, students with the highest pretest scores 
in the Intervention group had a smaller loss of knowledge 
(−2.6%). These data could represent an expertise reversal effect 
(Kalyuga, 2007), in which the information presented in the Tra-
ditional curriculum is beneficial for novice learners but conflicts 
with the understanding that students in the High pretest score 
group already have. Alternatively, these data could suggest that 

there are misconceptions being taught in the Traditional curric-
ulum that conflict with what students in the High pretest score 
group already know. Either way, it seems that the Intervention 
curriculum is potentially buffering this effect. This buffering 
could be occurring because of the professional development 
provided to the Intervention GTAs but not the Traditional GTAs 
or it could be because the model-based approach gives students 
the opportunity to reconcile new information with prior knowl-
edge. While the difference between the normalized gain scores 
of the Traditional and Intervention students with high pretest 
scores was only marginally significant, this comparison showed 
a small effect size (η2

H = 0.02). Given the small sample size of 
this comparison, greater power is needed to confirm these 
results and to analyze differences by topic area to identify which 
areas are impacted differentially by the two curricula.

Limitations
The curricular intervention in this study was short and confined 
to a short period of time within the first-semester course, result-
ing in only small, albeit significant, gains from the pre- to 
post-assessment. Opportunities to apply and refine the final 
model of variation that students had constructed were not pro-
vided throughout the course, and these opportunities have 
been shown to be an important part of the model development 
cycle (Halloun, 2007). Further research needs to be done to 
incorporate such opportunities and see whether further gains 
are achieved. As noted earlier, not all students took both the 
pre-1961 and post-Bootcamp assessments, and the number 
who took all four assessments was even smaller. Therefore, our 
conclusions only apply to the group of students who took the 
assessments and agreed to be part of the study. Additionally, the 
curriculum was implemented in only one laboratory context. 
Biology majors at this university have high Math ACT scores 
and approximately 40% of students had taken a prior statistics 
course. Expanding curriculum implementation and evaluation 
to other contexts will reveal whether this curriculum will have 
the same effect with students who have less mathematical 
preparation.

CONCLUSION
This study investigated a novel approach to teaching statistics 
to undergraduate students in biology in which students were 
asked to construct a conceptual model of variation that con-
nects representations and concepts of variation to experimental 
design and analysis. Within the same biology laboratory course, 
students who received instruction in this curriculum show 
greater normalized gains than students who received proce-
dure-focused data analysis instruction. The impact of the Inter-
vention is not affected by gender or prior statistics exposure and 
persists over time, at least for some students. This work pro-
vides an adaptable and expandable model for using the mod-
el-based curriculum approach in undergraduate biology labora-
tory contexts to improve students’ understanding of biological 
variation in experimental design and analysis.
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