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Abstract

FUS is an RNA-binding protein involved in amyotrophic lateral
sclerosis (ALS) and frontotemporal dementia (FTD). Cytoplasmic
FUS-containing aggregates are often associated with concomi-
tant loss of nuclear FUS. Whether loss of nuclear FUS function,
gain of a cytoplasmic function, or a combination of both lead
to neurodegeneration remains elusive. To address this question,
we generated knockin mice expressing mislocalized cytoplasmic
FUS and complete FUS knockout mice. Both mouse models
display similar perinatal lethality with respiratory insufficiency,
reduced body weight and length, and largely similar alterations
in gene expression and mRNA splicing patterns, indicating that
mislocalized FUS results in loss of its normal function. However,
FUS knockin mice, but not FUS knockout mice, display reduced
motor neuron numbers at birth, associated with enhanced
motor neuron apoptosis, which can be rescued by cell-specific
CRE-mediated expression of wild-type FUS within motor
neurons. Together, our findings indicate that cytoplasmic FUS
mislocalization not only leads to nuclear loss of function, but
also triggers motor neuron death through a toxic gain of func-
tion within motor neurons.
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Introduction

Mutations in several aggregation-prone RNA-binding proteins (RBPs)

are increasingly linked to various neurodegenerative diseases. Such

mutations constitute a major cause of amyotrophic lateral sclerosis

(ALS), the most frequent adult-onset motor neuron disease, with

mutations in TDP-43 (Gitcho et al, 2008; Kabashi et al, 2008; Sreedharan

et al, 2008) and FUS (Kwiatkowski et al, 2009; Vance et al, 2009)

accounting each for about 5% of familial ALS cases. Even in the

absence of mutations, abnormal cytoplasmic inclusions of TDP-43

represent a pathological hallmark of sporadic ALS, non-SOD1 familial

ALS, and frontotemporal dementia (FTD) (Neumann et al, 2006,
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2009), a neurodegenerative condition characterized by behavioral

and language deficits. Similarly, compromised FUS nuclear localization

and cytoplasmic FUS aggregates are found in ALS patients carrying

FUSmutations, as well as in a subset of FTD patients without TDP-43

pathology (Mackenzie et al, 2010). Consistent with a central role of

RNA processing misregulation in ALS and FTD pathogenesis,

mutations in several other RBPs were recently identified, in particular

TAF15 and EWSR1, two proteins from the same family as FUS

(Couthouis et al, 2011, 2012), and other less closely related RBPs

such as ataxin 2 (Elden et al, 2010), hnRNPA2B1 (Kim et al, 2013),

hnRNPA1 (Kim et al, 2013), and matrin-3 (Johnson et al, 2014).

Disease-associated mutations in RBPs typically disrupt the

normal nuclear localization of mutant proteins, with concomitant

sequestration of the endogenous wild-type protein into cytoplasmic

aggregates (Kim et al, 2013; Vance et al, 2013). Mutations are either

located in highly unstructured prion-like protein domains, resulting

in a higher propensity to aggregate (Kim et al, 2013), or in the vicin-

ity of the nuclear localization signal (NLS), impairing nuclear import

of the protein. For instance, the NLS of FUS is an atypical PY-NLS

(Dormann et al, 2010) located at the C-terminus of the protein that

represents a mutational hot spot in ALS patients. Along with

missense mutations, several truncating or frameshift mutations

deleting the FUS NLS have been identified in ALS patients (Fig EV1)

and are often associated with juvenile onset and rapid disease

progression (Baumer et al, 2010; Waibel et al, 2010, 2013; Zou

et al, 2013; Calvo et al, 2014; Deng et al, 2014). In most instances,

FUS mutations are dominantly inherited. However, it is noteworthy

that a recessive inheritance pattern is occasionally observed in ALS

patients (Kwiatkowski et al, 2009; Bertolin et al, 2014).

FUS and TDP-43 normally shuttle between the nucleus and cyto-

plasm, and defective nuclear import may lead to both loss of their

nuclear functions and deregulation of their cytoplasmic roles. In the

nucleus, FUS and TDP-43 are involved in regulation of pre-mRNA

splicing, transcription, and microRNA biogenesis, all processes that

may be affected by their depletion from the nucleus (Morlando et al,

2012; Ling et al, 2013). Consistently, reductions of TDP-43 or FUS

were associated with altered expression and splicing of several

hundreds of genes (Polymenidou et al, 2011; Tollervey et al, 2011;

Ishigaki et al, 2012; Lagier-Tourenne et al, 2012; Rogelj et al, 2012;

Ling et al, 2015), and both proteins are critically involved in the

processing of long pre-mRNAs (Polymenidou et al, 2011; Lagier-

Tourenne et al, 2012; Ling et al, 2013; Sibley et al, 2015). Cytosolic

functions of FUS and TDP-43 include transport (Alami et al, 2014)

and/or storage (Han et al, 2012) of mRNA in the cytoplasm with a

crucial role in the formation of stress granules (Li et al, 2013).

Although several lines of evidence indicate that cytoplasmic mislo-

calization of RBPs is a key event in disease pathogenesis, definitive

in vivo evidence is lacking and the relative contributions of loss and

gain of function still need to be established. Indeed, it remains

unknown whether loss of nuclear function of mutant RBPs is sufficient

to trigger motor neuron disease or whether a cytosolic gain of function

is also involved. There have been two major hurdles in answering

these questions. First, ALS-associated RBPs are crucial for cell physio-

logy, and overexpression of wild-type proteins causes widespread

phenotypes (Huang et al, 2011; Mitchell et al, 2013; Sephton et al,

2014). This represents a major drawback when attempting to discern

the pathophysiological effects of disease-causing mutations in over-

expression models. Second, potent autoregulatory mechanisms

control cellular levels of RBPs. For instance, both TDP-43 (Ayala et al,

2011; Polymenidou et al, 2011; D’Alton et al, 2015) and FUS (Lagier-

Tourenne et al, 2012; Zhou et al, 2013; Dini Modigliani et al, 2014)

control their own levels by binding to their mRNAs. As a conse-

quence, the levels of endogenous TDP-43 or FUS proteins are strikingly

reduced in animal models overexpressing wild-type or mutant TDP-43

and FUS (Wegorzewska et al, 2009; Huang et al, 2011; Arnold et al,

2013; Mitchell et al, 2013; Sephton et al, 2014).

Here, we use homologous recombination techniques to

circumvent issues inherent to overexpression animal models. We

systematically compare the pathological and molecular features of

two novel mouse models either expressing a truncated FUS protein

that lacks the NLS and localizes within the cytoplasm (knockin

mice) or harboring a genomic mutation associated with complete

absence of FUS protein (knockout mice). Both mice expressing

mutant cytoplasmic FUS and mice completely devoid of FUS died at

birth of respiratory insufficiency. Using genomic approaches, we

determined that FUS knockin mice display expression and splicing

alterations consistent with loss of FUS nuclear function. However,

mice expressing truncated cytoplasmic FUS, but not FUS knockout

mice, exhibit perinatal motor neuron loss, which can be rescued by

motor neuron-restricted reversal of the mutant FUS gene to wild-type

FUS. These findings demonstrate that cytoplasmic FUS leads to loss

of nuclear FUS function, yet exerts a toxic gain of function within

the cytoplasm of motor neurons necessary to trigger neuronal death.

Results

Cytoplasmic mislocalization of mutant FUS in FusDNLS/DNLS mice

With the aim to investigate in vivo consequences of altered FUS

localization, we generated a mouse model with targeted deletion of

the PY-NLS, encoded by the last exon of the Fus gene (exon 15).

This mutation closely mimics ALS-causing truncating mutations of

FUS (Fig EV1). We opted for a strategy that would not only result in

ablation of exon 15, but also allow for CRE-mediated reversal to the

wild-type locus. Due to the small size of intron 14, we engineered

the Fus locus to include, in intron 12, a floxed cDNA encoding exons

13 and 14 of Fus, followed by 3 transcription stop cassettes and a

poly-adenylation signal (Fig 1A). Germ line transmission of the

recombinant allele was obtained (Fig 1B) and mice heterozygous

and homozygous for the targeted allele will hereafter be referred

to as FusDNLS/+ and FusDNLS/DNLS, respectively. Homozygous

FusDNLS/DNLS mice died shortly after birth, and tissues dissected at

birth (P0) were analyzed for expression and localization of FUSΔNLS

mRNA and protein. The DNLS mRNA could be detected by RT–

PCR in tissues of FusDNLS/+ and FusDNLS/DNLS mice (Figs 1C and

EV2A). FUS protein was detected by immunoblotting in

FusDNLS/+ and FusDNLS/DNLS brain, spinal cord, and muscle protein

extracts using antibodies targeting the internal or N-terminal parts

of FUS (Figs 1D and EV2B). Contrastingly, no signal was found in

FusDNLS/DNLS protein extracts when using two different antibodies

that recognize the C-terminal NLS of FUS (Figs 1D and EV2B),

demonstrating that the engineered Fus gene leads to the generation

of a FUS protein devoid of NLS. FUS protein levels were hetero-

geneous in FusDNLS/+ brains (Fig 1D). As expected, FUS protein

localized to the nucleus in cultured mouse embryonic fibroblasts
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Figure 1. FUS mislocalization in FusDNLS/DNLS mice.

A Schematic representation of the Fus gene locus (upper panel). Lower panels depict exons 11–15 in the wild-type allele (left) and ΔNLS allele (right) with localization
of PCR primers used for genotyping (gDNA, used in B) and for RT–PCR (Total and ΔNLS, used in C). Arrow: translational start site. STOP cassettes are indicated in red;
loxP sites as black triangles; coding regions are in dark blue and UTRs in light blue. Location of the region encoding the nuclear localization signal (NLS) is indicated
in exon 15.

B Representative PCR genotyping results from 2 Fus+/+, 2 FusDNLS/+, and 2 FusDNLS/DNLS knockin mice using primers designed around the distal loxP site of the FusDNLS

allele and shown as gDNA in (A). The expected size of the PCR product of the ΔNLS allele is 240 bp; the size of wild-type allele is 160 bp.
C RT–PCR analysis of brain from 2 Fus+/+, 2 FusDNLS/+, and 2 FusDNLS/DNLS knockin P0 mice using primers located in the STOP cassette, and thus specific to the ΔNLS

mRNA (ΔNLS, upper panel), or primers located in exon 11, that is, upstream of the floxed cDNA insertion, and thus amplifying total Fus-derived mRNA (Total, middle
panel). PCR amplification of 18S rRNA is shown as a standard gene (lower panel).

D Immunoblot analysis of FUS protein in cerebral cortex of 2 Fus+/+, 2 FusDNLS/+, and 2 FusDNLS/DNLS knockin mice using a combination of two different antibodies
targeting either the C-terminal (C-ter. 1 and C-ter. 2) NLS, the N-terminal part (N-ter. 1), or an internal part (N-ter. 2) of FUS. Molecular weight markers are shown on
the left, and apparent MW is indicated.

E Double immunostaining for the motor neuronal marker ChAT and Fus (N-terminal part) in the ventral horn of spinal cord.
F Double immunostaining for nuclei (DAPI, blue) and Fus (N-terminal part) in the cerebral cortex.

Source data are available online for this figure.
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(MEFs) of Fus+/+ mice. In striking contrast, FUS redistributed from

the nuclear compartment to the cytoplasm in FusDNLS/DNLS MEFs

(Fig EV2C) and was detected in both the nucleus and the cytoplasm

of FusDNLS/+ MEFs (Fig EV2C). Consistently, in FusDNLS/DNLS

newborn mice, immunostaining revealed that mutant FUS is local-

ized to the cytoplasm of spinal motor neurons and cortical neurons,

contrasting with the normal nuclear localization in Fus+/+ neurons

(Fig 1E and F). In FusDNLS/+ mice, FUS is detected in both the

nucleus and the cytoplasm of motor neurons (Fig 1E). Thus, the

FusDNLS allele effectively leads to the expression of a truncated

FUS protein that lacks the NLS and localizes predominantly to the

cytoplasm.

Both cytoplasmic mislocalization of FUS and complete loss of
FUS result in perinatal lethality

FusDNLS/DNLS mice were born alive, but died within minutes after

birth, while FusDNLS/+ mice survived the perinatal period. The body

length and weight of FusDNLS/DNLS pups were slightly but significantly

reduced as compared to Fus+/+ and FusDNLS/+ newborn mice

(Fig 2A–C). The cause of death appeared to be respiratory insuffi-

ciency, as FusDNLS/DNLS animals showed poor respiratory movements

and cyanosis, and H&E staining of sections through the lung revealed

uninflated lungs with complete alveolar atelectasis (Fig 2D).

Cytoplasmic FUS mislocalization could have detrimental effects

either through toxicity resulting from increased cytoplasmic FUS

levels or through loss of its normal nuclear function. To distinguish

between these possibilities, we investigated whether complete loss

of FUS recapitulates the perinatal lethality phenotype of FusDNLS/DNLS

mice. Mice with a gene trap insertion in exons 8 or 12 of the Fus gene

have been described previously (Hicks et al, 2000; Kuroda et al,

2000), yet both of these Fus gene trap lines express low amounts of

truncated FUS protein, thus precluding their use to discriminate

between loss- versus gain-of-function mechanisms. To tackle this

issue, we generated a novel Fus knockout model (hereafter referred

to as Fus�/�) that was systematically compared to FusDNLS/DNLS mice

in the same C57Bl6 background. In this new Fus knockout allele, a

trap cassette was inserted in intron 1 to completely disrupt transcrip-

tion of the endogenous Fus gene (Fig 3A). Southern blot and direct

sequencing confirmed the position and orientation of the gene trap

insertion, and excluded additional insertion events elsewhere in the

genome (not shown). FUS protein was undetectable in the central

nervous system of Fus�/� newborn mice by Western blot using the

above-described antibodies against the N-terminal and C-terminal

parts of the protein (Fig 3B and C) and Fus mRNA could not be

detected by quantitative real-time PCR (Fig 3D). Consistently,

immunostaining for FUS on spinal cord sections of E18.5 Fus�/�

mice did not detect FUS protein (Fig 3E), confirming that Fus�/�

mice are FUS protein null. Depending on the genetic background,

previously described Fus gene trap mice were reported either to be

adult viable, to die before the age of weaning or within 16 h after

birth (Hicks et al, 2000; Kuroda et al, 2000; Kino et al, 2015). In

contrast, Fus�/� mice died within 30 min after birth due to respira-

tory insufficiency. Similar to FusDNLS/DNLS pups, the body weight and

body length of Fus�/� newborn mice were significantly reduced as

compared to littermate controls (Fig 3F and G). Thus, both complete

loss of FUS and its cytoplasmic mislocalization trigger a similar peri-

natal phenotype in C57Bl6 mice.

Extensive overlap of RNA expression changes induced by
cytoplasmic FUS mislocalization and complete loss of FUS

The phenotypic similarity of FusDNLS/DNLS and Fus�/� newborn

mice is consistent with FUS cytoplasmic mislocalization leading to

loss of FUS nuclear function. FUS has been involved in the regula-

tion of gene expression and alternative splicing of its mRNA

targets (Polymenidou et al, 2011; Tollervey et al, 2011; Ishigaki

et al, 2012; Lagier-Tourenne et al, 2012; Rogelj et al, 2012). In

addition, FUS interacts with several proteins, including U1-snRNP

(Yamazaki et al, 2012; Sun et al, 2015), SMN (Yamazaki et al,

2012; Groen et al, 2013; Tsuiji et al, 2013; Sun et al, 2015),

HDAC1 (Wang et al, 2013), Drosha (Morlando et al, 2012), RNA

polymerase II (Schwartz et al, 2012), and PRMT1 (Tibshirani et al,

2014), known to have profound effects on splicing and gene

expression. Hence, the expression of a truncated cytoplasmic form

of FUS may primarily lead to loss of nuclear FUS function and

defective regulation of direct FUS RNA targets. In addition, cyto-

plasmic accumulation of FUS may also alter the function and/or

A B

C D

Figure 2. Perinatal lethality in FusΔNLS/ΔNLS mice.

A Photographs of Fus+/+ and FusDNLS/DNLS pups immediately after birth (P0
animals).

B, C FusDNLS/DNLS mice showed significantly reduced body weight (B) and
length (C). Weight and length values normalized to wild type (Fus+/+) are
presented (mean � SEM). N = 11 Fus+/+, N = 26 FusDNLS/+ and N = 14
FusDNLS/DNLS; *P < 0.05, **P < 0.01 versus Fus+/+, #P < 0.05 versus FusΔNLS/+;
one-way ANOVA followed by Tukey’s post hoc test.

D Representative hematoxylin and eosin stainings of lungs of Fus+/+ and
FusDNLS/DNLS at birth.
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Figure 3. Generation of a complete Fus�/� loss-of-function mouse model.

A Schematic representation of the Fus gene locus (upper panel). Lower panels depict exons 1–3 in the wild-type allele (left) and loss-of-function allele (right). Arrow:
translational start site; SA: splice acceptor; bgeo: b-galactosidase/neomycin phosphotransferase fusion gene; pA: polyA.

B Representative immunoblot for FUS on protein extracts of E18.5 brain. Histone 3 is used as a loading control.
C Quantification of FUS protein levels from immunoblots.
D Quantitative real-time PCR for Fus transcript in Fus+/+ and Fus�/� mice. ND: not detected.
E Immunostaining for the neuronal marker NeuN and FUS on the spinal cord ventral horn of E18.5 Fus+/+ and Fus�/� mice.
F, G Body weight (F) and length (G) of Fus+/+, Fus+/�, and Fus�/� pups at birth; N = 14 Fus+/+, N = 36 Fus+/�, and N = 13 Fus�/� for body weight; N = 6 per genotype for

body length.

Data information: Data represent mean � SEM. **P < 0.01 versus Fus+/+, ##P < 0.01 versus Fus+/�; one-way ANOVA followed by Tukey’s post hoc test.

Source data are available online for this figure.
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subcellular localization of FUS-interacting proteins and result in

additional gene expression and splicing alterations. To discriminate

between gain- and loss-of-function changes, we systematically

compared RNA profiles in brains from FusDNLS/DNLS and Fus�/�

mice. First, we used strand-specific, genomewide sequencing of

RNAs (Parkhomchuk et al, 2009) (RNA-seq) to evaluate RNA

expression levels in brains of FusDNLS/DNLS and Fus�/� mice. Total

RNA was extracted from E18.5 embryonic brains of FusDNLS/DNLS

mice (N = 5), and wild-type littermates (N = 4), as well as

homozygous Fus�/� (N = 5) and their control Fus+/+ littermates

(N = 5). Expression levels for each annotated protein-coding gene

were determined by the number of mapped fragments per kilobase

of exon, per million mapped reads (FPKM) (Mortazavi et al, 2008;

Trapnell et al, 2012). The FPKM ratio of the Fus gene confirmed

that Fus was expressed in FusDNLS/DNLS mice, but not in Fus�/�

mice (Fig EV3A). Inspection of the reads mapped on the Fus gene

demonstrated the absence of reads throughout all exons for the

Fus�/� mice, while only exon 15 was not integrated in Fus

transcripts of FusDNLS/DNLS mice (Fig 4A). Fus transcript levels as

determined by FPKM ratio were not significantly different in

FusDNLS/DNLS and Fus+/+ mice (Fig EV3A). Unsupervised hierarchi-

cal clustering with all genes reliably discriminated mutant geno-

types from their controls (Fig EV3B and C), indicating that both

Fus mutation and Fus deletion displayed RNA expression profiles

divergent from wild type. Statistical comparison of FPKM values

identified 237 genes upregulated and 549 genes downregulated in

FusDNLS/DNLS mice (Dataset EV1 and Fig 4B). Of note, only nine

genes and 56 genes were upregulated and downregulated more

than 1.5-fold, respectively (Dataset EV1). Identical analysis in

Fus�/� mice identified 669 upregulated genes (29 genes more than

1.5-fold) and 889 downregulated genes (72 genes more than

1.5-fold) (Dataset EV2 and Fig 4C). Comparison of both models

identified 353 genes that were altered in the same direction,

consistent with loss of FUS nuclear function underlying the altered

levels of these transcripts (Fig 4D and Dataset EV3).

Downregulation of selected genes in both mouse models was

confirmed by qRT–PCR (Appendix Fig S1A) yielding data similar to

the RNA-seq results (Fig 4E). Out of these, several genes have been

previously involved in neurological diseases such as the Abelson

helper integration site 1 (Ahi1) gene mutated in the neurodevelop-

mental Joubert syndrome (Ferland et al, 2004), the Dystrophia

myotonica protein kinase (Dmpk) gene implicated in myotonic

dystrophy type 1, the low and medium molecular weight neurofila-

ment subunits (Nefl and Nefm) (Bergeron et al, 1994), and the gene

encoding tubulin alpha 4A (Tuba4a) that was recently implicated in

ALS (Smith et al, 2014). Similarly, selected upregulated genes were

confirmed by qRT–PCR (Fig 4E and Appendix Fig S1A), including

Taf15, a FUS family member also mutant in ALS (Couthouis et al,

2011). Increased levels of Taf15 in FusDNLS/DNLS and Fus�/� mice are

consistent with the presence of FUS binding sites on the Taf15 tran-

script (Lagier-Tourenne et al, 2012) and may illustrate a mechanism

of compensation induced by loss of FUS nuclear function. Overall,

an extensive overlap in RNA expression changes was found in

FusDNLS/DNLS and Fus�/� brains consistent with loss of FUS nuclear

function in knockin mice.

Cytoplasmic mislocalization of FUS leads to unique RNA
expression changes

A subset of transcripts were altered uniquely in FusDNLS/DNLS

animals (Fig 4F and Appendix Fig S1B), including the Vitronectin

(Vtn) gene, the small nuclear ribonucleoprotein polypeptides B and

B1 (Snrpb) gene, the Trove2 gene encoding for the 60 kDa SS-A/Ro

ribonucleoprotein, and the U2AF homology motif kinase 1 (Uhmk1)

gene encoding for the kinase interacting with stathmin (KIS)

protein that was implicated in schizophrenia and the regulation of

splicing (Manceau et al, 2008) and local translation in neuritic

projections (Cambray et al, 2009; Pedraza et al, 2014). Interestingly,

FusDNLS/DNLS animals displayed increased mRNA levels of Ephb3, a

member of Eph/ephrin signaling pathways crucial in synaptogenesis

and previously involved in Alzheimer’s disease (Sheffler-Collins &

Dalva, 2012), while EphA4, another member of Eph/ephrin system,

has been recently involved in ALS (Van Hoecke et al, 2012) (Fig 4F

and Appendix Fig S1B). Thus, FusDNLS/DNLS expression profiles

largely recapitulated expression profiles of Fus�/� brains, yet a

subset of genes was found specifically associated with the expres-

sion of cytoplasmic truncated FUS in FusDNLS/DNLS brains.

Gene ontology analysis showed that transcripts whose expres-

sion was upregulated in FusDNLS/DNLS animals were enriched for

genes involved in mRNA translation and extracellular matrix consti-

tuents (Dataset EV4). In contrast, transcripts upregulated in Fus�/�

brains revealed enrichment for nuclear and nucleolar proteins

involved in the regulation of transcription, DNA replication, or regu-

lation of RNA metabolic processes (Dataset EV5). Gene ontology

▸Figure 4. FUS-dependent expression changes in mouse brain.

A RNA-seq reads from brain of homozygous knockin (FusDNLS/DNLS, upper panel), homozygous knockout (Fus�/�, middle panel), and control (Fus+/+, lower panel) mice
showing the absence of exon 15 (red arrow) in Fus mRNA in FusDNLS/DNLS mice, while the entire Fus transcript is absent in Fus�/� mice (green arrows).

B Heat map with hierarchical clustering of RNA-seq data from biological replicates of FusDNLS/DNLS (N = 5) and control littermates (N = 4), showing genes differentially
regulated between both genotypes among which 237 are upregulated and 549 are downregulated in FusDNLS/DNLS animals as defined by P < 0.05 adjusted for multiple
testing.

C Heat map with hierarchical clustering of RNA-seq data from biological replicates of Fus�/� (N = 5) and control littermates (N = 5), showing genes differentially
regulated between both genotypes, among which 669 are upregulated and 889 are downregulated in Fus�/� animals as defined by P < 0.05 adjusted for multiple
testing.

D Venn diagram showing the number of overlapping genes misregulated in FusDNLS/DNLS (blue circle) and Fus�/� (red circle) brains with 353 genes similarly
downregulated or upregulated upon cytoplasmic mislocalization or complete loss of FUS.

E Normalized expression (based on FPKM from RNA-seq) of genes identified by RNA-seq to be significantly downregulated (Ahi1, Kcnip1, Nefm, Nefl, Tuba4a, Dmpk,
Rad9b, Stac3, Hist1h2bc, Hist1h1c) or upregulated (Fam193b, Pmm2, Bphl, Taf15) in both FusDNLS/DNLS and Fus�/� compared to their control. Error bars represent SEM in
4-5 biological replicates. **P < 0.01, two-tailed student’s t-test.

F Normalized expression (based on FPKM from RNA-seq) of genes identified by RNA-seq to be uniquely changed in FusDNLS/DNLS mice (Trove2, Uhmk1, Ssh3, Vtn, Snrpb,
Ephb3). Error bars represent SEM in 4–5 biological replicates. *P < 0.05, **P < 0.01, two-tailed Student’s t-test.
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analysis revealed a similar enrichment for synaptic activity and

function among transcripts downregulated in FusDNLS/DNLS and

Fus�/� animals (Datasets EV4 and EV5), supporting that cytoplas-

mic mislocalization of FUS alters the expression of genes involved

in synaptogenesis, as a direct consequence of FUS loss of function.

Contrastingly, gain of function elicited by cytoplasmic FUS might be

more related to alterations in genes related to mRNA translation and

extracellular matrix.

Widespread splicing alterations induced by cytoplasmic
mislocalization and loss of FUS

To further compare the molecular changes elicited by cytoplasmic

FUS mislocalization and FUS loss of function, we asked whether

regulation of mRNA splicing was similarly affected in E18.5 brains

of FusDNLS/DNLS mice and Fus�/� mice. To characterize mRNA splic-

ing, we exploited the RNA-mediated oligonucleotide annealing,

selection, and ligation with next-generation sequencing (RASL-seq)

method (Li et al, 2012; Zhou et al, 2012). This approach allowed us

to quantitatively profile 3,859 unique alternative splicing events that

correspond to exon inclusion or skipping events conserved between

mouse and human (Fig EV4). Ratios of shorter to longer mRNA

isoform counts were calculated and used to statistically compare the

splicing changes between different groups. Unsupervised hierarchi-

cal clustering for all splicing events showed that mutant and deleted

Fus mice clustered apart from their controls (Fig EV4B and C). In

FusDNLS/DNLS brains, 9.3% (173 events) of the 1,852 detected splicing

events were different from controls, with 101 increased long splicing

isoforms and 72 enhanced short isoforms (defined by t-test with

P < 0.05 and average fold change > 1.5) (Fig 5A and Dataset EV6).

Heterozygous FusDNLS/+ mice clustered with wild-type mice demon-

strating that their splicing profile is not significantly altered

(Appendix Fig S2). Nevertheless, heat map of the 173 events signifi-

cantly changed in homozygous FusDNLS/DNLS mice showed an inter-

mediate pattern in FusDNLS/+ heterozygous littermates supporting a

partial loss of FUS function in these mice (Appendix Fig S2). In

Fus�/� brains, 17.9% (252 events) of the 1,406 detected splicing

events were different from control littermates, with 118 increased

long isoforms and 134 enhanced short isoforms (Fig 5B and

Dataset EV7).

Comparison of the splicing changes between FusDNLS/DNLS

and Fus�/� mice revealed a striking overlap between both

models. Seventy-five splicing events were commonly regulated in

FusDNLS/DNLS and Fus�/� mice, 100% of which were differentially

included or excluded in the same direction (Fig EV4D and E and

Dataset EV8).

Semi-quantitative RT–PCR of selected RNAs confirmed these

FUS-dependent splicing changes (Figs 5C and EV4F), including tran-

scripts previously implicated in neurodegenerative diseases such as

the N-myc downstream-regulated gene 2 (Ndrg2) that is misaccumu-

lated in Alzheimer’s disease (Mitchelmore et al, 2004), the micro-

tubule-associated protein tau (Mapt) gene mutated in

frontotemporal dementia (Hutton et al, 1998), the ataxin 2 (Atxn2)

gene mutated in ALS (Elden et al, 2010), spinocerebellar ataxia type

2 (SCA2) (Imbert et al, 1996), and the pro-neurotrophin receptor

sortilin 1 (Sort1) (Hu et al, 2010). Interestingly, inclusion of sortilin

1 exon 17b [also referred to as exon 18 in Polymenidou et al (2011)]

was previously associated with low levels of TDP-43 (Polymenidou

et al, 2011; Prudencio et al, 2012) and found significantly increased

in cortex of FTD patients with TDP-43 proteinopathy (Prudencio

et al, 2012). Here, we observe that Fus mutation and deletion have

an opposite effect on sortilin 1 as compared to TDP-43, with

decreased inclusion of exon 17b in embryonic brains from both

FusDNLS/DNLS and Fus�/� mice (Figs 5C and EV4F).

Despite expected developmental differences in the alternative

splicing patterns of embryonic and adult brains, 57 splicing events

found misregulated by RASL-seq in FusDNLS/DNLS and Fus�/� mice

were also identified by Affymetrix microarrays in striatum from

adult wild-type mice with antisense oligonucleotide-mediated deple-

tion of Fus (Lagier-Tourenne et al, 2012), or in embryonic brains

from another Fus knockout model that expresses low levels of

truncated FUS protein (Hicks et al, 2000; Lagier-Tourenne et al,

2012). Among FUS-dependent alterations, abnormal splicing of

Mapt exon 10 (Figs 5C and EV4F) is of particular relevance for

disease pathogenesis as mutations enhancing exon 10 inclusion are

linked to frontotemporal dementia (Liu & Gong, 2008). While in

embryonic mouse brains the predominant mRNA isoforms of Mapt

do not include exon 10 and encode for tau protein with three micro-

tubule binding repeats (3R-tau) (McMillan et al, 2008; Dillman et al,

2013), we observed increased inclusion of exon 10 encoding for the

4-repeat tau isoform (4R tau) in both FusDNLS/DNLS and Fus�/� mice.

In all, splicing alterations caused by cytoplasmic FUS mislocaliza-

tion are largely overlapping with those elicited by complete loss of

FUS. Nevertheless, a subset of events were uniquely found in

FusDNLS/DNLS (Fig EV4D), which may be the consequence of

functional disruption of other RNA-binding proteins by abnormal

accumulation of FUS in the cytoplasm.

Cytoplasmic mislocalization of FUS leads to increased perinatal
motor neuron apoptosis

We next asked whether perinatal death of FusDNLS/DNLS and Fus�/�

mice was accompanied by loss of motor neurons in the lumbar

spinal cord. Immunostaining for choline acetyltransferase (ChAT),

which specifically labels large motor neurons in the spinal cord

ventral horn, revealed that the number of motor neurons was

reduced by approximately 30% in FusDNLS/DNLS mice as compared

with both Fus+/+ and FusDNLS/+ mice (Fig 6A and B). To exclude

▸Figure 5. FUS-dependent alternative splicing alterations in mouse brain.

A Heat map with hierarchical clustering of RASL-seq data from biological replicates of FusDNLS/DNLS (N = 4) and control littermates (N = 4), showing 173 alternative
splicing alterations associated with expression of cytoplasmic FUS in knockin animals.

B Heat map with hierarchical clustering of RASL-seq data from biological replicates of Fus�/� (N = 5) and control littermates (N = 5), showing 252 alternative splicing
alterations associated with loss of FUS in knockout animals.

C Semi-quantitative RT–PCR analyses of selected targets. Left panels show representative acrylamide gel pictures of RT–PCR products. Quantification of splicing
changes from at least three biological replicates of FusDNLS/DNLS (blue bars) and Fus�/� (red bars) compared to their control littermates (Fus+/+, black bars) by semi-
quantitative RT–PCR (middle panel) and RASL-seq (right panel) are shown. Error bars represent SEM. *P < 0.05, **P < 0.01, two-tailed Student’s t-test.
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the possibility that this reduced number of ChAT-positive motor

neurons reflected downregulation of ChAT expression rather than

loss of motor neurons, we also performed Nissl staining, a histo-

chemical stain that does not rely on the expression level of a specific

marker. Quantification of neurons with an area of ≥ 80 lm2

revealed a 50% reduction in the number of large motor neurons in

the ventral horn of FusDNLS/DNLS newborn mice (Fig 6C). Interest-

ingly, FusDNLS/+ mice displayed a smaller but statistically significant
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Figure 6. Motor neuron loss in FusDNLS/DNLS mice.

A Representative light microscopy images of spinal cord sections of Fus+/+, FusDNLS/+, FusDNLS/DNLS, and Fus�/� mice at birth stained with cresyl violet (Nissl, A1, A3 A5, A7),
or anti-choline acetyltransferase (ChAT, A2, A4 A6, A8).

B, C Quantification of ChAT+ motor neurons (B) and Nissl+ motor neurons (defined as Nissl-positive cells with a soma area > 80 µm2) (C) per spinal cord ventral horn in
FusDNLS/DNLS mice (mean � SEM). For Nissl+ N = 8 Fus+/+, N = 5 FusDNLS/+, N = 7 FusDNLS/DNLS, and for ChAT+ N = 7 per genotype, **P < 0.01 versus Fus+/+,
##P < 0.01 versus FusΔNLS/+; one-way ANOVA followed by Tukey’s post hoc test.

D, E Quantification of ChAT+ (D) and Nissl+ (E) motor neurons per spinal cord ventral horn in Fus�/� mice (mean � SEM). N = 6 per genotype, no significant differences
were found, by Student’s unpaired t-test.
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loss of large Nissl-stained cells, suggesting that motor neurons were

also affected in these mice despite showing normal numbers of

ChAT-positive cells. In striking contrast with the situation in

FusDNLS/DNLS mice, spinal motor neuron counts were similar

between Fus�/� mice and their wild-type littermates (Fig 6A, D

and E), demonstrating that the mutant FUS protein expressed in

FusDNLS/DNLS mice is toxic to motor neurons during development.

Besides motor neuron degeneration, neither FusDNLS/DNLS nor Fus�/�

mice displayed gross developmental abnormalities of the brain.

Indeed, cortical thickness appeared normal in both mouse strains

(Appendix Fig S3). In addition, the thickness of layers II-IV and

layers V-VI defined by CUX1 and CTIP2 immunofluorescence,

respectively, was normal in both mouse strains (Appendix Fig S4).

At birth, mouse motor neurons are still in the developmental

period, and motor neurons that did not efficiently create synaptic

contacts with muscles undergo apoptosis until P10 (Kanning et al,

2010). Supporting an increased perinatal motor neuron apoptosis in

FusDNLS/DNLS mice, the number of apoptotic cells detected by termi-

nal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)

was threefold higher in lumbar spinal cord sections of FusDNLS/DNLS

newborn mice than in wild-type littermates (Fig 7A and B). Further-

more, double immunostaining for ChAT and active caspase-3,

labeling motor neurons actively undergoing apoptosis, revealed

that motor neuron apoptosis was three times more frequent in

FusDNLS/DNLS than in wild-type littermates (Fig 7C–E). Together,

these data indicate that cytoplasmic mislocalization of FUS leads to

increased motor neuron death resulting in reduced numbers of

lower motor neurons. The absence of motor neuron loss in Fus�/�

mice indicates that cytoplasmic FUS accumulation leads to motor

neuron death through a toxic gain-of-function mechanism.

Cytoplasmic mislocalization of FUS alters SMN and HDAC1
localization and induces eIF2a phosphorylation

We then asked whether cytoplasmic mislocalization of FUS in

FusDNLS/DNLS mice would affect the subcellular localization of some

of its interaction partners. Immunostaining for SMN1 revealed

that SMN1-positive nuclear gems were lost in motor neurons of

FusDNLS/DNLS mice (Fig 8A), as in cells from ALS patients and mouse

models (Yamazaki et al, 2012; Tsuiji et al, 2013; Sun et al, 2015; Yu

et al, 2015) and consistent with enhanced interaction between

mutant FUS and SMN1 (Yamazaki et al, 2012; Gerbino et al, 2013;

Groen et al, 2013; Sun et al, 2015; Yu et al, 2015). Furthermore,

HDAC1, another FUS interaction partner (Wang et al, 2013),

showed profoundly abnormal immunoreactivity in FusDNLS/DNLS

mice. Indeed, HDAC1 was diffusely nuclear in cells from wild-type

spinal cords, while in FusDNLS/DNLS animals HDAC1 immunoreactiv-

ity was condensed in 1–3 nuclear foci per cell (Fig 8B). Double

immunofluorescence in spinal cords from control animals found a

weak HDAC1 staining in ChAT-positive motor neurons contrasting

with a strong nuclear signal in neighboring cells. The pattern was

strikingly different in FusDNLS/DNLS animals with HDAC1 aggregation

into nuclear foci in ChAT-positive motor neurons (Fig 8C). In

contrast to SMN1 and HDAC1, the binding partner of FUS TAF15

remained mostly nuclear in motor neurons from FusDNLS/DNLS mice

(Appendix Fig S5). Thus, cytoplasmic mislocalization of FUS

perturbs the localization, and potentially the function, of specific

interaction partners in motor neurons.

In autopsy material of ALS-FUS patients, FUS-containing cyto-

plasmic aggregates are found in neurons and glial cells. These aggre-

gates are usually also immunopositive for ubiquitin (Vance et al,

2009; Baumer et al, 2010; Huang et al, 2010; Kobayashi et al, 2010;

Tateishi et al, 2010). Despite motor neuron loss in FusDNLS/DNLS

mice, we did not observe FUS-positive (Fig 1E and F) aggregates in

motor neurons or cortical neurons of newborn FusDNLS/DNLS mice.

We also did not observe ubiquitin-positive, poly-ubiquitin-positive,

or neurofilament-positive aggregates in the ventral spinal cord of

FusDNLS/DNLS mice (Fig EV5A and B). As FUS is recruited to stress

granules, and since neuropathology revealed that cytoplasmic

protein aggregates in ALS-FUS patients stain positive for stress

granule markers (Baumer et al, 2010; Dormann et al, 2010; Liu-

Yesucevitz et al, 2010), we evaluated the distribution of TIAR, a

stress granule marker in the spinal cord ventral horn in FusDNLS/DNLS

mice. TIAR displayed a similar diffuse cytosolic pattern in motor

neurons of FusDNLS/DNLS and control mice (Fig EV5C). As an

additional marker for cellular stress, we evaluated eIF2a phosphory-

lation, which occurs in response to cellular stress and results in

decreased global protein translation (Holcik & Sonenberg, 2005;

Sonenberg & Hinnebusch, 2009). Immunostaining for the phos-

phorylated form of eIF2a revealed a diffuse cytoplasmic staining

that was substantially more intense in spinal motor neurons of

FusDNLS/DNLS mice as compared to controls (Fig 8D) reflecting

cellular stress in FusDNLS/DNLS motor neurons, with consequent

repression of protein translation.

Taken together, cytoplasmic mislocalization of FUS in motor

neurons led to altered subcellular localization of several of its bind-

ing partners accompanied by stress-induced translational repression,

but without the induction of protein aggregation or stress granule

formation.

Cytoplasmic FUS mislocalization is intrinsically toxic to
motor neurons

We subsequently asked whether FUS mislocalization within motor

neurons is necessary to induce motor neuron loss in FusDNLS/DNLS

mice and therefore evaluated whether restricted expression of

wild-type FUS in motor neurons could rescue their survival despite

accumulation of the mutant protein in neighboring cells. We

exploited the presence of loxP sites flanking the STOP cassette

(Fig 1A) to selectively revert the ΔNLS allele to wild type in motor

neurons. For this purpose, FusDNLS/+ mice were crossed to mice

expressing the CRE recombinase from the ChAT locus, which

leads to CRE recombinase activity in virtually all cholinergic

neurons (Rossi et al, 2011; Saxena et al, 2013). We expected that

FusDNLS/DNLS/ChAT-CRE mice would express truncated FUS protein

ubiquitously, except for cholinergic neurons. Double immunostain-

ing for FUS and ChAT on spinal cord sections of FusDNLS/DNLS/

ChAT-CRE newborn mice revealed that FUS nuclear localization

was indeed largely restored in cholinergic neurons in the ventral

spinal cord, but not in other neighboring cells, consistent with

motor neuron selective CRE expression (Fig 9A). The rescue of

FUS nuclear localization was either complete or only partial, with

in the latter case motor neurons showing mixed cytoplasmic/

nuclear FUS localization (Fig 9A), consistent with CRE having

successfully recombined at least one FusDNLS allele to wild type.

Neonatal lethality of FusDNLS/DNLS mice was not rescued by the
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Figure 7. Motor neuron apoptosis in FusDNLS/DNLS mice.

A Representative images of TUNEL assay in spinal cord of FusDNLS/DNLS mice (A4-A6) and Fus+/+ mice (A1-A3).
B Quantification of the total number of TUNEL and DRAQ5 (blue) double-positive cells in FusDNLS/DNLS and Fus+/+ per spinal cord section. Mean � SEM, N = 3 per

genotype, *P < 0.05, by Student’s unpaired t-test.
C, D Immunofluorescence microscopy of spinal cord of Fus+/+ (C) and FusDNLS/DNLS (D) mice showing active caspase-3 (green), ChAT (red), and DNA (cyan, DRAQ5).
E Quantification of caspase-3 (Cas3)/ChAT/DRAQ5 triple-positive cells in FusDNLS/DNLS mice. Mean � SEM, N = 7 per genotype, **P < 0.01, by Student’s unpaired t-test.
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Figure 8. Alterations of SMN, HDAC1, and eIF2a in FusDNLS/DNLS mice.

A Representative images of SMN (green) immunofluorescence in spinal cord. Nuclear gems, corresponding to SMN-immunoreactive foci in nuclei, are marked by
arrows.

B HDAC1 immunoreactivity in spinal cord sections of Fus+/+ and FusDNLS/DNLS mice. Arrows point to HDAC1-immunoreactive nuclear foci.
C Representative images of immunofluorescence staining of motor neurons, labeled with ChAT (red) and HDAC1 (green). Examples of HDAC1 immunoreactive foci in

motor neurons are indicated by arrows.
D Representative images of immunofluorescence staining of motor neurons labeled with ChAT (red) and phosphorylated eIF2a (green), a general translational stress

response marker. DRAQ5 (cyan) was used to label nuclei.
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ChAT-CRE allele, suggesting that expression of mutant FUS in

motor neurons is not the main contributor of neonatal lethality in

homozygous mice. Last, we evaluated whether restoration of FUS

nuclear localization in motor neurons would prevent motor neuron

loss in FusDNLS/DNLS mice. This approach revealed that the presence

of a ChAT-CRE allele was indeed sufficient to fully rescue motor

neuron loss (Fig 9B–D), as well as restore a normal number of

caspase-3-positive motor neurons (Fig 9E). These findings establish

that cytoplasmic FUS mislocalization within motor neurons is

required to induce their loss in FusDNLS/DNLS mice.

Discussion

FUS and other related RBPs form cytoplasmic inclusions associated

with nuclear clearance in affected cells from ALS and FTD

patients. An outstanding question is whether disease is caused by

gain of cytoplasmic toxicity or by loss of the nuclear function of

the respective RBP. To gain insight into this conundrum, we

targeted the FUS locus to generate two novel mouse models. In

the first model, the last exon of Fus is no longer transcribed,

resulting in the production of a truncated FUS protein that lacks

the NLS and localizes almost exclusively to the cytoplasm (Fig 1).

The second model results in complete loss of FUS expression

(Fig 3). A thorough comparison of these two models allowed us to

determine whether a gain of a toxic cytoplasmic function is

required for the observed phenotypes.

Interestingly, this approach revealed that FusDNLS/DNLS and

Fus�/� mice share several features: both mouse models die shortly

after birth due to respiratory insufficiency and exhibit reduced body

weight and size. Transcriptomic analysis also revealed overlapping

alterations in RNA levels and splicing. However, a reduced number

of spinal motor neurons associated with increased perinatal motor

neuron apoptosis and a subset of expression and splicing changes

were uniquely found in FusDNLS/DNLS mice (Figs 4, 5, 6 and 7). Thus,

FUS mislocalization to the cytoplasm with reduced levels of nuclear

FUS is associated with phenotypes linked to loss of FUS function,

but also with motor neuron death induced by a gain of toxicity

mechanism that is not recapitulated in the knockout mouse model

(Fig 6). The notion that loss of FUS function may not be sufficient

to induce motor neuron degeneration is also supported by two

recent reports. First, in an outbred genetic background, homozygous

Fus gene trap mice reached 2 years of age without manifesting ALS-

like phenotypes or motor neuron loss (Kino et al, 2015). Second,

selective inactivation of the FUS homolog cabeza in neurons of adult

Drosophila did not affect motor performance or life span, indicating

that cabeza is not required for maintenance of neuronal function in

adults (Frickenhaus et al, 2015). Here, we demonstrate that loss of

FUS function is not sufficient and that gain of function by cytoplas-

mic redistribution of FUS is necessary to elicit motor neuron

apoptosis. Notably, RNA-seq and RASL-seq experiments showed

that the ΔNLS mutation triggered a partial loss of FUS function in

splicing and gene expression regulation. Loss of function, although

not sufficient, may be necessary in FusDNLS/DNLS mice to induce

motor neuron death. Indeed, a number of genes involved in synap-

togenesis and/or in neurodegenerative diseases show altered

expression (Ahi1, Dmpk, Nefl, Nefm, Tuba4a, Taf15) or splicing

(Ndrg2, Mapt, Atxn2, Sort1) in FusDNLS/DNLS and Fus�/� mice (Figs 4

and 5), and these alterations linked to loss of FUS nuclear function

may weaken the motor neuron and sensitize it to the toxic effects of

cytoplasmic FUS accumulation.

Importantly, we showed that motor neuron death in FusDNLS/DNLS

mice could be prevented by selectively restoring FUS nuclear import

in motor neurons (Fig 9), demonstrating that FUS cytoplasmic

mislocalization within motor neurons is required to induce motor

neuron loss. The observation that cytoplasmic mislocalization of

FUS is intrinsically toxic to motor neurons contrasts with the

non-cell-autonomous contribution to motor neuron degeneration

demonstrated for SOD1 mutations (Boillee et al, 2006). Indeed,

abrogation of mutant SOD1 expression in motor neurons delayed,

but did not prevent, motor neuron degeneration, and a contribution

of neighboring cells to SOD1 mediated toxicity is well established

(Ilieva et al, 2009). Moreover, our data support a degenerative

rather than developmental origin of motor neuron loss in newborn

FusDNLS/DNLS mice. The reduced number of motor neurons could

have a developmental origin, either by impaired proliferation of

motor neuron progenitors or defects in acquisition of motor neuron

fate. However, this scenario is unlikely since motor neuron loss in

FusDNLS/DNLS mice can be prevented by ChAT-CRE-induced reversal

of the FusDNLS locus to wild type (Fig 9). Expression of the ChAT

gene, which encodes choline acetyl transferase, an enzyme essential

for the biosynthesis of acetylcholine, is detectable in postmitotic

motor neurons from E11.5 onwards, thus after exit from the cell

cycle and acquisition of motor neuron fate at E.9.5 (Chen & Chiu,

1992; Alaynick et al, 2011; Cho et al, 2014). Therefore, the patho-

genic events driving motor neuron loss in FusDNLS/DNLS mice occur

after motor neuron specification. It should be noted that a large

proportion of motor neurons showed an incomplete rescue of FUS

◀ Figure 9. Selective restoration of FUS nuclear import in motor neurons rescues motor neuron loss.

A Double immunolabeling of spinal cord neurons with ChAT (red) and N-terminal FUS antibody (green). Nuclei were visualized with DRAQ5 (blue). Cellular
localization of FUS was analyzed in the ventral spinal cord of Fus+/+/ChAT-CRE (A1-A4), FusDNLS/DNLS/� (A5-A8), and FusDNLS/DNLS/ChAT-CRE (A9-A12). FUS was
completely nuclear in ChAT+ neurons of Fus+/+/ChAT-CRE, while cytoplasmic in FusDNLS/DNLS/�. In the ventral horn of FusDNLS/DNLS/ChAT-CRE mice, ChAT+ neurons
(motor neurons, e.g., within the dashed square) displayed nuclear FUS immunoreactivity, while ChAT-negative cells retained cytoplasmic FUS immunoreactivity
(arrows).

B Representative light microscopy images of spinal cord sections of Fus+/+/ChAT-CRE (B1, B4), FusDNLS/DNLS/� (B2, B5), and FusDNLS/DNLS/ChAT-CRE (B3, B6) mice at birth
stained with cresyl violet (Nissl, B1-B3) or anti-choline acetyltransferase (ChAT, B4-B6).

C, D Quantification of Nissl+ (C) and ChAT+ (D) motor neurons per spinal cord ventral horn. Mean � SEM, N = 9 Fus+/+/ChAT-CRE, N = 8 FusDNLS/DNLS/�, and N = 4
FusDNLS/DNLS/ChAT-CRE for Nissl+, and N = 11 Fus+/+/ChAT-CRE, N = 7 FusDNLS/DNLS/�, and N = 8 FusDNLS/DNLS/ChAT-CRE for ChAT+; (**) P < 0.01 versus Fus+/+,
##P < 0.01 versus FusΔNLS/+; (ns) non-significant; one-way ANOVA followed by Tukey’s post hoc test.

E Total numbers of caspase-3 (Cas3)/ChAT/DAPI triple-positive cells in Fus+/+/ChAT-CRE, FusDNLS/DNLS/�, and FusDNLS/DNLS/ChAT-CRE mice. N = 9 Fus+/+/ChAT-CRE, N = 7
FusDNLS/DNLS/�, and N = 8 FusDNLS/DNLS/ChAT-CRE; **P < 0.01 versus Fus+/+, #P < 0.05 versus FusΔNLS/+; (ns) non-significant; one-way ANOVA followed by Tukey’s post
hoc test.

ª 2016 The Authors The EMBO Journal Vol 35 | No 10 | 2016

Jelena Scekic-Zahirovic et al Cytoplasmic FUS gains a toxic function The EMBO Journal

1091



nuclear localization. This could be either due to the rescue of one

single allele or to the persistence of truncated FUS produced before

CRE-mediated recombination. In any case, only a partial rescue of

FUS subcellular localization was sufficient to abrogate motor neuron

loss.

An attractive hypothesis to explain motor neuron loss in

FusDNLS/DNLS mice is that excessive motor neuron apoptosis happens

during the so-called natural cell death period. During development,

motor neurons are generated in excess and approximately 40% of

the initially generated motor neurons are progressively removed.

This process ensures the generation of the appropriate number of

motor neurons and guarantees the elimination of motor neurons

that did not establish proper neuromuscular junctions. According to

the “neurotrophin hypothesis”, developing motor neurons compete

for limited amounts of neurotrophic factors produced by the muscle

targets. Only motor axons that establish stable and functional

neuromuscular junctions receive sufficient survival signals and are

maintained (Oppenheim, 1991; Kanning et al, 2010). Importantly,

we found that motor neuron loss elicited by cytoplasmic FUS mislo-

calization is associated with increased apoptosis of spinal motor

neurons (Fig 7). Several motor neuron intrinsic mechanisms may

underlie increased motor neuron apoptosis in FusDNLS/DNLS mice and

future studies are needed to investigate these possible mechanisms.

For instance, expression of axon guidance receptors may be

deregulated in FusDNLS/DNLS mice, leading to defects in motor axon

targeting and failure to receive neurotrophic support. Alternatively,

FusDNLS/DNLS motor axons may reach their targets, but reduced

expression of receptors for muscle-derived neurotrophic factors may

render a fraction of motor neurons insensitive to survival signals.

Previous work suggested various potential toxic mechanisms for

cytoplasmic FUS, and our study sheds light on several of these

candidate pathways. First, cytoplasmic FUS could generate toxic

FUS aggregates in the cytosol, as shown in yeast models of FUSopa-

thies (Ju et al, 2011; Sun et al, 2011). Here, we detected neither

FUS-positive nor ubiquitin-positive aggregates expected to occur in

case of strong ubiquitin proteasome system (UPS) impairment.

Thus, at least in this model and at this perinatal age, FUS

aggregation or robust FUS-mediated impairment of protein clearance

pathways is dispensable for toxicity toward motor neurons. Cyto-

plasmic FUS could also alter stress granule (SG) dynamics through

its localization to SGs upon stress and its regulatory properties

toward SG assembly (Li et al, 2013). In FusDNLS/DNLS mice, we did

not observe formation of SGs in spinal cord motor neurons using

TIAR as a marker, suggesting that major impairment of SG biology

is not required for FUS toxicity in vivo in this model. However, we

observed increased phosphorylation of the translation initiation

factor eIF2a, an event known to be caused by cellular stress and to

lead to repression of global protein translation (Holcik & Sonenberg,

2005; Sonenberg & Hinnebusch, 2009). Consistent with this

scenario, gene ontology analysis of differentially expressed genes

also pointed to alterations in mRNA translation as a potential

function uniquely altered in FusDNLS/DNLS mice.

In addition to increased eIF2a phosphorylation, several FUS

binding partners are affected in their subcellular localization upon

cytoplasmic FUS mislocalization. Firstly, SMN1-positive nuclear

gems were lost in FusDNLS/DNLS motor neurons, likely as a conse-

quence of FUS loss of function, as FUS was shown to be required

for gem formation in HeLa cells and primary hippocampal neurons

(Yamazaki et al, 2012; Tsuiji et al, 2013). Intriguingly, nuclear gems

were also reduced in fibroblasts from ALS patients with FUS or

TDP-43 mutations, and in motor neurons in postmortem lumbar

spinal cord from ALS patients (Yamazaki et al, 2012; Tsuiji et al,

2013; Sun et al, 2015). Furthermore, we observed a dramatic

concentration of HDAC1 in nuclear foci in FusDNLS/DNLS neurons.

The exact consequences of this abnormal HDAC1 localization

remain to be determined, but the pleiotropic functions of HDAC1 in

cell survival, axonal damage, and repair of DNA damage (Kim et al,

2010; Wang et al, 2013) suggest that downstream consequences of

abnormal HDAC1 distribution might underlie toxicity. In any case,

the abnormal subcellular localizations of HDAC1 and SMN in

FusDNLS/DNLS neurons provide evidence that FUS cytoplasmic mislo-

calization could lead to alterations in splicing or gene expression

through cytoplasmic retention or abnormal trafficking of its interac-

tion partners.

An interesting observation is that both FusDNLS/DNLS and Fus�/�

mice die shortly after birth of respiratory insufficiency, presumably

caused by loss of FUS function. A concerted action of several

physiological systems is required for newborn mice to breathe

normally, and defects in any of these systems can lead to neonatal

lethality (Turgeon & Meloche, 2009). Firstly, the respiratory

rhythm is generated in the respiratory center in the brainstem and

transmitted through the spinal motor neurons to the respiratory

muscles (diaphragm and intercostals muscles). Therefore, struc-

tural or functional defects of neurons in the respiratory center,

motor neurons, neuromuscular junctions, and/or respiratory

muscles can lead to respiratory distress. Our observation that

neonatal lethality of FusDNLS/DNLS mice is not rescued by restora-

tion of FUS nuclear import in motor neurons indicates that loss of

FUS function in cell types other than motor neurons is sufficient to

trigger neonatal lethality. Alternatively, the expression of CRE

under the ChAT promoter may occur too late in the development

to provide a complete rescue of the motor neurons functionality.

The remaining cytoplasmic FUS observed in rescued motor

neurons could result either from a long half-life of FUS protein in

motor neurons or from CRE-mediated recombination of only one

allele. Thus, rescued motor neurons, despite being histologically

normal, could remain functionally altered due to residual cytoplas-

mic FUS. This would be analogous to results observed in Nova

double knockout animals rescued with neuronal agrin (Ruggiu

et al, 2009). Electrophysiological characterization of neuromuscu-

lar transmission could help discriminate between these two

possibilities. Apart from neuromuscular alterations, defects in lung

morphogenesis or maturation, cardiovascular defects,

hematological defects, or skeletal defects can all result in poor

blood oxygenation and the characteristic cyanosis observed in

FusDNLS/DNLS and Fus�/� neonates. It will be important to investi-

gate these possible causes of neonatal lethality due to loss of FUS

function in future studies. In particular, generation of conditional

Fus knockout mice would provide a valuable tool to evaluate

whether selective FUS inactivation in neurons, muscle, lung

epithelium, or the vasculature would result in respiratory insuffi-

ciency and neonatal death. Possibly, loss of FUS function in a

combination of these tissues is necessary to induce this phenotype.

While a few FUS mutations have a recessive pattern of inheri-

tance (Kwiatkowski et al, 2009; Bertolin et al, 2014), the vast major-

ity are dominantly inherited, and most ALS patients are affected in
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their 5th to 7th decade. Thus, our observation of perinatal death is

not fully representative of the disease state as occurs in ALS patients

and some changes observed here might be deleterious through

developmental rather than degenerative effects. In this respect, it

will be crucial to further analyze heterozygous FusDNLS/+ mice that

closely mimic the genetic situation in the vast majority of ALS-FUS

patients. These mice are viable and show no obvious motor

phenotype until 6 months of age (Scekic-Zahirovic, unpublished

results). Nevertheless, FusDNLS/+ mice showed cytoplasmic mislocal-

ization of FUS and subtle alterations in mRNA splicing at birth.

Aging might exacerbate these defects, consistent with a late-onset

disease such as ALS, and it will be highly interesting to characterize

a potential age-dependent phenotype of FusDNLS/+ mice and Fus+/�

mice.

The very severe phenotype of FusDNLS/DNLS mice resembles spinal

muscular atrophy, which is caused by mutations in the SMN1 gene,

whose product SMN interacts directly with FUS and is an integral

component of the spliceosome (Yamazaki et al, 2012; Gerbino et al,

2013; Groen et al, 2013; Tsuiji et al, 2013; Sun et al, 2015; Yu et al,

2015). This is further reinforced by the strong splicing defects

observed in FusDNLS/DNLS mice and is consistent with juvenile onset

in many ALS-FUS patients with C-terminal truncation mutations.

These similarities strengthen the links between ALS and SMA, and

support that SMA, ALS, and FTD may be part of the same disease

spectrum with common molecular mechanisms leading to neuronal

death.

In conclusion, this study provides in vivo genetic evidence that

cytoplasmic mislocalization of FUS triggers apoptotic motor neuron

degeneration and demonstrates a crucial role for a gain of toxic

function in this process. Motor neuron loss occurs at least partially

through a cell autonomous gain-of-function mechanism, since

complete loss of FUS is not associated with motor neuron death,

and rescue of nuclear FUS within motor neurons prevents neuronal

death.

Materials and Methods

Generation of conditional knockin FusDNLS/DNLS and Fus�/� mice

Knockin Fus mice with the conditional ablation of exon 15 were

generated in the Institut Clinique de la Souris (ICS, Illkirch, Stras-

bourg) using standard procedures. The Fus locus was engineered to

include, in between the exons 12 and 13 of the gene, an inserted

floxed cDNA encoding exons 13 and 14 of FUS, followed by 3 STOP

cassettes. We obtained germ line transmission of the recombinant

allele. Homozygous FusDNLS/DNLS mice were generated by

intercrossing FusDNLS/+ animals.

For generation of Fus�/� mice, the mouse ES cell clone

EUCE0131_G08 was obtained from the European Conditional Mouse

Mutagenesis Consortium (EUCOMM) (Friedel et al, 2007). Southern

blotting and sequencing of PCR-amplified genomic sequences

confirmed a single gene trap insertion event in the first intron of

Fus. Blastocyst injection of ES cells resulted in chimeric mice, which

allowed for germ line transmission of the mutant Fus allele. As the

ES cells were generated in a 129P2 background, the resulting

offspring was backcrossed at least five times to C57Bl6 mice. The

genetic background of all mice used in this study is C57Bl6.

Western blot

Western blotting and antibodies used are presented in

Appendix Supplementary Methods.

Histology and motor neuron counts

Spinal cords were removed and immersed in fixative for 2 h at 4°C.

Samples were transferred overnight into 30% sucrose in 0.1 M

phosphate buffer (PB) at 4°C for cryoprotection, embedded in

medium (Tissue-Tek� O.C.T. Compound, SAKURA#4583), and cut

with a cryostat (Leica CM 3050S). P0 spinal cords were cut in serial

25-lm-thick sections and mounted onto 2% gelatin-coated slides to

be processed for immunostaining.

For Nissl staining, slides were air-dried overnight. Sections were

then hydrated through 100% and 95% alcohol to distilled water,

immersed in 0.1% Cresyl violet acetate (Certistain�, MERCK#5235),

and coverslipped with Roti-Histokitt (Roth, 6638.1).

For immunohistochemistry (IHC), unspecific binding sites were

blocked with 5% horse serum (HS), 0.5% Triton X-100 for 30 min

at room temperature (RT), immersed in 3% hydrogen peroxide

(H2O2) to remove the endogenous peroxidase activity, rinsed in

phosphate buffered saline (PBS), and incubated with goat polyclonal

anti-choline acetyltransferase (ChAT) antibody (Millipore, AB144-P;

diluted 1:50) overnight at RT in a humidified chamber. After rinsing

in PBS, sections were incubated with biotinylated donkey anti-goat

IgG (Jackson, 705-066-147; 1:250) for 1.5 h, rinsed in PBS, and then

incubated with ABC kit (Vector, PK7200; 1:4,000) for 1 h. All

antibodies were diluted in 0.01 M PBS, 0.1% Triton X-100. Peroxi-

dase staining was obtained by incubating the sections in 0.075%

3,30-diaminobenzidine tetrahydrochloride (DAB; Sigma Aldrich) and

0.002% H2O2 in 50 mM Tris–HCl pH 7.5. Sections were dehydrated,

air-dried, and coverslipped with Roti-Histokitt (Roth, 6638.1).

Motor neurons were counted at L1–L5 on both cresyl violet- and

ChAT-stained sections at 20× magnification (for each genotype:

Exact numbers of animals per group are provided in figure legends).

The counting was performed per ventral horn in every tenth section

for ten sections in total per animal. In Nissl-stained sections, only

neurons with an area ≥ 80 lm2 and located in a position congruent

with that of motor neuron groups were counted (d’Errico et al,

2013). All ChAT+ profiles located in the ventral horns of immuno-

stained sections clearly displayed on the plane of the section were

counted. Total estimated motor neuron numbers were obtained

using a computer-assisted microscope (Nikon Eclipse E800) and the

software (Nis Elements version 4.0). Cells were counted on the

computer screen using a digital camera (Nikon Digital Sight DS-U3)

mounted on a microscope. The soma size of Nissl+ motor neurons

was also analyzed by measuring cross-sectional areas at 20× magni-

fication using ImageJ software (Schneider et al, 2012).

Other histological techniques are described in Appendix Supple-

mentary Methods.

Analysis of expression changes by RNA-seq

Total RNA from brains of FusDNLS/DNLS, Fus�/�, and their control

littermates were extracted with TRIzol (Invitrogen). RNA quality

was measured using the Agilent Bioanalyzer system or RNA

ScreenTape (Agilent technologies) according to the manufacturer’s
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recommendations and processed using the Illumina TruSeq

Stranded mRNA Sample Preparation Kit according to manufac-

turer’s protocol. Generated cDNA libraries were sequenced using

an Illumina HiSeq 2000 sequencer with 4–5 biological replicates

sequenced per condition using single read, 50 cycle runs. Quality

of sequencing reads was assessed using FastQC (Babraham Bioin-

formatics) and then aligned to a mouse reference genome (mm9,

UCSC Genome Browser) using TopHat (version v2.0.10). Sequenc-

ing yielded, on average, 15 million non-redundant reads per

sample with a 48.4–58.7% mapping rate. Cufflinks (version

v2.1.1) was used to generate transcript abundance for each anno-

tated protein-coding gene as fragments per kilobase of transcript

per million mapped reads (FPKM), and statistical analysis and

comparison of FPKM values were calculated using Cuffdiff (version

v2.1.1). Genomewide unsupervised clustering analysis and heat

maps with significant changes between different groups were

generated using R (Bioconductor). qRT–PCR techniques used to

confirm RNA-seq changes are described in Appendix Supplemen-

tary Methods and oligonucleotides sequences are provided in

Dataset EV9.

Analysis of splicing alterations by RASL-seq

RNA-mediated oligonucleotide annealing, selection, and ligation

with next-generation sequencing (RASL-seq) analysis of alternative

splicing changes was carried out as already described elsewhere (Li

et al, 2012; Zhou et al, 2012). In brief, a pool of oligonucleotides

was designed to detect 3,859 alternative splicing events in mice.

One hundred fmol of RASL-seq oligos were annealed to 1 lg of total

RNA isolated from brains of FusDNLS/DNLS, Fus�/�, and their control

littermates. After ligation, 5 ll eluted ligated oligos were used for

16–18 cycles of PCR amplification, and the barcoded PCR products

were sequenced using an Illumina HiSeq 2000 sequencer with

24–30 samples per lanes. Sequencing data were decoded allowing

no mismatch with each barcode, and target sequences were mapped

with RASL-seq oligo pool sequences using the short read alignment

software Bowtie allowing for 1 mismatch at both the left and right

side of the ligated oligos. An average of ~5 million reads from each

sample was mapped, with events with < 4 counts in one of the

isoforms removed. Ratios of the counts of shorter to longer isoforms

were calculated. The significantly changed events were identified by

t-test and average fold change. Unsupervised clustering analysis and

heat maps with significant changes between different groups were

generated using R (Bioconductor). Semi-quantitative PCR tech-

niques used to confirm RASL-seq changes are described in

Appendix Supplementary Methods. Oligonucleotides sequences are

provided in Dataset EV9.

Statistics

For the animal experiments, the values from each animal were aver-

aged for each genotype group and analyzed by Student’s unpaired

two-tailed t-test. Comparison of three or four groups was performed

using one-way ANOVA and Tukey’s post hoc test. Data were

analyzed by using the Graphics Prism Program (Graph Pad Soft-

ware, San Diego, CA) and expressed as mean � SEM (standard

error of the mean) and differences were considered significant when

P ≤ 0.05.

Data accession

RNA-seq and RASL-seq data have been deposited in GEO, under

entry GSE78730.

Expanded View for this article is available online.
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