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ABSTRACT
Fritillaria wilt is a kind of soil-borne disease that causes a large reduction in the yield
of Fritillaria ussuriensis. The diversity and structure of the soil microbial community
are important factors affecting the health of Fritillaria ussuriensis. The analysis of
the microbial community in the diseased and healthy soils provided a theoretical
basis for revealing the pathological mechanism and prevention of Fritillaria wilt
disease. In the present study, we sequenced the soil microorganisms from healthy
(H), pathology (P) and blank (B) soil samples by Illumina MiSeq. Determined the
soil physicochemical properties respectively, analyzed the soil microbial diversity and
structure, and constructed single factor co-correlation networks among microbial
genera. The results showed that Ascomycota (48.36%), Mortierellomycota (23.06%),
Basidiomycota (19.00%), Proteobacteria (31.74%), and Acidobacteria (20.95%) were
dominant in the soil. The diversity of healthy soil was significantly greater than
that of diseased soil samples (P and B) (P < 0.05). The populations of Fusarium
and Humicola significantly increased in the diseased soil sample (P and B) (P <

0.05). RB41 (4.74%) and Arthrobacter (3.30%) were the most abundant genera in
the healthy soil. Total nitrogen (TN), available nitrogen (AN), total potassium (TK),
available potassium (AK), and inorganic salt (salt) were significantly correlated with
soil microbial communities (P < 0.05). The relationship between fungi and the plant
was mostly positive, whereas bacteria showed the opposite trend. In conclusion, the
diversity and structure of the soilmicrobial communitywere closely related to the health
level of Fritillaria ussuriensis. Fusarium and Humicola affect the severity of Fritillaria
wilt disease, while RB41 and Arthrobacter are the important indicators for maintaining
the health of Fritillaria ussuriensis. Moreover, environmental factors greatly affect the
abundance and formation of soil microbial community. The interactions in microbial
communities also influence the healthy growth of Fritillaria ussuriensis.
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INTRODUCTION
Fritillaria ussuriensis Maxim., also known as Fritillaria ussuriensis, is a perennial herb
belonging to the genus Fritillaria of the family Liliaceae. The dried bulb of Fritillaria
ussuriensis has heat-clearing, detoxicating, cough-relieving, and phlegm-resolving effects.
It is an important medicinal material in Northeast China (Park et al., 2017). Fritillaria
ussuriensis is mainly distributed Changbai Mountains and the southern part of Xiaoxing’an
Mountains in China (Day et al., 2014). The wild Fritillaria ussuriensis has been seriously
damaged, therefore, which has been artificially cultivated on a large scale in Northeast
China (Xu et al., 2013). Relevant studies have shown that Fritillaria ussuriensis should plant
in black soil with sunny leeward, flat terrain, sufficient water and good drainage (Ding et
al., 2018). However, Fusarium is the main cause of Fritillaria wilt, a soil-borne disease, of
Fritillaria ussuriensis in the long-term continuous cropping. It spreads in the soil and even
causes the failure of crop production in serious cases (Baayen et al., 2001). In order to study
the diversity and structure of microbial communities in the rhizosphere soil of Fritillaria
ussuriensis at different health levels, we selected Fritillaria ussuriensis Planting Site of Hailin
Forestry Farm which have suitable planting conditions.

It is of great importance to study the rhizosphere soils of diseased and healthy plants
in long-term continuous cropping to maintain the ecological balance and provide the
economic benefits for sustainable development. As far as we know, rational use or
improvement of fields based on soil characteristics, soil microbial diversity and structure
can manage crops more efficiently. Soil microbial community plays a key role in managing
soil fertility, nutrient cycles, and plant health (Fierer et al., 2012), which are directly related
to herbaceous plant health. In the soil ecosystem, the environment in close proximity to
plant roots is rhizosphere, a dynamic habitat supporting resource exchange between plants
and the soil environment (Peiffer et al., 2013). Themicrobial community in the rhizosphere
soil is considered as the second genome of plants, which changes under the influence of
plant roots (Philippot et al., 2013). At the same time, the diversity and colonization ability of
soil microbial communities in different microhabitats affect the growth rate of pathogens
and also play an important role in improving plant health (Li et al., 2013; Kloepper &
Beauchamp, 1992).

Soil conditions can indirectly reflect the level of plant health, and the occurrence of plant
soil-borne diseases is considered to be an unstable and unhealthy state of soil micro-ecology
(Doran, Sarrantonio & Liebig, 1996; Karlen et al., 1997). Studies have shown that changes
in soil microbial community diversity and structure will affect the occurrence of soil-borne
diseases, soil microbial communities are very sensitive to diseased soils, and there are
very few pathogens in soils with high microbial diversity (Shiomi et al., 1999; Benizri et al.,
2005; Pérez-Piqueres et al., 2006). Bulluck III et al. (2002) improved soil microbial diversity
by applying organic fertilizers, the reproduction density of plant pathogens Phytophthora
and Pythium has been greatly reduced. Reports have pointed out that the soil microbial
community structure can be used to assess soil disease resistance and plant health, and
some characteristic indicator microorganisms that inhibit disease can be found from soil
microbial community (Gong et al., 2007). On the other hand, the soil-borne diseases usually
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reduce soil microbial diversity, Yang, Crowley & Menge (2001) compared the bacterial
community structure in the avocados rhizosphere soil infected by Phytophthora cinnamani
and found that the bacterial community structure of healthy soil was similar, while the soil
infected by Phytophthora cinnamani was significantly different, and the bacterial diversity
index of the infested soil also decreased significantly. Previously, in the field evaluation
of root rot disease in Fritillaria ussuriensis, we found that the abundance and diversity of
soil microbial community decreased, while the population of pathogens in the healthy
soil sample was quite low, which would not cause harm, indicating that the microbial
community structure affected the health of Fritillaria ussuriensis (Song et al., 2016). In this
study, we systematically analyzed the diversity and structure of soil microbial communities
in the rhizosphere of Fritillaria ussuriensis at different health levels to illustrate the impact
of changes in the microbial community on the Fritillaria ussuri ensis health level.

The soil-borne disease is also closely related to environmental factors (Daguerre et
al., 2014). Most studies have shown that soil pH is negatively correlated with soil disease
resistance (Rimé et al., 2003), soil viscosity can help improve plant disease resistance (Duffy,
Ownley & Weller, 1997), the form of soil nitrogen also affects soil disease resistance and
ammonia nitrogen is beneficial to soil disease resistance (Tenuta & Lazarovits, 2004), soil
available potassium content is also negatively correlated with soil disease resistance (Xu et
al., 2004). Xu, Sun &Wang (2009) showed that the ginger skin rot disease was more serious
in soil with high organic matter quality. Certainly, the soil physicochemical properties
also directly affect the diversity and structure of soil microbial community (Doi &
Ranamukhaarachchi, 2009). Current researches have shown that soil organic matter
has been proven to be a key factor affecting the diversity and structure of soil microbial
communities (Sessitsch et al., 2001). For example, Yan, McBratney & Copeland (2000)
found that soil microbial diversity was significantly related to soil pH and organic matter.
Zhao, Fang & Tian (2007) studied the relationship between environmental factors and
soil microbes in Chinese fir plantations and found that the total number of microbes
was significantly positively correlated with soil organic carbon content and total nitrogen
content. There have been a lot of researches on the direct influence of environmental factors
on microorganisms, but there is little research on the correlation between environmental
factors and soil microorganisms in the plant pathological process. What are the main
factors affecting the microbial diversity in rhizosphere soil of Fritillaria ussuriensis at
different health levels, and how their interaction mechanism has not been reported. The
solution of these problems will be of great significance to the use of microbial diversity
to regulate the soil micro-ecosystem and improve the disease resistance of Fritillaria
ussuriensis.

MATERIAL AND METHODS
Site depiction and sampling
The experiment location is at the Planting Site, in which Fritillaria ussuriensis is cultivated
(N 44◦89′−44◦88′, E 129◦30′−129◦31′), in Hailin Forestry Farm, Mudanjiang City, PRC.
At the Changbai Mountains, this site is the key planting base for crops in Northeast China.
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The area has monsoon and middle-latitude climates, with a yearly mean temperature
of 2.2 ◦C and a yearly mean rainfall of 550 mm. The persistent sequential cropping was
employed in the plantation, in which the average altitude is 550 m, the soil is meadow
dark brown soil, the average soil water content is 24.55%, the average temperature of
the 0∼5 cm soil layer is 21.6 ◦C, the average soil density is 1.54 g/cm3, and the average
soil porosity is 42.01%. There is 30 years history of artificial cultivation in Planting Site
of Fritillaria ussuriensis, the total cultivation area is nearly 2 km2. The same agronomic
management practices and fertilization system were adopted at the experimental site,
but years of continuous cropping resulted in serious soil-borne diseases including wilt
disease. Through the preliminary investigation, we found that the wilt diseases severity
of Fritillaria ussuriensis in different cultivation plots was different (Fig. 1). The growth
cycle on aboveground parts of the Fritillaria ussuriensis is from April to June, therefore,
the time of our investigation and sampling was in late May 2018 (late spring). When
Fritillaria ussuriensis wilt disease occurs, bulbs rotted and turned black underground,
and the aboveground plants appeared withered, obvious patches were formed on the soil
surface of Fritillaria ussuriensis (pathology soil). The wilt disease continued to develop,
and obvious empty window plots were formed in the second year (blank soil), while
healthy plots grow vigorously, and there are no wilting patches and blank plots (healthy
soil). Finally we distinguished and collected rhizosphere soil samples (healthy, pathology
and blank soil) with different health levels according to the pathological condition of
Fritillaria ussuriensis wilt disease at the the Planting Site in Hailin Forestry Farm (Fig. 2).
The sampling method was as follows: we used the shovel to dig the soil profile at 15
cm depth, collecting the rhizosphere soil that was not removed after shaking, and then
transferred it into sterile sample bags for the experiment. 10 sampling points in planting
plots with different health levels were randomly selected respectively, after mixing the soil
samples with the same health level, 6 repeated treatments were collected for each of the
3 different healthy levels soil samples (healthy, pathology and blank soil) respectively, of
which 3 repeated treatments were used for soil fungal sequencing and the other 3 were used
for soil bacterial sequencing, for a total of 18 (3×6= 18) soil samples. All samples were
homogenized thoroughly through a 2mm sieve, transferred to the lab on ice, and afterwards
reserved at −80 ◦C for Illumina MiSeq. Meanwhile, the samples used to determine the
soil physicochemical properties were stored in a dry place after air-drying (Collignon et al.,
2011; Shanmugam et al., 2011; Uroz et al., 2016).

Determination of soil physicochemical properties
Soil pH was determined in a soil-to-water (1:2.5, W/V) mixtures of dry soil and distilled
water using a HACH HQ30d pH meter (BANTE, Shanghai, China). Soil organic matter
(OM) was determined by the potassium dichromate heating method. Total nitrogen
(TN) content was measured with Kjeldahl digestion and distillation azotometry (Kjeldahl
distillation unit K9840, Shandong, China). Available nitrogen (AN) content was measured
by MgO steam distillation method. Total phosphorus (TP) content was measured by
the Mo-Sb colorimetric method. Available phosphorus (AP) content was measured by
lixiviating-molybdenum blue colorimetry after extraction with 0.5 M NaHCO3 (pH=8.5)
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Figure 1 Locations of the rhizosphere soils from Fritillaria ussuriensis in different health levels.
Sampling point was located in Hailin Forestry Farm, Hailin City, Mudanjiang City, Heilongjiang Province,
China. The healthy samples were located at 44.8942 north latitude and 129.3139 east longitude; the
pathology sample was located at 44.8917 north latitude and 129.3173 east longitude; the blank sample was
located at 44.8911 north latitude and 129.3167 east longitude.

Full-size DOI: 10.7717/peerj.12778/fig-1

for 30 min. Total potassium (TK) content was measured by sodium hydroxide fusion-
flame spectrophotometer method and available potassium (AK) content was measured
by NH4OAc extraction-flame spectrophotometer method (flame photometer FP6410,
Shanghai, China). Total soluble salt (salt) was determined by residue weighing method (set
dry soil to distilled water = 1:5, W/V) (Bao, 2000).

Soil DNA abstraction, PCR enlargement, and Illumina MiSeq sequence
The entire soil DNA was abstracted via the E.Z.N.A R© soil DNA Kit (Omega BioTek,
America). NanoDrop ND-2000C (Thermo, America) was employed to identify the
DNA level and purity, while 1% gel electrophoretic method was adopted to assess the
quality of DNA (Chen et al., 2018; Zhou et al., 2016). The primer sets including ITS1F (5′-
CTTGGTCATTTAGAGGAAGTAA-3′) and ITS2R (5′-GCTGCGTTCTTCATCGATGC-
3′) were selected to target the ITS1-ITS2 region for the characterization of fungal communi-
ties. 338F (5′-ACTCCTACGGGAGGCAGCAG-3′) and 806R (5′-GGACTACHVGGGTW
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Figure 2 Planting survey plot of Fritillaria ussuriensis in different health levels.
Full-size DOI: 10.7717/peerj.12778/fig-2

TCTAAT-3′) primers were adopted for the amplification of the V3-V4 hyper variant areas
for the bacterium 16S rRNA gene (Mori et al., 2013; Xu et al., 2016). The reactive activities
were completed in triplicate via a 20 µL reactive mixed solution, involving 4 µL 5×FastPfu
Buffer, 2 µL 2.5 mM dNTPs, 0.8 µL every primer (5 µM), 0.4 µL FastPfu Polyase, 10 ng
template DNA, 0.2 µL of BSA, and 11.6 µL of redistilled water (Wang,Chen & Zhang, 2017;
Fu, Zhang & Hou, 2019). The prerequisites of amplified PCR: posterior to the incipient
denaturating at 95 ◦C for 3min, PCRwas completed for 27 cycles at 95 ◦C for 30 s, annealed
at 55 ◦C for 30 s, elongated at 72 ◦C for 45 s, and an eventual elongation at 72 ◦C for 10 min
(PCR: ABI GeneAmp R© 9700, USA). The PCR results were treated with purification via
a PCR Purifying Kit (Axygen Bio, America). QuantiFluorTM -ST (Promega, America)
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was employed for quantitation determination. Based on the requirements of sequencing,
specimens were gathered proportionally, and a FastPfu database was built. Eventually, the
sequencing of the purification libraries were realized via the Illumina MiSeq (TruSeqTM
DNA Specimen Preparation Kit, America) (Yang et al., 2017a; Yang et al., 2017b).

Bioinformatics analysis
Posterior to the removing of the adapters and primer sequences, original sequences were
merged as per the distinctive stripe code via QIIME (Caporaso et al., 2010). The split
sequences for every specimen were assembled via FLASH 1.2.7 (Magoc & Salzberg, 2011),
and short sequences (Seq < 200 bp) and low-quality sequences (Q< 0.5) were filtered out.
The UCHIME approach was adopted for the removal of chimera sequences (Edgar et al.,
2011). The UPARSE 7.1 arithmetic with a 97% sequential similarity threshold (St) was
employed to acquire OTUs (Edgar, 2013). The UNITE database 7.0 was used to annotate
fungal OTUs (Kõljalg et al., 2013), and the RDP database (version 9) was employed to
classify bacterial OTUs (Wang et al., 2007), with the confident liminal value of 80%.
The alpha variety assay was completed via Mothur 1.30 (Buée et al., 2009). Based on the
Bary-Curtis algorithm, the beta diversity was analyzed using PCoA (Lozupone, Hamady &
Knight, 2006). The diversity in the microbiological population was contrasted via AMOVA
(Analysis of molecular variance) (Meirmans, 2006).

Network analysis
Divided healthy, pathology and blank soil samples into 3 groups, and comprehensively
analyzed. The top 25 abundant fungal and bacterial OTUs were selected from the soil
samples. NetworkX was used to obtain the related information from different genera
and construct interaction networks (Klarner, Streck & Siebert, 2016). The Random Matrix
Theory (RMT) was employed to automatically identify the appropriate similarity threshold
(St) before network construction. At last, the JavaScript software was used to create the
single factor co-correlation network.

Statistical analyses
SPSS 22.0 (IBM, America) was used for statistic assay. The one-way ANOVA and the
Duncan’s (α= 0.05) test were adopted to contrast the soil physicochemical properties and
microbial level and diversity (Halifu et al., 2019). Pearson’s correlative was adopted for the
establishment of an association among microbe genera, environment factors, and alpha
variety (Zhou et al., 2017).

Sequence registration numbers
The sequence data were deposited in the NCBI Sequence Read Archive (SRA) database
with the accession number of SRR13288220–SRR13288237.

RESULTS
Soil physicochemical properties
The soil physicochemical properties of Fritillaria ussuriensis at different health levels are
summarized in Table 1. The average pH in diseased soil (P and B) was significantly lower
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than that in healthy soil (P < 0.05). There was no significant difference in pH between
pathology and blank samples, indicating that the soil pH had a lower correlation with the
severity of the disease. The content of organic matter (OM) was the highest in the blank
sample (P < 0.05). Moreover, the contents of total nitrogen (TN), available nitrogen (AN),
total phosphorus (TP), and available phosphorus (AP) increased significantly and then
decreased slightly with increasing the severity of disease (H→P→B), while the contents
of total potassium (TK), available potassium (AK), and total soluble salt (salt) increased
significantly (P < 0.05).

Diversity of microbial community
A total of 451,644 and 399,003 valid fungal and bacterial sequences, respectively, were
obtained from 18 healthy, pathology, and blank soil samples, with the average sequence
lengths of 240.83 bp for fungi and 417.52 bp for bacteria. The microbial sequences of soil
samples were clustered into 1,810 fungal and 3,737 bacterial OTUs at the 97% identity
threshold after splitting and removing redundancy. Valid sequences were randomly
sampled, and the OTUs from the extracted sequences were used to construct the rarefaction
curves (Fig. S1). The rarefaction curves of fungal and bacterial OTUs changed smoothly,
which indicates that the information about microbes from the samples was fully obtained.
This confirms the validity of the study on soil fungal and bacterial communities.

The Venn diagrams showed the OTU level for the microbial community of soil samples
(Fig. 3). The number of fungal OTUs in healthy samples was the highest, while blank
samples had the lowest number. But the distribution of bacterial OTUs was the opposite
of fungal OTUs. The number of bacterial OTUs was the highest in blank samples, while
it was the lowest in healthy samples. The highest number of OTUs was found in healthy
samples, for both fungal and bacterial communities, with 53 and 19 OTUs, respectively.
The number of shared OTUs in all samples was the highest, with 50.77% of fungal OTUs
and 80.06% of bacterial OTUs. The above-mentioned distribution of OTUs showed that
the fungal OTUs level in pathology samples was more similar to that in blank samples,
and there was a significant difference in OTUs compared with healthy samples, while the
bacterial OTUs level was found to be similar in all samples.

ANOVA for the α diversity of soil samples at different health levels indicated the coverage
for soil fungal samples with coverage over 99% and close to 98% for soil bacterial samples,
which coincided with rarefaction curves of OTUs (Table 2). The Shannon index of fungal
and bacterial communities decreased significantly and then increased with increasing the
severity of disease (H→P→B) (P < 0.05). The Simpson index of fungal communities in
healthy samples was significantly higher than that in diseased soil (P and B), while it hardly
varied for the bacterial community during the pathological process of Fritillaria ussuriensis
(P < 0.05). In the stage of healthy to pathology, the Ace index and Chao index of fungal
and bacterial communities decreased slightly, while the difference between pathology and
blank was not significant. These findings showed that the diversity of fungal and bacterial
communities in pathology samples was lower than in healthy or blank samples. However,
there was no significant difference in diversity between healthy and blank samples.
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Table 1 Comparative analysis of soil physicochemical properties of Healthy, Pathology and Blank.

Sample pH OM
g/kg

TN
g/kg

AN
mg/kg

TP
g/kg

AP
mg/kg

TK
g/kg

AK
mg/kg

salt
g/kg

Healthy 7.33± 0.32A 22.33± 1.03B 5.64± 0.88C 18.13± 0.47B 2.04± 0.16B 76.25± 1.42B 7.03± 0.29B 204.12± 11.42C 0.83± 0.03C
Pathology 6.24± 0.95B 21.26± 0.99B 7.31± 0.05A 21.26± 1.00A 3.01± 0.42A 95.52± 5.14A 7.38± 0.32B 230.49± 18.03B 1.08± 0.06B
Blank 6.31± 0.31B 26.17± 0.70A 6.46± 0.48B 20.47± 0.66A 2.11± 0.55B 80.39± 0.70B 8.70± 1.10A 310.22± 5.00A 1.41± 0.12A

Notes.
Different letters indicate a significant difference at P < 0.05 according to Duncans new multiple range test.
OM, organic matter; TN, total nitrogen; AN, available nitrogen; TP, total phosphorus; AP, available phosphorus; TK, total potassium; AK, available potassium; salt, total soluble salt.
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Figure 3 Venn diagram showing the shared operational taxonomic units (OTUs) of Healthy, Pathol-
ogy and Blank. The column chart shows the size of each list and the Bar chart shows the number of single
or multiple elements.

Full-size DOI: 10.7717/peerj.12778/fig-3

Table 2 Soil α diversity index of fungal and bacterial communities in Healthy, Pathology and Blank.

Sample Shannon Simpson Ace Chao Coverage

Healthy 4.49± 0.09A 0.031± 0.00B 796.81± 68.43A 802.3± 70.75A 99.84± 0.00%A
Pathology 4.07± 0.07B 0.051± 0.00A 750.59± 61.03AB 751.89± 61.34AB 99.73± 0.00%AFungi

Blank 4.27± 0.14B 0.044± 0.00A 806.59± 65.60A 815.22± 66.59A 99.84± 0.00%A
Healthy 6.59± 0.06a 0.0039± 0.00a 3057.47± 61.69a 3044.13± 63.73a 98.13± 0.00%a
Pathology 6.46± 0.01b 0.0037± 0.00a 2943.83± 72.98ab 2895.71± 86.24b 97.86± 0.00%aBacteria
Blank 6.54± 0.03ab 0.0038± 0.00a 3029.25± 19.63a 2992.48± 6.61ab 97.94± 0.00%a

Notes.
Different letters indicate significant difference at P < 0.05 according to Duncan’s new multiple range test.

Soil microbial community structure and composition
To further compare the variations in the structure of fungal and bacterial communities in
healthy, pathology, and blank samples, based on the Bary-Curtis algorithm, the principal
coordinate analysis (PCoA) was employed (Fig. 4). Diseased samples (P and B) were
separated from the healthy samples, indicating large differences in the structure ofmicrobial
communities at different health levels. In addition, the degree of dispersion in fungal
communities between pathology and blank samples were smaller, on the contrary, the
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Figure 4 Principle coordinate analysis (PCoA) of fungal and bacterial communities structures in
Healthy, Pathology and Blank.

Full-size DOI: 10.7717/peerj.12778/fig-4

bacterial communities were larger, suggesting that differences in the structure of fungal
and bacterial communities between diseased samples (P and B).
To verify the differences observed in fungal and bacterial communities at different

health levels, the relative abundances of different phyla and genera from the rhizosphere
soil samples were compared (Figs. 5 and 6). Average OTUs of 9 samples of fungus were
classified into 13 phyla, 35 classes, 80 orders, 195 families, 325 genera, and 476 species.
The phyla of fungi mainly included Ascomycota (48.36%), Mortierellomycota (23.06%),
and Basidiomycota (19.00%), accounting for more than 90% of the abundance. The
abundance of Ascomycota was the highest among all samples at different health levels and
almost similar in healthy and pathology samples, with a significant increase in the blank
sample. The abundance of Mortierellomycota increased significantly in diseased samples
(P and B), but the difference was not significant between pathology and blank samples.
The abundance of Basidiomycota decreased significantly with increasing the severity of
disease (H→P→B), with the lowest abundance in the blank sample. Average OTUs
of 9 samples of bacteria were classified into 34 phyla and 652 genera, including mainly
Proteobacteria (31.74%), Acidobacteria (20.95%), Actinobacteria (14.11%), Chloroflexi
(8.52%), Bacteroidetes (6.64%), Gemmatimonadetes (5.48%), Patescibacteria (2.97%),
Firmicutes (2.68%), Verrucomicrobia (2.08%), Rokubacteria (1.37%), and Latescibacteria
(0.56%). We found higher abundances of Proteobacteria, Gemmatimonadetes, and
Firmicutes in diseased samples (P and B). The abundance of Acidobacteria decreased
significantly with increasing the severity of disease (H→P→B), while the abundances of
Chloroflexi and Verrucomicrobia were the highest in the healthy sample.

To further study the difference in the composition of the soil microbial community
at different health levels, the top 7 fungal and 15 bacterial genera with high abundances
were selected from the fungal and bacterial communities in healthy, pathology, and
blank samples. The difference in the relative abundance at the genus level indicated that
Mortierella, Fusarium, Leucosporidium,Mrakia,Guehomyces,Humicola, and Ilyonectriawere
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Figure 5 Relative abundances of the main fungal and bacterial phyla of the rhizosphere soil in
Healthy, Pathology and Blank. The ‘‘Others’’ and ‘‘Unclassified_k_Fungi’’ comprised the unclassified and
low-abundance phyla (RA< 0.1%).

Full-size DOI: 10.7717/peerj.12778/fig-5

members of the fungal genera with higher abundances, among whichMortierella exhibiting
the highest abundance (22.86%). Compared with the healthy sample, the abundance of
Mortierella increased significantly in diseased samples (P and B). The abundances of
Fusarium and Humicola increased significantly with increasing the severity of disease (H
→P→B), with the blank sample having the highest abundance (15.49% and 5.60%,
respectively). On the contrary, the abundances of Mrakia and Guehomyces decreased
significantly, with the highest abundance in the healthy sample and more abundance and
variation in the bacterial community compared with the fungal community. The highest
abundances of RB41 (4.74%) and Arthrobacter (3.30%) were found in the healthy sample,
with increasing the severity of disease (H→P→B), the abundance decreased significantly.
The relative abundances of Sphingomonas, Bryobacter, Gemmatimonas, Bacillus, Ellin6067,
Pedobacter, Acidothermus, and Acidibacter in diseased samples (P and B) were significantly
higher than that in healthy samples. Furthermore, the highest abundances of Bryobacter,
Acidibacter, Pseudomonas, Massilia, and Haliangium were found in pathology samples.
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Figure 6 Relative abundances of the top seven fungal genera and top 15 bacterial genera of the rhi-
zosphere soil in Healthy, Pathology and Blank.Different letters represent significance (P < 0.05) of the
genus levels in different health levels according to Duncan’s new multiple range test.

Full-size DOI: 10.7717/peerj.12778/fig-6

The relationships between the diversity of soil microbial
communities and soil properties
Pearson’s correlation analysis showed that AN and AP were significantly negatively
correlated with the Shannon index in the fungal community but significantly positively
correlated with the Simpson index (P < 0.05) (Table 3). In the bacterial community, TP
and AP were significantly negatively correlated with Shannon index, Ace index, and Chao
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Table 3 Correlation analyses between diversity indices and soil properties.

Diversity pH OM TN AN TP AP TK AK salt

Shannon 0.461 0.124 −0.635 −0.721∗ −0.396 −0.834∗∗ −0.119 −0.17 −0.398
Simpson −0.611 0.004 0.627 0.822∗∗ 0.444 0.803∗∗ 0.238 0.364 0.547
Ace 0.181 0.409 −0.458 −0.261 −0.115 −0.526 0.042 0.214 0.069

Fungi

Chao 0.147 0.419 −0.467 −0.238 −0.127 −0.54 0.101 0.238 0.106
Shannon 0.509 0.093 −0.588 −0.652 −0.670∗ −0.769∗ 0.005 −0.103 −0.305
Simpson 0.034 0.256 −0.485 −0.261 −0.047 −0.169 −0.221 −0.073 −0.072
Ace 0.596 0.317 −0.586 −0.627 −0.738∗ −0.736∗ 0.12 0.039 −0.14

Bacteria

Chao 0.672∗ 0.297 −0.655 −0.736∗ −0.742∗ −0.787∗ −0.034 −0.03 −0.262

Notes.
* and ** represent significance (P < 0.05 and P < 0.01) of soil samples according to Pearson’s correlation analysis.

index, with pH having a significantly positive correlation with Chao index, while AN was
significantly negatively correlated with Chao index (P < 0.05).

About 30 genera of fungal and bacterial communities from rhizosphere soils were
significantly different at different health levels. The correlations between the abundances
of these genera and pH, OM, TN, AN, TP, AP, TK, AK, salt, and microbial diversity were
explored using Pearson’s correlation analysis (Fig. 7). In fungal genera, Thelebolus was
significantly negatively correlated with AN, TN, TP, and AP (P < 0.05). Ilyonectria,
Acremonium, Cadophora, Gibberella, Mrakia, Guehomyces, and Tetracladium were
negatively correlated with TK, AK, AN, salt, and Simpson index (P < 0.05). Moreover,
Leucosporidium was significantly positively correlated with AN, TP, AP, and Simpson
index, while there was a significantly negative correlation between pH and Shannon index
(P < 0.05). Penicillium, Arthrobotrys, Pseudogymnoascus, Fusarium, Nectria, Remersonia,
Humicola, Trichoderma, Chaetomium, Mortierella, and Solicoccozyma were positively
correlated with OM (P < 0.05), AK, and salt, among which Nectria, Humicola, and
Trichoderma also had significant positive correlations with AK (P < 0.001). Chaetomium
was significantly positively correlatedwith the Simpson index. In bacterial genera,Ellin6067,
Sphingomonas, Pseudolabrys, Gemmatimonas, and Bacillus were significantly positively
correlated with TK, AK, and salt but significantly negatively correlated with pH (P < 0.05).
Moreover, there was a significantly positive correlation between Candidatus_Udaeobacter,
RB41, and Arthrobacter and pH, while a negative correlation was observed between these
genera and TK, AK, and Salt (P < 0.05). RB41 andArthrobacter were significantly negatively
correlated with AK (P <0.001).

Fungal and bacterial community single factor co-correlation networks
The microbial single factor network directly showed the complex co-correlation between
the rhizosphere soil microbes. The top 25 dominant fungal and bacterial genera were
selected and used to construct the relationship network from the rhizosphere soil fungal
and bacterial communities. The network topology showed different sizes of networks of
fungal and bacterial communities (220 and 320 nodes, respectively) (Table 4). The average
connectivity (the average number of connections between each node and other nodes
in the network) of 4.4 for fungal and 6.4 for bacterial genera was observed. The average
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Figure 7 Correlation heatmaps between community composition of soil fungi and bacteria composi-
tion and environmental factors. ∗, ∗∗ and∗∗∗ represent significance (P < 0.05, P < 0.01, P < 0.001) of soil
samples according to Pearson’s correlation analysis.

Full-size DOI: 10.7717/peerj.12778/fig-7
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Table 4 Major topological properties of the single factor co-correlation networks of fungal and bacterial communities. The number of original
OUTs was used for network construction by random matrix theory (RMT)-based approach. Network size was the number of nodes in the network.
Network diameter was the maximum distance between any two nodes in the network. Transitivity was the probability that two connected nodes of
the same node were still connected to each other.

Number of
original OUTs

Network
size

Number
of genus

Network
diameter

Transitivity Average
connect

Average
clustering
coefficient

Average
path distance

Fungi 400 220 25 4 0.70 4.4 0.67 1.86
Bacteria 400 320 25 4 0.82 6.4 0.79 1.57

clustering coefficients, which describe how close the neighbors of a node are, were 0.67
and 0.79 for fungi and bacteria, respectively. This indicated that the bacterial network
was denser and more complicated than the fungal network. The average path distance in
the fungal network (1.86) was slightly longer than that in the bacterial network (1.57),
indicating that fungi might interact with each other for a long time. In the fungal network,
the significantly higher abundances of Massilia and Fusarium with stronger correlations
with other genera were found, indicating that these two genera occupy important niche
in the rhizosphere soil of Fritillaria ussuriensis (Fig. 8). In the bacterial network, RB41,
Bacillus, Arthrobacter, and Bryoacter all showed a higher correlation, indicating the close
interaction between soil bacteria. Compared with the bacterial network, the correlation
of fungal network was mostly positive, implying that most pathogenic fungi might cause
disease in Fritillaria ussuriensis through a synergistic effect, while it was possible that more
bacteria were restricted by each other.

DISCUSSION
In this study, we compared the physicochemical properties of fungal and bacterial
communities of the rhizosphere soil, such as the abundance, diversity, structure,
composition, and interactions at different health levels of Fritillaria ussuriensis. The results
showed that the resident soil microbial community plays a role in maintaining the health
of Fritillaria ussuriensis. The environmental factors were related to the dynamic variation
of the microbial community structure. The difference in soil microbial flora and nutrients
was an important reason for the occurrence of Fritillaria wilt disease.

Many studies have shown that the microbial diversity of the rhizosphere soil was
positively correlated with plant health Yang et al. (2017a). Our study also found that the
diversity of the microbial community in the healthy soil sample was higher than that in
diseased soil samples (P and B); this research is consistent with the result ofWang,Chen &
Zhang (2017) and Yang et al. (2017b) on the microbial community diversity of tobacco wilt
disease. It might because the root exudates of healthy plants could provide more nutrients
for soil microorganisms, thereby increasing the species richness and diversity of the
microbial community (Xuan et al., 2011). Furthermore, we found a negative relationship
between the soil microbial diversity and Fritillariawilt disease (P and B), which can support
the idea that microbial diversity is a key factor controlling the pathogen invasion (van Elsas
et al., 2012). In addition, beneficial rhizosphere soil microbes occupy space and trophic
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Figure 8 Single factor co-correlation networks of fungal and bacterial communities. The color of the
dot in network diagram indicated the phylum category, the size of the dot indicated the abundance of gen-
era, the red line indicated the positive correlation, the blue line indicated the negative correlation, and the
thickness of the line indicated the degree of genera correlation.

Full-size DOI: 10.7717/peerj.12778/fig-8

niches by competing with other counterparts and improve nutrient uptake and plant health
and growth by establishing interactions with plant roots (Richardson, 2001). Related studies
have shown that the specific changes in soil microbial community diversity and structure
were related to differences in soil structure and plant types (Yin et al., 2014; Ding et al.,
2019). For example, Chen et al. (2013) found that the microbial diversity of banana wilt
disease soil was higher than that of healthy soil. It was because the continuous disease caused
changes in the soil physicochemical properties and soil microbial community structures
(Xie et al., 2004). In addition, the invasion of pathogenic microorganisms destroyed the
original microbial ecological balance in rhizosphere soil, leading to an abnormal increase
or decrease of certain microorganisms, the microbial diversity would temporarily increase
before the new balance was established (Chi, 1999). Previous studies have shown that
the greater growth of the above-ground part of herbaceous plants could provide a large
amount of litter for soil microorganisms, and the root system was well-developed, dense
in the surface layer of the soil, the root exudates and dead roots were rich energy materials
for microorganisms (Smith & Paul, 1990). In this study, the mass deaths of Fritillaria
ussuriensis in blank soil produced a large amount of spoilage, which also explained the
slightly increased soil organic matter content and soil microbial diversity of Fritillaria
ussuriensis in blank soil samples.

The PCoA analysis revealed significant variations in the microbial community structure
of Fritillaria ussuriensis from the rhizosphere soil at different health levels. We found
significant differences in the fungal and bacterial community structure of diseased and
healthy soil samples (H, P, and B); this is consistent with the results of previous research
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conducted by Song et al. (2016) on root rot disease of Fritillaria ussuriensis. The differences
in the microbial community structure can be due to different plant root systems, which
are consistent with the findings of many previous studies on a key role that plants play
in shaping the microbial community structures in the rhizosphere of plants (Philippot et
al., 2013; Edwards et al., 2015). Another reason for significant variations in the microbial
community structure in soils at different health levels may be significant differences in
environmental factors, as soil physicochemical properties have significant impacts on
the microbial community structure (Lauber et al., 2008). For example, Wang et al. (2021)
found that soil physicochemical properties were important influencing factors driving
changes in the number of soil microorganisms of Gastrodia elata. Li, Chen & Wang (2021)
compared the differences of the physicochemical properties and microorganisms from
low disease soils and high disease soils of strawberry, which found that the total nitrogen
content and the spore germination rate of Fusarium oxysporumwere extremely significantly
negatively correlated. The above showed that environmental factors were the key factors
that produce differences in the microbial community structures.

Microbial taxonomic composition strongly varied in rhizosphere soils at different health
levels. Ascomycota, Mortierellomycota, and Basidiomycota are the most abundant fungal
phyla. Ascomycota and Basidiomycota with high relative abundances are also two common
fungal phyla in soils under continuous cropping with vanilla and peanut (Wu et al., 2017;
Li et al., 2014). Related research showed that many species of Mortierellomycota can cause
plant diseases, and some species of Mortierella can be isolated from stored rotten fruits
(Chen, 1992). We found a significant increase in the abundance of Mortierellomycota
in diseased samples (P and B), indicating that this fungal phylum might promote the
occurrence of Fritillaria wilt disease. In bacterial phyla, except for Proteobacteria with the
highest abundance (31.89%), Acidobacteria, Actinobacteria, Chloroflexi, and Firmicutes
were relatively abundant, among which Actinobacteria and Firmicutes are known to
produce high levels of secondary metabolites and participate in the decomposition,
transformation process, and carbon deposition in the rhizosphere (Palaniyandi et al., 2013;
Kim et al., 2011). Previous studies found that higher abundances of Actinobacteria and
Firmicutes can cause the effective inhibition of Rhizoctonia (Mendes et al., 2011), while
Acidobacteria, Chloroflexi, and Bacteroidetes are mainly involved in the decomposition of
organicmatter (Ai et al., 2015). The results indicated that the variations in the abundance of
phyla play an essential role in stimulating the pathological process of Fritillaria ussuriensis.

We made the following analysis at the genus level of soil fungi and bacteria: for fungi,
Mortierella was the most abundant genus in soil samples. Previous studies have shown
that some species of Mortierella can produce antibiotics, and several isolates were used to
develop antagonists to plant pathogens (Tagawa et al., 2010). In contrast, there have also
been reports suggesting that certain species of Mortierella can cause disease; for example,
Mortierella bainieri parasitizes Agaricus bisporus, which results in rough stipe (Palaniyandi
et al., 2013). In this study, the relative abundance ofMortierella in diseased soils (P and B)
significantly increased, therefore, we speculated that the relative abundance of pathogenic
species in Mortierella genus in rhizosphere soil of Fritillaria ussuriensis was much higher
than that of beneficial species. In future research, we will isolate these species inMortierella
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and determine their role in the pathological mechanism of Fritillaria ussuriensis. The
relative abundances of Fusarium and Humicola in diseased soils (P and B) significantly
increased. Fusarium is a wilt-causing pathogen, and Humicola is the pathogenic fungus
that causes root rot in plants (Ginetti et al., 2012). The relative abundance of these two
genera is an important indicator for identifying Fritillaria wilt disease. Among the bacteria,
the relative abundance of Sphingomonas increased significantly with increasing the severity
of disease (H→P→B). Ali et al. (2019) found that Sphingomonas could promote plant
growth by transforming organic matter, indicating that as the disease worsens, the relative
abundance of Sphingomonas constantly increased, which resulted in antagonizing pathogen
and maintaining the balance between rhizosphere soil microbes. The RB41 genus from
the phylum Acidobacteria in the healthy soil had the highest relative abundance. Previous
studies have shown that Acidobacteria could degrade lignin and cellulose to improve soil
nutrients (Pankratov et al., 2011), indicating that the RB41 was dominant in the healthy
soil of Fritillaria ussuriensis. The functions of Arthrobacter in efficiently degrading soil
organic matter and alkaloids have been reported (Guo et al., 2019). The highest relative
abundance of Arthrobacter in the healthy sample indicated that Arthrobacter contributes
to soil nutrient cycling. It has been confirmed that Bacillus exerts a significant antagonistic
effect on pathogens (Lin et al., 2020). We found a significant increase in the relative
abundance of Bacillus after infection (P and B), indicating that this genus plays a critical
role in the efficient inhibition of pathogenic microbes. The studies on disease-suppressive
soils have shown that the plant root system would recruit beneficial microbes after being
infected by pathogens, enhance biological activity, and inhibit pathogens (Raaijmakers
et al., 2009). The pathogen-resistant soil is formed as a result of the long-term effect of
soil infestation (Berendsen, Pieterse & Bakker, 2012), which indicates that strict regulations
can be applied by accumulating some beneficial bacteria in diseased soils (P and B) of
Fritillaria ussuriensis, which explains that the abundance of beneficial microbes, such as
Sphingomonas and Bacillus, significantly increased with increasing the severity of disease
(H→P→B). The highest relative abundances of RB41 and Arthrobacter in healthy soils
indicated that these two bacterial genera had a great influence on maintaining the health
of Fritillaria ussuriensis and ecological balance of rhizosphere soil.

Environmental factors have a significant impact on the diversity and structure of
soil microbial communities (Zeng, Dong & An, 2016). Studies have shown that the plant
abscissions and secretions could promote the diversity of the soil microbial community
and the content of organic matter (Kuzyakov, Blagodatskaya & Blagodatsky, 2009). In this
study, the Fritillaria ussuriensis have withered in large numbers at the end of the disease, so
the content of organic matter in blank soil increased significantly, and microbial diversity
also increased. On the other hand, soil salt content could directly inhibit the activity
of microorganisms, meanwhile, influence the structure and composition of microbial
community by changing soil fertility (Yan & Marschner, 2012). In our study, we found that
the salt content of the diseased soils (P and B) increased significantly and the microbial
diversity decreased significantly. There was a negative correlation between soil salt content
and bacterial diversity, which was consistent with the research results of Liu et al. (2021)
on cotton soil bacterial communities at different disease levels. Changes in soil nutrients
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could affect the composition of microbial communities (Feng et al., 2019), and enrichment
of nutrient elements could increase the number of pathogenic microorganisms, leading
to an increase in plant disease rates (Song et al., 2017). For example, Liu et al. (2020)
showed that when the N content in the soil was low, the incidence of wheat root rot was
significantly decreased, and it was closely related to the decrease of Fusarium. We also
found that TN, AN, TP, AP, TK and AK were significantly increased in disease (P and
B) soil through data analysis, and they were positively correlated with the abundance of
pathogenic microorganisms such as Fusarium and Humicola et al.. In addition, soil pH
was an important factor that determined the diversity and structure of soil microbial
communities (Bainard, Hamel & Gan, 2016; Meng et al., 2019). Studies have shown that
fungi were more common in acidic soils (Rousk, Brookes & Baath, 2009), but when the
pH value increased, the soil microbial diversity also increased, the bacterial growth rate
increased, and the bacterial community composition changed (Baath & Arnebrant, 1994),
which explained the positive correlation between soil pH and bacterial diversity in this
research. It can be seen that changes in environmental factors have caused changes in
the number, diversity and structure of soil microorganisms, and the correlation between
environmental factors and soil microorganisms affects the health of Fritillaria ussuriensis.

Microbial ecological networks revealed distinct patterns of the microbial community
in the rhizosphere soil of Fritillaria ussuriensis. In the fungal networks, Fusarium and
Humicola were dominant, yet most sequences of Fusarium were not affected by the wilt
pathogenic species (Fusarium oxysporum), which can induce disease (Wu et al., 2017).
High incidence of disease may be associated with an increased abundance of other
congeneric species, indicating that the microbial interactions have more influence on
plant health. The correlation-based bacterial network was more complicated than that of
fungi. Previous studies have shown that more interactions can promote cooperation in the
complex microbial community (Zhang et al., 2014). Although high levels of cooperation
might be linked to a higher function of the community, such interactions can also cause
destabilization (Coyte, Schluter & Foster, 2015). Highly connected networks can stabilize
the soil microbial community and improve the overall resistance to pathogens (Scheffer
et al., 2012). Bahram et al. (2018) have shown that both the environmental factors and
microbial correlation could affect the diversity and structure of microbial communities.
Eldridge et al. (2015) have shown that the difference in the correlation between fungi
and bacteria in the soil microbial ecological network was mainly determined by the
degree of soil interference, and environmental factors could increase the instability of the
microbial community structure. Therefore, changes in environmental factors affected the
soil microbial correlation, environmental factors and microbial correlation complement
each other, and together affected the health of plants. Based on the impact of environmental
factors on microorganisms and the microbial association network, correlation-based
variations of microbes in the rhizosphere soil at different health levels can be understood.
This can lay a foundation for the systematic study on the interaction between microbial
genera in the pathological process of Fritillaria ussuriensis.

This research systematically explained the physicochemical properties, the diversity
and structure of microbial communities, the correlation between environmental factors
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and soil microorganisms, and the co-correlation network among microorganisms in the
rhizosphere soil of Fritillaria ussuriensis at different health levels. However, there were some
limitations in our study. First of all, as an endemic species in Northeast China, Fritillaria
ussuriensis had certain limitations in the planting range and growth environment. In
addition, this study did not involve research on the effects of Fritillaria ussuriensis root
exudates in different health levels on soil physicochemical properties and soil microbial
communities. Through high-throughput sequencing, the dominant populations of soil
microorganisms in different health levels were determined, but they were not isolated, and
pathological studies were not systematically carried out. In future research, we will make up
for these shortcomings, isolate and cultivate these beneficial microorganisms in Fritillaria
ussuriensis rhizosphere soil for disease resistance research. The above work will be of great
significance to the prevention of Fritillaria ussuriensis wilt disease and the maintenance of
a healthy soil micro-ecosystem.

CONCLUSION
The physicochemical properties andmicrobial community diversity of Fritillaria ussuriensis
rhizosphere soils in different health levels were significantly different. Compared with
the healthy soil, the diversity of diseased soils (P and B) showed a decreasing trend.
There were also significant differences in the composition of microbial communities in
rhizosphere soils of Fritillaria ussuriensis at different health levels. The relative abundance
of Fusarium and Humicola in diseased soils (P and B) was significantly increased, while
in healthy soils, the relative abundance of RB41 and Arthrobacter was the highest. These
soil microorganisms affect the health level of Fritillaria ussuriensis through a close and
complex relationship network. At the same time, this research revealed that the differences
in microbial communities from the rhizosphere soils of Fritillaria ussuriensis were the
key factors that caused changes in environmental factors. In future research, we will
isolate beneficial microorganisms from healthy rhizosphere soil samples and research the
mechanism of the beneficial microorganisms growth promotion and disease resistance in
Fritillaria ussuriensis. In addition, dominant fungi Mortierella in present research needs
further research to determine the role of key species in the pathological mechanism of
Fritillaria ussuriensis. These work will provide an important basis for the rhizosphere soil
micro-ecology restoration and wilt disease prevention of Fritillaria ussuriensis.
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