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The insulin secretion rate (ISR) contains information that can provide a personal,
quantitative understanding of endocrine function. If the ISR can be reliably inferred
from measurements, it could be used for understanding and clinically diagnosing
problems with the glucose regulation system.

Objective: This study aims to develop a model-based method for inferring a
parametrization of the ISR and related physiological information among people with
different glycemic conditions in a robust manner. The developed algorithm is
applicable for both dense or sparsely sampled plasma glucose/insulin measurements,
where sparseness is defined in terms of sampling time with respect to the fastest time scale
of the dynamics.

Methods: An algorithm for parametrizing and validating a functional form of the ISR for
different compartmental models with unknown but estimable ISR function and absorption/
decay rates describing the dynamics of insulin accumulation was developed. The method
and modeling applies equally to c-peptide secretion rate (CSR) when c-peptide is
measured. Accuracy of fit is reliant on reconstruction error of the measured
trajectories, and when c-peptide is measured the relationship between CSR and ISR.
The algorithm was applied to data from 17 subjects with normal glucose regulatory
systems and 9 subjects with cystic fibrosis related diabetes (CFRD) in which glucose,
insulin and c-peptide were measured in course of oral glucose tolerance tests (OGTT).

Results: This model-based algorithm inferred parametrization of the ISR and CSR
functional with relatively low reconstruction error for 12 of 17 control and 7 of 9 CFRD
subjects. We demonstrate that when there are suspect measurements points, the validity
of excluding them may be interrogated with this method.

Significance: A new estimation method is available to infer the ISR and CSR functional
profile along with plasma insulin and c-peptide absorption rates from sparse
measurements of insulin, c-peptide, and plasma glucose concentrations. We propose
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a method to interrogate and exclude potentially erroneous OGTT measurement points
based on reconstruction errors.

Keywords: estimation algorithm, ISR function, compartment models, insulin and C-peptide, OGTT, and CSR/ISR
molar ratio

1 INTRODUCTION

Insulin is the essential hormone that regulates cellular energy
supply and the intracellular transport of glucose into muscle and
adipose tissues (Wilcox, 2005). The endogenous insulin secretion
rate (ISR) quantifies the amount of insulin the body is able to
produce as a function of glucose concentration in the blood,
providing important information for understanding how an
individual’s endocrine system is able to use insulin to regulate
glucose regulation. The primary physiological stimulation for
insulin secretion from beta-cell is elevated blood glucose levels
following nutrition intake and glucose bolus (Ahrén and Pacini,
2004).

The objective of this work is to provide a methodology to infer
the functional form of the ISR from insulin and glucose
measurements at a personalized level that is robust to outliers.

Our motivation for this objective is threefold: First, from a
clinical diagnostic standpoint, the ISR is a measure of the input/
output function of a segment of the glucose regulation system -
the pancreatic beta cells - and therefore would allow monitoring
of their health or disease progression; second, accurate
parametrization of the functional performance of the beta cells
will allow more accurate modeling of the glucose regulation
system and therefore understanding of normal and abnormal
glucose regulation; and third, personalized ISR estimation
combined with better modeling will allow for better
interpretation of aberrant dynamics observed in standard
glucose monitoring protocols.

In addition, glucose tolerance tests are intrusive and
burdensome for subjects and have a relatively high rate of
error due to outliers which limits their usefulness at a
population scale. The development of an ISR estimation
method that is robust to outliers, or able to identify and
exclude outliers, increases the practical applicability of such tests.

Computational models of glucose regulation do already exist
and have embedded in them model components for beta-cell
function. But different models invoke significantly different
functions for the ISR, as illustrated in the Figure 1A for the
studies in (Tolić et al., 2000; Liu et al., 2009; Ha et al., 2016). These
different ISR functions lead to significantly different glucose
dynamics if used interchangeably within the same glucose
regulation model for the same system input, as illustrated in
the Figures 1B,C. Note that the functional forms change both the
height and time course of the blood glucose response.

The most common methods to estimate ISR utilize plasma
insulin and c-peptide concentration measurements. C-peptide
(connecting peptide) is an amino acid polypeptide that is
released, along with insulin, from the pancreatic beta cells
when proinsulin is split into insulin and c-peptide (Steiner
et al., 1967; Rigler et al., 1999), at a molar release ratio of 1:1

(ISR to c-peptide secretaoin rate CSR) (Lebowitz and Blumenthal,
1993). C-peptide is often used to distinguish insulin produced by
the body from injected insulin to estimate ISR, to determine
insulin resistance, and to indicate a differential diagnosis of
fasting hypoglycemia with hyperinsulinism. Pancreatic beta
cells release both insulin and c-peptide directly into the blood
stream in the portal vein, which then passes through the liver and
then combines with the rest of the circulating blood. Insulin is
sensed by hypatocrytes, and signals them to start glucose uptake,
and inhibit gluconeogenesis, glycogenolysis, and ketogenesis
(Brundin, 1999), and at high levels to activate carcino-
embryonic antigen-related cell adhesion molecule 1
(CEACAM1) to increase hypatic insulin clearance (Najjar and
Perdomo, 2019). In contrast to insulin, c-peptide is primarily
degraded by the kidneys (Jones and Hattersley, 2013). Insulin is
degraded within 15–30 min in the bloodstream (Farris et al.,
2003), while c-peptide degradation is longer (Leighton et al.,
2017).

Glucose tolerance, insulin resistence, and insulin secretion in a
clinical setting are generally measured with various types of
glucose tolerance tests. These tests include the intravenous
glucose tolerance test (IVGTT) (Bergman et al., 1981), fasting
glucose assessment (Matthews et al., 1985; Pacini and Mari,
2003), and the oral glucose tolerance test (OGTT) (Ferrannini
and Mari, 2004). IVGTT are less frequently performed because
they are invasive and challenging to endure to the patient and
expensive to achieve (Lotz et al., 2009) because of the frequent
sampling protocols of the c-peptide up to every minute during an
IVGTT. The more commonly used OGTT requires fasting
patients to ingest a drink with a fixed amount of glucose
followed by glucose measurements every 15–30 min over the
subsequent two to 4 hours (Reaven et al., 1993).

Several model-based estimation methods have been developed
to estimate ISR in the sense of the time course of insulin
production. One approach is to estimate from insulin and
c-peptide measurements (Watanabe et al., 1998; Watanabe and
Bergman, 2000; Kjems et al., 2001; Venugopal et al., 2021). These
multiple compartment methods treat ISR as an unknown time
trajectory either without a priori knowledge of its secretion rate
function or with different functions to describe the secretion rate.
For example, in (Kjems et al., 2001), the deconvolution method is
used to estimated ISR by modeling ISR with two exponential
functions (biexponential model) with unknown parameters.
Another approach that has both one-compartment model
(Watanabe et al., 1998) and two-compartment model
(Watanabe and Bergman, 2000) forms is used to estimate the
time traces of ISR using a smoothed c-peptide profile generated
by cubic spline interpolation. More recently, Venugopal et al.
(2021) developed a method to estimate ISR using the Oral
c-peptide Minimal Model (OCMM). This method describes
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the ISR function by two rates proportional linearly with the
c-peptide and glucose concentrations. Another recent estimation
approach based on OGTTmeasurements of insulin and c-peptide
has been developed to estimate the ISR time traces using two
different models, for insulin and c-peptide (Schiavon et al., 2021).

To this end, we develop a new estimation algorithm to infer the
ISR from glucose/insulinmeasurements such as OGTT data. Using
a compartmental model for the accumulation/degradation of
insulin similar to (Tolić et al., 2000; Liu et al., 2009; Ha et al.,
2016), this new method begins with a parametrization of the form
of the ISR function that takes glucose concentration as an input and
then estimates the parametrization parameters by minimizing the
difference between the model output and insulin measurements.
The same accumulation/degradation model and inference method
can be used to independently infer the c-peptide secretion rate
from glucose/c-peptide data when available.

We note that the method we derive is not reliant on the
experimental protocol being an OGTT, nor that all the data are
measured densely with respect to the fastest time scale of the
glucose or insulin dynamics. This time is estimated in the
literature to be on the order of 8–20 min for circulating
glucose/insulin dynamics, and faster if one is trying to resolve
the pulsitivity of insulin production. In this sense it works with
sparsely sampled data. This definition is in contrast to terms in
the literature that refer to OGTTs with less than 7, and as little as
3, measurement points as ‘sparse OGTTs’.

When both insulin and c-peptide are available, because the ISR
and CSR functionals are independently inferred, we can use the
expected 1:1 M ratio to validate the estimates and to identify data-
related errors.

Our approach provides physiological insights into beta-cell
secretion rates for people with different ISR health conditions.
We validate the performance of the approach using OGTT
clinical data for control and CFRD subjects.

2 MATERIALS AND METHODS

The proposed algorithm uses parametric models including a
single and a two-compartment model, and ISR and CSR
function forms with physiological parameters. The parameters
of these models and ISR/CSR functions are assumed unknown,
but can be inferred from patient data, including plasma glucose,
insulin, and c-peptide measurements. We test the performance of
this algorithm using OGTT clinical data collected from control
and CFRD subjects.

2.1 Human Oral Glucose Tolerance Test
Data
Data used is a subset of data collected under the GlycEmic
Monitoring in CF (GEM-CF, NCT02211235), a study of early
glucose abnormalities in youth with cystic fibrosis. The study was
approved by the Colorado Multiple Institutional Review Board
(Aurora, CO), and informed consent and assent obtained.
Collection details have been previously published in
(Tommerdahl et al., 2021; Chan et al., 2022).

In short, inclusion criteria for participants with CFRD included
a confirmed diagnosis of CFRD by newborn screen, sweat chloride
testing, or genetic testing. Exclusion criteria for participants with
CFRD included known Type 1 or Type 2 diabetes, use of
medications affecting glucose (eg, insulin, systemic steroids) in
the prior 3 months, hospitalization in the prior 6 weeks, or
pregnancy. For this report, n = 9 youth with CFRD were
included. N = 3 (33%) were male. CFRD individuals were an
average age of 14.6 ± 3.2 years with amean BMI of 19.0 ± 2.7 kg/m2

and BMI z-score of - 0.28 ± 0.53. Glucose tolerance categories by
OGTT were as follows—6 CFRD patients had CFRD based on 2 h
OGTT glucose > 200 mg/dl and 3 were classified as NGT. The CF
cohort had an average A1C of 5.7 ± 0.2%.

Healthy controls without CFRD were identified using
recruitment flyers and emails at the University of Colorado
Anschutz Medical Campus. Exclusion criteria for healthy
controls (HCs) included diagnoses of diabetes or prediabetes,
overweight (defined as BMI ≥85th% by the Centers for Disease
Control and Prevention BMI growth charts in youth), chronic
disease, acute illness, or pregnancy. A total of n = 17 HCs were
included of which n = 9 (53%) were male. HCs had an average age
of 13.3 ± 3.6 years, BMI of 18.5 ± 2.9 kg/m2, and BMI z-score of
−0.20 ± 0.68. The HCs had an average A1C of 5.3 ± 0.2%.

Subjects underwent a standard OGTT protocol, with blood
drawn at times.ti ∈ { − 10, 0, 20, 30, 60, 90, 120, 150, 180} min, and
assayed for plasma glucose, insulin, and c-peptide concentrations.

2.2 Insulin and C-peptide Models
The twomodels, described in Figure 2, are used in the algorithm to
reconstruct ISR andCSR. Thesemodels, include a single and a two-
compartment model both of which use the same ISR and CSR
function but with different parameters to describe the time
evolution of plasma insulin and c-peptide. The single

FIGURE 1 | Three different ISR functions (A) generate blood glucose
variations, in long time course (B) and short time course (C) simulated using
the model developed by Topp et al. (2000) with a meal; u1 is the ISR function
adopted from Liu et al. (2009); u2 is the ISR used in Tolić et al. (2000), and
u3 is the ISR function used in the model of Ha et al. (2016).
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compartment model consists of a single plasma pool with a
degradation time for plasma insulin and c-peptide. On the
other hand, the two-compartment model tracks insulin and
c-peptide concentrations in both plasma and interstitial
compartments.

2.2.1 Single Compartment Model
The detail of the single model (Figure 2 Top) is parameterized
as follows. The pancreatic beta-cell, which has a nonlinear
output secretion function, is denoted by uj, the subscript j is
an index that takes I for insulin and Cpep for c-peptide, and
releases insulin and c-peptide using various physiological
parameters. The subscript p denotes plasma, τpI and τCpep
denote the degradation time for the plasma insulin and
c-peptide, respectively. The single compartment model is
given by the equation:

_xpj � uj t( ) − xpj/τpj (1)

where xpj is plasma insulin or c-peptide, and τpj is the associated
degradation time.

Following (Tolić et al., 2000; Liu et al., 2009), we use a
sigmodal function, which is glucose dependent, for both ISR
(upI) and CSR (upC) are given by

uj gp t( )( ) � Km

1 + e α C0−gp t( )( )( ). (2)

Here, gp(t) (mg/dl) is the plasma glucose concentration at a given
time t (min), Km represents a maximum production rate for
insulin (μU/ml/min) or c-peptide (ng/ml/min), C0 refers to a
glucose mid-point (mg/dl), and α represents 1/width (dl/mg) of
the sigmoid curve.

We combine the unknown parameters of the single
compartment model in this vector Θs:

Θs � τpj, Km, C0, α[ ]T. (3)

2.2.2 Two Compartment Model
The two compartmental model, as shown in Figure 2 (Bottom), is
comprised of two equations:

_xpj � uj + q2xij − q1 + 1/τpj( )xpj (4a)
_xij � q1xpj − q2 + 1/τij( )xij (4b)

where xpj and xij represent the insulin (or c-peptide)
concentrations in the plasma (p) and interstitial (i)
compartments; q1 and q2 represent the mass transport
between these two compartments; τpj and τij refer to the
degradation time for insulin or c-peptide in the plasma and
interstitial spaces. The values of q1 = 0.0473 (min−1) and q2 =
0.0348 (min−1) are adopted from the transport model of (Eaton
et al., 1980). Alternatives to this model include the diffusive
transport used, for example, in the ultradian model (Tolić et al.,
2000). We combine the unknown parameters of the two
compartment model in this vector Θm:

Θm � τpj, τij, Km, C0, α[ ]T (5)
Finally, we provide a summary for the two models given in Eq.

1 and Eq. 4, as follows:

• The accumulation dynamics of the insulin and c-peptide use
the same compartment models but with different
parameters.

• u uses the same function for both ISR and CSR, and this
function depends only on the blood glucose values.

• The function of u(�g) is given by a sigmoid Eq. 2 as a
function of interpolated (at 1 min) blood glucose values �g,
described in the next section.

• The parameters of u (Km, C0, α), along with degradation
time (τpj, τij), are unknown and estimated independently
from insulin and c-peptide measurements.

2.2.3 Compact Form Model
It is convenient and, as we’ll show, computationally efficient to
express these compartmental models in a compact state-space
model form:

_x � A Θ( )x + Bu Θ, gp( ) (6a)
y � Cx (6b)

where x,A, B,C, andΘ are specificmodel state and parameters. For
the single compartment model (2), we have x = xpj, A = 1/τpj, B = 1,
C = 1, and Θ = Θs, which is defined in Eq. 3. For the two
compartment model (4), we have x � [xpj, xij]T,

A � − q1 + 1/τpj( ) q2
q1 − q2 + 1/τij( )⎡⎣ ⎤⎦ (7)

B = [1,0]T, C = [1, 0], and Θ = Θm defined in Eq. 5.
Since we use discrete-time data, the state space model, (6), is

discretized at a sampling rate of Ts = 0.1 min and then given by

xk+1 � Φ Θ( )xk + Γ Θ( )uk Θ, �g( ) (8a)
yk � Cxk (8b)

where Φ = eAT and Γ � ∫T

0
eATsdsB. The input uk is the ISR or

CSR, which is a function of both Θ and the interpolated glucose
values �g generated from cubic interpolation method.

FIGURE 2 | Schematic representations for the single-compartment
model (Top) used to describe plasma insulin and c-peptide, and two-
compartment model (Bottom) used to describe both plasma and interstitial
insulin and c-peptide.
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3 RESULTS

The main contribution of this paper is the development of a new
estimation approach to infer the ISR from data. The uncertainty in
the estimation is studied based on random initial conditions used
with the proposed approach to optimize the unknown parameters.

3.1 The Estimation Algorithm
Our new estimation method utilizes the above state space model,
(8), and is based on the nonlinear least square method (Hansen
et al., 2013) to optimize parameters that provide the best fit
between the model’s output (blood insulin or c-peptide) and data.
The proposed algorithm uses interpolated blood glucose values as
an input to the algorithm.

In practice, the time intervals of the measured blood glucose varies
between 10 and 30min, and are assumed to sufficiently cover shape of
the glucose dynamics. This allows us to interpolate the glucose
dynamics in order to resample the glucose values with sufficient
time resolution to integrate the insulin or c-peptide dynamics, for
which these measured time intervals are too long (sparse). We use
cubic interpolation to resample the blood glucose values between the
actual measurements to generate an interpolated glucose trajectory
(�g) with a time step T = 1min. This input glucose trajectory is used
within the ISR or CSR function u(Θ, �g) to integrate the model
forward generating amodel insulin or c-peptide trajectory y (Θ, t).We
take values from this trajectory at tk, which are the times of the actual
insulin or c-peptide measurements, and use them in the algorithm to
optimize the parameters.

For given measurements of glucose and blood insulin or
c-peptide: z (1), z (2), . . ., z(n), we minimize following least
squares objective function J(Θ) to obtain Θ̂:

J Θ( ) � ∑N
k�0

z k( ) − y Θ, tk( )( )2 (9)

where y (Θ, tk) is the model output (blood insulin or c-peptide)
generated by �g, and z(k) is a measured insulin or c-peptide value.
Note that insulin and c-peptide are optimized independently. In
Figure 3, we provide a schematic representation for our
Algorithm 1. The algorithm consists of two nested loops: the
outer one loops over a random set of initial conditions {Θn,0}, and
the inner loop is based on the Levenberg-Marquardt method
where the value Θn is updated on the ith cycle by Θn,i+1 = Θn,i −
∇n,iwhere ∇n,i uses the steepest descent method (Marquadt, 1963;
Levenberg, 1944). We use the MATLAB function ‘lsqcurvefit’ to
implement this inner loop.

3.1.1 Uncertainty Quantification
The method as described is a nonlinear optimization process. It is not
knownor proven that for this process there is either a globalminimum,
or only one localminimum, of the objective function (Eq. 9). Therefore
there is potential sensitivity to the initial conditions (initial guess forΘ).
To address this, and to provide uncertainty quantification for the
inferred parameterization, we adopt a bootstrap method.

We therefore explore the distribution of inferred parameters Θ̂
from a large (1,000) randomly sampled initial conditions drawn
from a range of allowed parameters defined within

physiologically plausible ranges. In this analysis, τpx ∈ [10,
180] min, C0 ∈ [200, 1,500] mg/L, Km ∈ [1, 350] mU/l/min,
and α ∈ [0.015, 0.045] L/mg.

For each initial parameterΘ0 the algorithm seeks a final parameter
Θf that minimizes J (Eq. 9) within the boundaries. If theminimization
process reaches the allowed boundaries, the result is excluded.

Each solution in Θf is used within the ISR/CSR function to
simulate ISR and CSR trajectories and then generate plasma
insulin and c-peptide trajectories by integrating the model, (8),
forward using the interpolated glucose values as an input.
Finally, we use these trajectories to compute the average and
standard deviation (Mean ± SD). These steps are illustrated in
Algorithm 1.

3.2 Computational Method Validation
We validate the inference method by applying the algorithm to
model-generated data sets. We then compare the inferred ISR

FIGURE 3 | Schematic representation for the estimation algorithm.
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parametrization, and decay constant, to the model parameters
used to generate the data.

Data sets were generated with the model described in Liu et al.
(2009), with the published parameters unless otherwise noted.
The ISR used matched the functional form in Eq. 2, with
parameters Km = 0.6 (mU/l/min), C0 = 1,000 (mg/L), α = 0.01
(L/min). Data sets were generated for each of the following
insulin degradation rates τpI ∈ {10, 15, 30, 60, 90, 120} min.
The model was driven with an OGGT type feeding function,
glucose and insulin values sampled at discrete times Ti ∈ { − 10, 0,
10, 20, 30, 60, 90, 120, 150, 180} min, and 20% random noise
was added.

The inferred values of τpI matched the ideal (generating)
values within 1.8% (i.e., |τpI,i − τpI|/τpI < 1.8%), and the other
parameters (Km, C0, α) within a roughly average error of 1.2% of
the generating parameter value.

We note that we achieved a very high level of accuracy in
inference of these parameters almost independent of how sparsely
the data was sampled with respect to the insulin dynamics (τpI,
and robust to the presence of significant (20%) added
measurement noise.

3.3 Application to Oral Glucose Tolerance
Test Data
We use this method with clinically measured OGTT data,
including plasma glucose, insulin, and c-peptide
measurements, to parametrize the ISR/CSR functions (Θ̂).

These measurements are taken from normal and CFRD
subjects at times ti = { − 10, 0, 20, 30, 60, 90, 120, 150, 180}
min. The glucose values are interpolated at 1 min intervals using
cubic interpolation and then used as an input for estimation, and
as described Θ̂ is the mean parameters over minimizations of the
cost function J(Θ) (Eq. 9).

Given that insulin and c-peptide are secreted in a 1:1 M ratio
(Lebowitz and Blumenthal, 1993), we expect that the
parametrized functionals ISR and CSR should follow a similar
linear relationship. Note that in the presented units for ISR (μ
U/ml-min) and CSR (ng/ml-min), a 1:1 M ratio corresponds to
0.056 = ng/μ U. We therefore also fit the relation between CSR
and ISR with a linear fit to get C̃SR(ISR).

Shown in Figure 4 are stereotypical results for control (upper
group) and CFRD subjects (lower panels). The actual glucose
measurements (blue circles) and interpolated glucose (magenta),
used as an input to the algorithm, are shown in the Figure 4A.
Also, the measured c-peptide (red circles) and estimated
c-peptide (magenta with standard deviation (±SD) black,
green) are presented in the Figure 4B. Histograms of the
inferred degradation times are shown for both c-peptide
(Figure 4C) and insulin (Figure 4D). Measured insulin (red
circles) and estimated insulin (magenta) are shown (with ±SD
black, green) in the Figure 4E. Estimated ISR and CSR are
presented with ±SD (black, green) are shown in the Figures
4F,G for the time points at which data was taken.

In both examples, the relationship between CSR and ISR
closely matches a linear fit, with slope of order the expected
value of 0.056 = ng/μU.

3.3.1 Quantification of Goodness of Fit
We quantify the goodness of fit of three different features of these
fits the measured values; how well the trajectory of the modeled
insulin (I (t|Θ)) fits the measured values, how well the trajectory
of the modeled c-peptide (C (t|Θ) fits the measured c-peptide
values; and goodness of the linear fit between the CSR and ISR,
C̃SR(ISR). In each of these cases, we use normalized root-mean-
square (RMS) errors:

RMSIk �
1

Ik

�������������∑
k

Ik − I tk|Θ̂( )2√
(10a)

RMSCk
� 1

Ck
�

��������������∑
k

Ck − C tk|Θ̂( )2√
(10b)

RMSCSR ISR( ) � 1
CSRk,max

������������������������∑
k

CSR tk( ) − C̃SR ISR tk( )( )2
√

(10c)

where �Ik is the mean of the measured insulin values, �Ck is the
mean of the measured c-peptide values, and CSRk, max is the
maximum CSR value.

Estimation results are obtained and evaluated for all control
and CFDR subjects. Based on the goodness of fit values (Eq. 10),
our algorithm achieved relatively good estimates of ISR and CSR
for 12 of 17 (71%) control subjects and 7 of 9 (78%) CFRD
subjects. Error estimates are shown in Figure 5 plotted for the
output for each of the control subjects (filled circles). As can be
seen in the left panel, four subjects had very high RMS error in
reconstruction of both insulin trajectories (red). In addition, at
least one subject’s fit had especially poor linear relationship
between CSR and ISR (blue).

3.3.2 Identification of Potential Outlier Data
Points
We hypothesize that for these data sets, approximately 30% of
the subjects’ data have at least one outlier data point that is
sufficient to corrupt the inference. Such outliers would also
interfere with clinical diagnostics, and therefore the ability to
identify and correct for these outliers would be a substantial
gain.

In the five poorly estimated control subjects, we observed
glucose values that had rather severe dip at 60 min, and then a
recovery to a middle value, as illustrated in Figure 6A, which we
suspect may be in error.

To test our interpretation for poor estimates, we consider one
control subject with an uncertain glucose measurement that
dropped at 60 min, from 140 mg/dl to 85 mg/dl. We then
removed this 60 min glucose value and the associated insulin
and c-peptide measurements. Since we use glucose interpolation
as an input to the model, the gap between the glucose values
between 30 and 90 min is filled by the interpolated glucose values,
as shown in Figures 6A,B. Without the value at 60min, the
insulin and c-peptide measurements are used to re-estimate the
parameters. As shown in (D, F), the computed insulin and
c-peptide trajectories better match the residual measured
values, and the relationship between CSR and ISR is better fit
by a line (H).
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Quantitatively, all three of the RMS errors improved for this
subject, as did the errors for all five subjects whose fits were
previously identified as having high error. The improvement is
illustrated by the green diamonds in Figure 5. The green lines link
the improved error values with the error values prior to this analysis.

In contrast, for all other subjects, if the same 60 min time point
was left out the errors did not significantly degrade.

Note that the objective function (Eq. 9) that is minimized with
the optimization is only sensitive to the model reconstructed
values at the measured times. The model dynamics (insulin or
c-peptide accumulation) are substantially only sensitive to the ISR
or CSR within approximately one degradation time constant (τx),
which for controls is of order 15 min. Therefore the optimization
is primarily sensitive to the interpolated glucose trajectory (�g)

FIGURE 4 | Estimation results, using the algorithm with the single compartment model, for a single control (Top) and a single CFDR (Bottom) subject. Each
composite includes (A) glucose measurements (blue circles) and the interpolated glucose (magenta line) used as model input (B) measured c-peptide (circles) and
model-generated mean c-peptide (magenta line) and ±standard deviation (black, green lines); histograms of inferred degradation time for c-peptide (C) and insulin (D);
(E) measured insulin (red circles) and estimated insulin trajectory (magenta with ±SD black, green); mean inferred ISR (F) and CSR (G) (red with SD black, green);
and (H) CSR/ISR relationship.
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over approximately τx ahead of measured data points. This means
that as long as the measurements sufficiently sample the glucose
dynamics, this method should be robust to dropping out
individual data points.

This suggests that the poor estimate comes from the data, not
the method.

In contrast, for in the two poorly estimated CFRD subjects,
the glucose value dramatically increased to greater than
250 mg/dl within 40 min. This sharp increase in glucose

level reduces the amount of time at intermediate glucose
levels. As a consequence, it makes estimating ISR difficult at
those intermediate values.

3.3.3 Inferred Parameters
In Table 1, we provide a summary for the 12 normal and 7 CFRD
subjects who were estimated well, including the ISR average
values of the estimated parameters presented by the mean and
95% confident interval, slope, and the ISR evaluated at the glucose

FIGURE 5 |Goodness of Fits for normal subjects. Red points indicate have relatively poor reconstruction of insulin measurements, and the blue point has relatively
poor linear relation between CSR and ISR. These metrics for these poor reconstructions are all improved (green points) when the data point at 60 min is left out.

FIGURE 6 | Improvement for the estimation results of plasma insulin ((D) versus (C)), c-peptide ((F) versus (E)), and slope ((H) versus (G)) by removing the uncertain
blood glucose value at 60 min (A), and using the interpolated glucose values in the gap between the glucose values at 30, 90 min (B).
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value of 140 mg/dl. Note that only 9 of 13 control subjects have
peak glucose values that reached 140 mg/dl, whereas all of the 7
CFRD had blood glucose of 140 mg/dl or greater.

As a final external validation of the method, we were able to
differentiate CFRD from normal patients in two ways. First, as
shown in Table 1, the ISR at a glucose of 140 mg/dl is higher for
the control subjects than the CFRD subjects. This result indicates
the ability of the beta-cells for healthy subjects to produce more
insulin to mitigate the increased glucose level. Second, the
estimated τpI for CFRD subjects is larger than the control
subjects, as shown in Table 1. This result reflects physiological
insights for CFRD that insulin takes a longer time to accumulate
and reach a high value than in the control subjects, due to Lower
production in beta cells and lower peripheral degradation rate.
Therefore, the increased glucose values in CFRD subjects provide
better dynamics for estimation that allows the algorithm to
estimate τpI more precisely.

The peak of the ISR can be estimated if the glucose range is
wide, e.g., 100–350 mg/dl. However, in a short glucose range of
100–140 mg/dl, accurate estimation of the peak is not guaranteed.
This observation means it is more likely for CFRD subjects to
capture the ISR peak than the control subjects due to the high
glucose range in these individuals. We found that two CFRD
subjects from among the CFRD group had a glucose range that
allowed us to estimate the ISR peak and hence the full ISR
functional shape. In these two CFRD subjects, the blood glucose
range is between 100–400 mg/dl. On the other hand, the blood
glucose range for control subjects is between 95–140 mg/dl, which
makes estimating the ISR peak hard to achieve. However, we found
only one control subject that the ISR peak was nearly estimated.
The glucose range in this control subject is between 95–180 mg/dl.
Therefore, we conclude that the peak of the ISR can be better
estimated for CFRD subjects, in which the range of blood glucose
is wide.

To compare the normal and CFRD subjects, we evaluated the
estimated ISR at the glucose value of 140 mg/dl for subjects with
good estimation in the two groups. After removing the poorly fitted
subjects and the control subjects that had not reached the glucose
value of 140 mg/dl, we obtained 12 control subjects and 7 CFRD
subjects out of 17 and 9 subjects, respectively. The results are
presented using the empirical cumulative distribution function
(ECDF), in Figures 7A,B. Therefore, we found that the ISR
values of the normal subjects were with 50% that the ISR exceeds
the rate of 100 μU/ml/min. Whereas, the CFRD subjects were
with 50% that the associated ISR value around 15 μU/ml/min.
These results indicate that the pancreatic beta-cell of the CFRD
cannot produce enough insulin due to the dysfunction of these
beta-cells. On the other hand, these beta-cells can produce more
insulin at the value of glucose (140 mg/dl) in normal subjects.

The estimated slope between the estimated ISR and CSR was
also used to characterize these two groups. The slope (CSR/ISR)
between the estimated CSR and ISR for both normal and CFRD
subjects was plotted in Figures 7C,D, as ECDF. In both control and
CFRD subjects we observed a straight line describing the
physiological relationship between ISR and CSR. The slope is in
the unit of ng/μU. When both units are converted to moles, the
expected conversion factor is 0.056. In Figures 7C,D, we plotted
this value (0.056) as a vertical (dashed-red) line to illustrate how
these slopes, which are predictions of the expected value 0.056, are
close to this expected value. As shown in Figure 7C, the predicted
slope of the control subjects was around the expected value of
0.056. On the other hand, the wide glucose range in the CFRD
subjects used to estimate both ISR and CSR, which gives more
information to estimate ISR and CSR trajectories (e.g., ISR
secretion and peak regions), increased the uncertainty in the
estimated slope, as shown in Figure 7D.

3.3.4 Two-Compartment Model
Note that the above fits and figures were obtained using the
single-compartment model. However, comparable results can be
obtained when incorporating the two-compartment model with
the algorithm. But, it is a significant to note that, when the single
model cannot estimate the patient’s ISR and CSR, adding a
second compartment is not helpful. For a comparison between
the two models, the ISR was evaluated at the glucose value of
140 mg/dl, and the slope between ISR and CSR was estimated, for
control subjects, using our algorithm incorporating the two
models. Therefore, shifting to the two-compartment model,
the control subjects’ data gives a fraction difference of absolute
mean error for the ISR at glucose value of 140 mg/dl provided by
(Mean ± SD) 0.32 ± 0.2. In contrast, the fraction difference of the
absolute average error of the slope is given by 0.14 ± 0.15. These
results indicate that adding more compartments and unknown
parameters is unnecessary to estimate reliable ISR. Instead, a
simple model can be incorporated with our method to estimate
ISR for people with different beta-cell functions.

4 DISCUSSION

We developed a new estimation approach for inferring the ISR
from plasma insulin and c-peptide measurements. We validated
this method with synthetic data and nominal physiological
parameters and were able to reconstruct these values from
generated ground truth data with 20% noise is added to each
data point for both plasma glucose and insulin. Then the
algorithm was applied to OGTT clinical data for both control
and CFRD subjects. We use the estimated slope between ISR and

TABLE 1 | A summary for the normal and CFRD subjects, including the ISR average values of the estimated parameters, presented by the mean and 95% confident interval,
slope, and the ISR evaluated at the glucose value of 140 mg/dl.

Parameter τPI Km C0 α Slope ISR(140 mg/dl)

Control Subject 15 ± 5 123 ± 57 209 ± 39 0.06 ± 0.02 0.06 ± 0.01 128 ± 57
CFDR Subject 28 ± 12 75 ± 60 600 ± 240 0.014 ± 0.01 0.14 ± 0.06 73 ± 60
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CSR to evaluate the estimation for both normal and CFRD
groups, as well as the RMS between the observations and the
model-estimated values.

We hypothesize that to estimate ISR, it is not necessary to use
an OGTT, IVGTT, or other glucose tolerance test. Instead, it can
be estimated by knowing glucose values and a nonlinear function
of the secretion rate with unknown parameters. Therefore, we
specifically implemented a sigmoid function to model the ISR and
CSR and then estimate them independently from insulin and
c-peptide data. The ISR peak can be estimated, using this
function, if the glucose value is high enough to capture the
peak. Using our method, we expect to estimate the baseline of
the secretion rates if we have more sampled data, especially at the
beginning of the test.

4.1 Validation
Our validation test uses the equal molar ratio between plasma
insulin and c-peptide secretion rates. Even though the CFRD
and control subjects have different physiology and the ISR and
CSR have various physiological parameters and nonlinear
relations with plasma glucose concentration, our algorithm
recovers the linear relationship between ISR and CSR for both
groups. This result indicates the accuracy of the estimation of
the algorithm. Another test uses the normalized root-mean-
square (RMS) error between the estimation and the measured
values. We showed that the estimation, in the two groups, in
which the relationship between ISR and CSR is linear, the RMS
error between modeled insulin or c-peptide and estimated
ones is small. This observation reflects the consistency in our
results showed by these two validation tests used in our
method.

4.2 Phenotype
We were able to differentiate the normal and CFRD diabetes
phenotypes. We show that the ISR for individuals with CFRD is
statistically significantly lower than the ISR for individuals’
normal glucose regulatory systems (see Table 1). However,
the ISR peak for the two groups did not differentiate them
because the peak ISR was often not observable or computable for
normal patients. In addition, due to the high glucose dynamics
and slow insulin accumulation in the CFRD subjects, which
reveals more information about the insulin degradation time
(τpI), the estimated τpI was larger in this group than the control
subjects.

4.3 Identifying Potentially Erroneous Data
Points and Improving Reliability
As shown in Section 3.3.2, this inference method may be able to
identify erroneous data points. In the example shown (Figure 6,
and green point in Figure 5), such identification leverages three
separate components: the goodness of fit of the insulin trajectory,
the goodness of fit of c-peptide trajectory, and the linear
relationship between ISR and CSR. Because both ISR and CSR
are inferred independently, these three are independent
measures.

The inference relies on the physiological knowledge that ISR is
primarily a function of plasma glucose concentration, and the
linear relation embodies the physiological fact that c-peptide and
insulin are released in a 1:1 molecular ratio. Such use of external
knowledge - that ISR is primarily a function of plasma glucose,
and that CSR is proportional to ISR - is a simple and principled
pathway to identifying data errors.

FIGURE 7 | A comparison between the normal and CFRD subjects, using the probability of empirical cumulative distribution function (ECDF), for the ISR value (A,B)
evaluated at the glucose value of 140 mg/dl (horizontal) and the slope between ISR and CSR (C,D), the vertical axis is the probability (ECDF); the expected value is 0.056
for the slope (red line (C,D)).
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We note also that because the underlying model for plasma
insulin or c-peptide accumulation includes a degradation time
that appears to be in the range of τI 5–15 min, the model is in
effect only dependent on the interpolated glucose values within τI
or τC ahead of each data point, and for the distally separated
points residual after removal of the point at 60 min, this time is
relatively small.

If proven reliable in future studies, we anticipate that such
analysis - and removal of erroneous points - could make clinical
testing more reliable by increasing the amount of diagnostic
information that can be extracted from a single diagnostic test,
and decrease the need for multiple diagnostic tests using model-
based inference. Currently, the ADA recommends four pathways
for diagnosing pre-diabetes and type-2 diabetes, one of which
includes an OGTT (Davidson et al., 2021b). Similarly, the
recommendation to diagnose gestational diabetes is via a GTT
or OGTT (Davidson et al., 2021a). In both cases, a diagnosis
requires two tests. By using inference paired with the information
in the dynamics of the OGTT rather than a single value, we suspect
it would be possible, as we show in this work (Figure 6), to remove
inaccurate outliers and accurately estimate ISR and other
diagnostic quantities. If corroborated with further studies, this
should motivate quantification of both insulin and c-peptide from
blood draws during such clinical measures.

4.4 Inferring Pancreatic Health
Additionally, the model provides a platform for extracting
additional information. For example, here we estimate the
entire ISR curve, increasing accuracy and explainability of the
context of the patient state, leading to quantified information
regarding howmuch of the ISR was observed for observed glucose
levels and how much excess capacity for insulin production the
patient may have, leading to more accurate diagnosis of the
patient’s endocrine state.

Considering the above results and discussion, we now have a
suitable method with physiological insights about estimating ISR
for subjects with different physiological conditions. Furthermore,
we showed that using a simple model is good enough to estimate
ISR rather than a more complex model with more compartments
and unknown parameters. Moreover, we found that using the two
compartment, when the single compartment failed to estimate the
ISR and CSR correctly, is not useful. These results allow us to
implement the estimated ISR function into glucose models with
various fidelity and complicity to understand better the glucose
regulation system for patients with different pancreatic beta-cell
functions.

4.5 Hepatic Insulin Degradation
We note that in this modeling we have lumped all insulin and
c-peptide degradation to a general degradation rate, and have not
tried to differentiate hepatic degradation or its effects. In the ISR
literature (i.e., Watanabe et al., 1998; Watanabe and Bergman,
2000), such efforts are motivated because the pancratic beta-cells
secrete insulin and c-peptide into the portal vein blood stream. The
portal vein then passes through the liver and some insulin (up to
80%) is immediately degraded by the hepatocrytes (Najjar and
Perdomo, 2019). If this process were simply proportional to plasma

insulin concentration, then the one-compartment model for
insulin would be modified to:

_xpi � ui,p t( ) 1 − αh( ) − κi + βportαh( )xpi (11)
Here ui,p is the ISR at the pancrease into the portal vein, αh is the

absorption proportionality αh ∈ (0 : 1), and βport is the ratio of the
portal blood flow rate to the total blood volume, which for adult
humans βport ∈ (0.15–0.4)/s. Likewise, κi is the degradation
proportionality due to other processes. The addition to the
standard degradation rate comes because the liver cannot
distinguish between freshly secreted insulin and circulating insulin.

For the work as described, the ISR inferred is effectively the
rate of insulin secretion into the circulation system following
transit through the liver, i.e., ui,inferred = ui,p(t) (1 − αh). Because
c-peptide is not primarily degraded in the liver, this correction
factor doesn’t apply. Therefore in cases where both insulin and
c-peptide are measured, the slope of the linear relation between
parametrized CSR and ISR should be equal to 1/(1 − αh) (after
unit conversion to molar units). For normal subjects, the majority
of subjects therefore had hepatic absorption ratios of αh < 0.4
(Figure 7C). But the CFRD subjects had wider range of slopes,
consistent with values as high as αh < 0.8.

Because our inference method also estimates the insulin
degradation rate for an individual, this model implies that
βportαh < 1/τpI. The inferred fit for normal subjects, with
degradation times are of order τpI are of order 10−15 min and
αh 0.1, are consistent with this inequality and reasonable values of
βport. But, for example, the CFRD subject whose data is shown in
Figure 4, has an αh 0.8 and τpI ~50 min, which is not consistent
with normal portal blood flow values.

In future work with larger data sets we will investigate these
observations as a function of subject health.

We further note that this linear model (11) for hepatic insulin
degradation has limitations. In particular, the insulin-receptors
on the hepatocytes then signal insulin endocytosis and
degradation (Najjar and Perdomo, 2019). Therefore the rate of
degradation is insulin dependent.

4.6 Study Limitations
This work represents a first attempt to apply this modeling approach
to infer the parametrization of the ISR from clinical data. Here we
have applied this approach to rather small data sets for both control
and CFRD subjects. We anticipate that the distribution of normal
and abnormal ISR functions will only be clear frommuch larger sets.
We note that this effort fall short in terms of the aim of establishing
functional shape for control subjects. This method can only infer the
ISR function over the range expressed during the clinical
measurement, and the maximum glucose level for control
subjects represented here was well below 150mg/ld - and the
inferred ISRs were far from saturated.

5 CONCLUSION

This study presents a new approach for estimating ISR using
plasma insulin and c-peptide measurements. Our approach uses
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simple insulin and c-peptide models and applies both insulin
and c-peptide measures. This algorithm can infer ISR and CSR
from OGTT data. Additionally, the method provides a deeper
interpretation of the OGTT and a measure of the robustness and
accuracy in both the inference and data.

We validate the estimation results in three ways. First, we
validate the results by estimating the plasma insulin and c-peptide
and comparing RMS between measurements and modeled
responses of these variables. Second, we use the 1:1 M ratio
between ISR and CSR to assess the estimation results. We
showed that a linear relationship between ISR and CSR can be
observed when they are estimated correctly. This result is
confirmed in both CFRD and normal subjects. Third, we
showed that our algorithm can differentiate between subjects
with different beta-cell phenotype-related diseases. Moreover, we
showed that the ISR level in CFDR subjects is lower than the ISR
level in normal subjects. However, since the variation in blood
glucose is high in CFRD patients, the peak of ISR and plasma
degradation time of insulin and c-peptide are estimated more
precisely. Further, we showed that the estimation of ISR utilizing
the single-compartment model is very similar to the results using
the two-compartment model. This indicates different models the
robustness of our approach in estimating the ISR using different
models’ complicity and confirms that the ISR can be estimated
precisely using only a simple model with less parameters. We also
tested our model by treating uncertain measured values in the
data. Finally, we provided a physiological interpretation that our
method can handle the uncertainty in measured values and
improve the estimation of ISR.

The immediate impact of this work is the development of a
new approach for estimating ISR, which is now available for
determining the beta-cell secretion rates for people with different
conditions. This method is ready to implement into glucose
models providing a better understanding of the glucose
regulation system and monitoring people with diabetes.
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