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ABSTRACT

Background. Adenoid cystic carcinoma (ACC) is an aggressive
salivary gland malignancy without effective systemic thera-
pies. Delineation of molecular profiles in ACC has led to an
increased number of biomarker-stratified clinical trials; how-
ever, the clinical utility and U.S.-centric financial sustainability
of integrated next-generation sequencing (NGS) in routine
practice has, to our knowledge, not been assessed.
Materials and Methods. In our practice, NGS genotyping was
implemented at the discretion of the primary clinician.
We combined NGS-based mutation and fusion detection,
with MYB break-apart fluorescent in situ hybridization (FISH)
andMYB immunohistochemistry. Utility was defined as the frac-
tion of patients with tumors harboring alterations that are
potentially amenable to targeted therapies. Financial sustain-
ability was assessed using the fraction of global reimbursement.
Results. Among 181 consecutive ACC cases (2011–2018),
prospective genotyping was performed in 11% (n = 20/181;

n = 8 nonresectable). Testing identified 5/20 (25%) NOTCH1
aberrations, 6/20 (30%) MYB-NFIB fusions (all confirmed by
FISH), and 2/20 (10%) MYBL1-NFIB fusions. Overall, these
three alterations (MYB/MYBL1/NOTCH1) made up 65% of
patients, and this subset had a more aggressive course with
significantly shorter progression-free survival. In 75% (n = 6/8)
of nonresectable patients, we detected potentially action-
able alterations. Financial analysis of the global charges,
including NGS codes, indicated 63% reimbursement, which
is in line with national (U.S.-based) and international levels
of reimbursement.
Conclusion. Prospective routine clinical genotyping in ACC
can identify clinically relevant subsets of patients and is
approaching financial sustainability. Demonstrating clinical
utility and financial sustainability in an orphan disease (ACC)
requires a multiyear and multidimensional program. The
Oncologist 2019;24:1356–1367

Implications for Practice: Delineation of molecular profiles in adenoid cystic carcinoma (ACC) has been accomplished in
the research setting; however, the ability to identify relevant patient subsets in clinical practice has not been assessed. This
work presents an approach to perform integrated molecular genotyping of patients with ACC with nonresectable, recur-
rent, or systemic disease. It was determined that 75% of nonresectable patients harbor potentially actionable alterations
and that 63% of charges are reimbursed. This report outlines that orphan diseases such as ACC require a multiyear, multi-
dimensional program to demonstrate utility in clinical practice.

INTRODUCTION

Adenoid cystic carcinoma (ACC) is, despite its deceptively
low-grade histological appearance, an aggressive type of

salivary gland malignancy arising in major and minor salivary
glands. In the U.S., there are �15,000 patients with ACC
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alive today, and ACC thereby fulfills the criteria of the “rare
(orphan) disease act” of 2002 (affecting <200,000 people
in the U.S.). ACC grows slowly, and the disease has a seem-
ingly indolent, yet relentless, course. Disease-specific sur-
vival at 5 years is 89% and drops to 40% at 15 years [1].
Complete surgical resection of ACC is, whenever possible,
the treatment of choice [2]; however, ACC frequently recurs,
and treatment failure is often characterized by distant
metastasis [1]. Radiation therapy can lower the rate of
local recurrence (so-called “local control”) but does not
improve overall survival [3]. Currently, there is no effec-
tive chemotherapy [4], clinical trial data are sparse [5, 6],
and standard off-label use of cytotoxic chemotherapy is
so ineffective that current guidelines state that enroll-
ment in clinical trials is preferred [7].

Numerous studies have delineated key molecular pro-
files of ACC [8–13] and collectively indicate pathways for
genotype-stratified therapies [14–18]. The concept, to match
each patient according to the tumor pathway profile to the
most effective (biologically sound) and least toxic treatment,
rests on the prevalence of actionable alterations [14, 19–21].
Assessment of established alterations in clinical practice
requires comprehensive genotyping efforts, for example,
accomplished via next-generation sequencing (NGS) technolo-
gies. For routine patient management in the U.S., tests are
required to be clinical grade (i.e., derived from a Clinical Labo-
ratory Improvements Amendments (CLIA)-certified laboratory)
and, because of the increased quality standards and docu-
mentation efforts, are typically 2–3 times more expensive
than the same test in the research setting [22, 23]. Although
drug costs are a major burden in precision medicine, test cost
coverage and financial sustainability are substantial challenges
to clinical genomics—in particular for orphan diseases.

Through institutional prioritization, we have initiated pan-
cancer genetic testing in 2008, transitioned to NGS-based test-
ing in 2011, and adopted specific NGS billing codes in 2015. In
common cancers, the identification of rare subsets of action-
able targets has been established (e.g., National Comprehen-
sive Cancer Network [NCCN], College of American Pathologists
guidelines); however, the need for more effective, biomarker-
informed therapies in a disease as rare as ACC poses unique
challenges to demonstrate clinical utility and U.S.-centric finan-
cial sustainability [14, 19, 21, 23].

Here we assessed clinical utility by determining the preva-
lence and relevance of molecular alterations. In addition, we
assessed financial sustainability by determining reimbursement
rates in comparison with local, national, and international rates.
By combining clinical utility and financial sustainability, we out-
line an integrated approach to identify clinically relevant subsets
of patients with ACC in an economically sustainablemanner.

MATERIALS AND METHODS

Study Design
Samples were identified retrospectively (2011–2018), and
we included only patients with a histologically confirmed
diagnosis of ACC. We obtained demographics, anatomic
location, date of diagnosis, time to progression, and/or last
follow-up by review of the electronic medical record (Qpid

Health, Boston, MA). Appropriate institutional review board
approval was obtained, and the research was performed in
accordance with the Declaration of Helsinki. We defined
“relevant” as having diagnostic and/or prognostic value
and “actionable” as having potential therapeutic relevance
[24]—assessed via review of relevant trials (Table 1).

Morphology
Pathological TNM staging followed the American Joint
Committee on Cancer (AJCC) staging system, 8th edition [25].
At least three board-certified pathologists reviewed and
followed the diagnostic criteria proposed by the World
Health Organization [26]. ACC was subclassified by growth
pattern into cribriform, tubular, solid, or mixed (defined
as containing a solid component). Mixed tumors containing
several growth patterns, but with one predominant (>60%),
were classified according to the predominant pattern.

Next-Generation Sequencing
Genotyping at our institution is performed in a clinical
(CLIA-certified) molecular diagnostics laboratory and includes
NGS-based testing and reporting of results into the medical
record. Briefly, isolated nucleic acids from tumor specimens
were analyzed using anchored multiplex polymerase chain
reaction (AMP) to detect single-nucleotide variants and inser-
tions/deletions in a target set of cancer-related genes. To
detect fusion transcripts, we also applied the AMP technology
in a separate RNA-based NGS assay [27]. We sequenced on
Illumina NextSeq (for details, see supplemental online data).

FISH Assay and Immunohistochemistry
MYB gene rearrangements were analyzed using a break-
apart probe strategy (supplemental online data), and Myb
protein expression was assessed using immunohistochemis-
try. A detailed description of both methods is provided in
supplemental online material and methods.

Economic Analysis
We reviewed reimbursement (defined as amount refunded
from payors) by current procedural terminology (CPT) code
and claim adjustment codes (if applicable). We standardized
across payors using the national values provided via the clin-
ical laboratory fee schedules/physician fee schedule from
the Center for Medicare and Medicaid Services (CMS). In
2015, the American Medical Association introduced specific
NGS panel codes, and we calculated the overall reimburse-
ment rate by dividing the total sum of obtained payments
through the total sum of charges using CMS values as a ref-
erence. For comparison of our reimbursement rates with
local, national, and international rates, we reviewed reim-
bursement data from selected publications [28–36].

RESULTS

Clinically Integrated Molecular-Genetic Testing
in ACC
In total, 181 patients with the diagnosis of an ACC were iden-
tified between 2011 and 2018. Twenty of these ACC cases
were genotyped clinically (Fig. 1A) by combining NGS-based
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DNA mutation assessment, RNA-based fusion detection, MYB
immunohistochemistry, and MYB break-apart fluorescent in
situ hybridization (FISH). The clinicopathological characteris-
tics of the study cohort are summarized in Table 2. We refer
to this approach as clinically integrated molecular-genetic
testing, and an overview is provided in Figure 1B. In our clini-
cal practice, providers order molecular testing in patients
with recurrent, progressive, or nonresectable tumors (see
below) in order to identify clinically relevant and potentially

actionable alterations (i.e., genetic alterations expected to
change management or treatment; Table 1) [24].

Comutational Landscape of ACC in Clinical Practice
NGS identified 27 alterations in 12/20 (60%) patients in our
study cohort (Fig. 2), and 8/20 patients (40%) were fusion pos-
itive. Fusions for MYB-NFIB or MYBL1-NFIB (40%) and NOTCH1
mutations (25%) were the most common alterations. Across
all cancer types tested in our institution (n = 2,701 cases were

Table 1. Clinical trials for patients with adenoid cystic carcinoma by molecular target

Targets Compound Name Sponsor Locations Phase NCT number

NOTCHa OMP-52M51 Brontictuzumab MD Anderson Cancer
Center

Houston, TX NA NCT02662608

NOTCHa BMS-906024 AL101 Ayala Pharmaceuticals Multiple locations
in U.S.

II NCT03691207

NOTCHa

PIK3CAa
Multiple drugs Drug therapies

for salivary gland
cancers based on
testing of genes

University Health
Network, Toronto

University Health
Network, Toronto

NA NCT02069730

MYBa AG-013736 Axitinib Pfizer Oncology
NCCN/NIH/NCI

MSKCC, U.S. II NCT01558661

MYBa,b ReposMZB Mebendazol Repos Pharma Uppsala University IIa/
preclinical

NCT03628079

MYBa and PD-1 TetMYB Vaccine
and BGB-A317

MYB vaccine
and tislelizumab

Peter MacCallum
Cancer Centre

Melbourne,
Australia

I NCT03287427

MDM2a APG-115 APG-115 Ascentage San Antonio, TX I NCT02935907

MDM2a DS-3032b DS-3032b Daiichi Sankyo Multiple locations
in U.S.

I NCT01877382

PIK3CAa

BRCA1a

(multiple targets)

Taselisib (PIK3CA)
Adavosertib
(BRCA1)
(multiple drugs)

NCI-MATCH National Cancer
Institute

More than 1,000
locations in U.S.

II NCT02465060

BRCA1a

(multiple targets)
Olaparib (BRCA1)
(multiple drugs)

ASCO TAPUR American Society
of Clinical Oncology

More than 20
locations in U.S.

II NCT02693535

VEGFR Apatinib Apatinib and
proton radiation

Shanghai Proton
and Heavy Ion Center

Shanghai, China II NCT02942693

VEGFR
FGFR
RET
c-KIT
PDGFR

Lenvatinib Lenvima Fondazione IRCCS
Istituto Nazionale dei
Tumori

Milan, Italy II NCT02860936

HDAC Chidamide Epidaza Chinese Academy
of Medical Sciences

Beijing, China II NCT02883374

HDAC Chidamide
and cisplatin

Epidaza and
cisplatin

Fudan University Shanghai, China II NCT03639168

PRMT5 GSK3326595 GSK3326595 GlaxoSmithKline Multiple locations
in U.S.

I NCT02783300

PD-1 Pembrolizumab
and docetaxel

Keytruda and
docetaxel

University of Chicago Chicago, IL II NCT03360890

PD-1/CTLA-4 Nivolumab
and ipilimumab

Opdivo and
Yervoy

Northwestern
University

Chicago, IL II NCT03146650

PD-1/CTLA-4 Nivolumab
and ipilimumab

NCI-DART
Opdivo and
Yervoy

National Cancer
Institute

More than 600
locations in U.S.

II NCT02834013

aIndicates targets identified in our cohort of 20 patients with adenoid cystic carcinoma.
bThe trial listed is for gastrointestinal cancers, and evidence for activity of mebendazole against MYB is preclinical.
Abbreviations: BRCA1, breast cancer type 1 susceptibility DNA repair associated; c-kit, KIT proto-oncogene receptor tyrosine kinase; CTLA-4,
cytotoxic T-lymphocyte-associated antigen 4; FGFR, fibroblast growth factor receptor; HDAC, histone deacetylase; MDM2, proto-oncogene
encoding E3 Ubiquitin Ligase; MSKCC, Memorial Sloan Kettering Cancer Center; MYB, proto-oncogene/transcription factor; NA, not applicable;
NCCN, National Comprehensive Cancer Network; NCI, National Cancer Institute; PD-1, programmed cell death protein 1; PDGFR, platelet-
derived growth factor receptor; PIK3CA, phosphatidylinositol-3-OH kinase; PRMT5, protein arginine methyltransferase 5; RET, proton-oncogene
rearranged during transfection; VEGFR, vascular endothelial growth factor receptor.
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genotyped between 2013 and 2018) [27, 37], we have only
seen MYB and MYBL1 fusions in adenoid cystic carcinomas
(specificity: 100%) [38]. We modeled that even if a non-ACC
would harbor one MYB/MYBL1 fusion, it would take �14
cases of non-ACC for the specificity to drop below 99.5%.
Therefore, ACC should be the top differential diagnosis when
encountering an MYB/MYBL1 fusion (= diagnostic relevance).

Anatomical distribution and gender were not correlated
with fusion- or mutational status (Fig. 2A). However, as pre-
viously noted [16], NOTCH1 mutations were solely found in
solid and cribriform subtypes (Fig. 2B) and occurred pre-
dominantly in older patients (i.e., ≥55 years; p = .17; Fisher’s
exact). Additional (and in part recurrent) mutations were
present in ARID1A, BRCA1, phosphatidylinositol-3-OH kinase
(PIK3CA), TGFBR2, CTNNB1, ATM, TERT, MDM2, FBXW7, and
MYC; for details, see supplemental online Table 1. Notably, in
case 13, we identified coamplification of NOTCH1 and MYC
genes (supplemental online Fig. 1A), whereas case 12 was
remarkable for a canonical TERT promoter mutation at posi-
tion −124 (supplemental online Fig. 1B) [39]. Importantly,
these additionally detected genetic aberrations occurred in
tumors with MYB/MYBL1/NOTCH1 alterations, whereas the
remaining “wild-type” tumors showed no additional changes
by our targeted gene panel (p = .002, Fisher’s exact).

MYB-Fusion Status and Correlation with Protein
Expression
Interestingly, the occurrence of MYB/MYBL1/NOTCH1 gene
alterations was, with one exception (case 10), mutually
exclusive [40]. Review of this comutated case 10 showed a
geographically distinct MYB protein expression pattern (sup-
plemental online Fig. 2A), possibly reflecting intratumoral het-
erogeneity [41] with respect to the underlying MYB-NFIB and
NOTCH1 gene alterations. Unless limited by tissue availability,

we tested NGS-positive MYB-NFIB cases by MYB break-apart
FISH and confirmed all cases as MYB rearranged (Fig. 2B). Cor-
relation of the three methods identified (a) NGS-concordant
protein expression (supplemental online Fig. 3) [10, 17],
(b) strong overexpression of MYB protein (supplemental online
Fig. 2B) despite being fusion- and FISH negative (supplemental
online Fig. 2C), or (c) unusual “green-only” MYB probe pattern
by FISH (supplemental online Fig. 3E, circles) with MYB protein
expression (supplemental online Fig. 3F). These findings are
compatible with loss of the corresponding exons (supplemen-
tal online Fig. 4A–C) and/or a locus disruption outside the
MYB coding region affecting the “red” probe binding site.
One way to improve sensitivity of the FISH assay would be to
modify FISH probe position (supplemental online Fig. 4A–C).
In other words, relying on a single method may be inferior
because our findings underscore the complementary nature
of various testing modalities [38].

Outcome Analysis and Clinical Utility
To assess prognostic relevance in our setting, we first inte-
grated our 20 (internal) samples/patients with 201 publicly
available (external; www.cbioportal.org) data (total case
number = 221). Notably, when comparing progression-free
survival periods, we found significantly shorter progression-
free survival in our internal population as compared with
publicly available data (supplemental online Fig. 5; p = .0003,
log-rank). The significant difference is likely due to specific
order-practice in our setting, where providers use genotyping
in patients with locally advanced or systemic/palliative dis-
ease settings (Table 2; 87.5% pT3/4 internal vs. 55% external).
A striking 40% of the tested patients in our setting experi-
enced immediate tumor progression (supplemental online
Fig. 5). Comparing the prevalence of NOTCH1 mutations
and MYB/MYBL1 fusions revealed a similar frequency in

Figure 1. Clinically integrated diagnostics and analytical workflow. (A): Timeline in days, indicating the diagnosis of adenoid cystic
carcinoma (ACC) between 2011 and 2018 by black lines (patients without genotyping) as well as 20 ACC cases, that were
sequenced within that timeframe (red lines, patients with genotyping). (B): Analysis of 20 clinically performed formalin-fixed
paraffin-embedded tissue samples and corresponding clinical data. We integrated five separate diagnostic components including
(a) histomorphology, (b) MYB immunohistochemistry, (c) MYB break-apart FISH, (d) an NGS DNA-based gene panel, and (e) an
RNA-based NGS panel for fusion detection. For outcome assessment, we employed 201 publicly available (external) data.
Abbreviations: Clinical Dx, clinical diagnostics; FISH, fluorescent in situ hybridization; NGS, next-generation sequencing.
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external and internal data sets (not shown), and both
cohorts were pooled for further analysis (n = 221). The
group of cases with NOTCH1, MYB, and MYBL1 alterations
makes up half of all ACC (Fig. 3A), and when compared
with the wild-type group, the NOTCH1/MYB/MBL1 group
(= signature) does not demonstrate significantly different
clinicopathological features (Table 2). Although the median
progression-free survival in the “signature” group was only
2.6 years (vs. 4.3 years in the wild-type group), the differ-
ence did not reach statistical significance (p = .16, log-rank;
Fig. 3B). Prior studies have reported a more aggressive clini-
cal course of NOTCH1/MYB/MYBL1 patients [10, 15, 16];
however, the direct clinical application as a prognosticator
remains to be explored [42, 43]. For assessment of clinical
utility, we considered two key clinical management questions
regarding (a) identification of treatment options (= action-
ability) and (b) prognostication. First, we examined the subset

of patients with initially nonresectable or systemic tumors
(n = 8/20, 40% of the cohort) and determined the fraction
of identified potentially actionable molecular alterations.
When taking into account the shifting landscape of clinical
trials (including “basket trials” and those listed in Table 1),
our integrated molecular workup revealed potentially action-
able alterations in 6 of 8 patients (75%; Fig. 3C). Second,
when initial complete surgical resection can be achieved,
we examined whether the NOTCH1/MYB/MYBL1 signature
can serve as a prognosticator. We found that median
progression-free survival in the signature group was 1.6
years versus 4.3 years in the wild-type group (p = .04,
log-rank; Fig. 3D). Although conclusions will inevitably suf-
fer from the very small sample size, considering that ACC
is an orphan disease, these data outline clinical utility by
distinguishing relevant subgroups of patients with ACC in
clinical practice.

Table 2. Clinicopathological characteristics of the study cohort according to mutational status of MYB, MYBL1, and/or
NOTCH1

Characteristics
Patients, n (%) MYB/MYBL1/NOTCH1 Positive Patients, n (%) Wild-type Patients, n (%)

p valuen = 20 n = 12 n = 8

Age, years

Average 56 61 48 .06

Median (range) 56 (28–90) 60 (28–90) 47 (34–59)

Gender

Male 13 (65) 7 (58) 6 (75) .44

Female 7 (35) 5 (42) 2 (25)

Localization

Salivary gland 6 (30) 5 (42) 1 (12.5) .19

Tonsil/tongue 4 (20) 2 (17) 2 (25)

Paranasal sinuses 3 (15) 2 (17) 1 (12.5)

Trachea 3 (15) 3 (37.5)

Orbit 2 (10) 1 (8) 1 (12.5)

Lung 2 (10) 2 (17)

Tumor sizea

T1/T2 2 (12.5) 2 (18) 1 (20) .07

T3/T4 14 (87.5) 9 (82) 4 (80)

Nodal statusa

N0 12 (71) 8 (67) 4 (80) .58

N+ 5 (29) 4 (33) 1 (20)

Metastasisa

M0 15 (79) 8 (67) 7 (100) .09

M1 4 (21) 4 (33)

Histology

Solid 3 (15) 3 (25) .12

Cribriform 6 (30) 5 (42) 1 (12.5)

Tubular 3 (15) 1 (8) 2 (25)

Mixed 8 (40) 3 (25) 5 (62.5)

Resectability

Resectable 12 (60) 6 (50) 6 (75) .26

Nonresectable 8 (40) 6 (50) 2 (25)
aTotal (n) of clinicopathological details differs due to missing data.
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Assessment of Financial Sustainability
A key factor in maintaining an integrated genotyping pro-
gram in clinical practice is achieving financial sustainability.
In contrast to cancers with higher prevalence, the rarity in
orphan diseases poses additional hurdles [14, 21, 44], par-
ticularly when genotyping is applied only to the meaningful
subsets of patients. During the initial phase (2013–2015;
Fig. 4A), we applied the miscellaneous CPT code 81479
“Unlisted molecular pathology procedure” for NGS testing
because specific NGS codes were not available at the time.
We excluded data from this time frame because of the
nonspecific nature of the CPT code and high variability in
payments. Of the 12 cases charged after NGS code intro-
duction, we excluded 2 cases because of payment through
alternative sources. Review of the remaining 10 cases
included in the analysis (Fig. 4A) showed that 72% of the

total amount charged derived from NGS panel codes whereas
28% derived from non-NGS codes. Reimbursement analysis
indicates that 29% of payments derive from NGS codes
whereas 34% of payments derive from non-NGS codes. In
summary, the fraction of reimbursement for NGS and non-
NGS tests sums up to a total of 63% (Fig. 4B). When com-
paring this fraction of reimbursement with published local,
national, and international reimbursement rates, the overall
fraction is similar (Fig. 4C). Notably, these comparison data
are obtained in nonorphan disease settings and include
multisite studies including large community centers or
even national initiatives [28–36]. Nonetheless, obtaining
reimbursement requires carefully designed workflows to
account for prior authorization, policy tailoring, and appeals
processes [45–47]. Review of the claim adjustment codes in
our cohort indicates “charge exceeds maximum allowable”

Figure 2. Anatomic location and mutational landscape. (A): Anatomic location of each case shown with salient clinical and key
mutational findings (i.e., NOTCH1/MYB/MYBL1 findings). (B): Mutational landscape provided for each sample (column) along with
clinical and molecular features (rows). Triangles mark cases with additional details provided in the Supplement.
Abbreviations: CNG, copy number gain; F, female; InDel, insertion/deletion; M, male; NGS, next-generation sequencing; weak/neg.,
weak/negative; PM, point (missense) mutation; WT, wild-type.
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(n = 6 of 10) as the most frequent reason for adjusted
payments.

Therefore, our data indicate that integrated genotyping
of selected patients with ACC in our practice is approaching
financially sustainability. In conjunction with the ability to
identify potentially (therapeutically) actionable subsets of
patients, our data indicate that achieving financial sustain-
ability requires a multiyear and multidimensional program.

DISCUSSION

Here we report that clinically integrated molecular-genetic
diagnostics can identify a significant subset of potentially
actionable molecular alterations in patients with nonresectable
ACC. Identification of MYB/MYBL1 fusions is 100% specific
for ACC and can serve as a diagnostic biomarker. Molecular
genotyping can furthermore serve as a prognostication tool
for progression-free survival in initially surgically curable
patients with ACC. Finally, we present reimbursement data,
indicating that approaching financial sustainability requires a
multiyear and multidimensional program.

Generally, ACC is being portrayed as an indolent dis-
ease; however, it has become clear that this is not always
the case [48]. We fully acknowledge that the rarity and the
small number of patients represent a significant limitation
of our study. However, the demand for larger cohorts and
studies does not solve day-to-day clinical management ques-
tions: for example, how to identify the subset of patients
with ACC with a more aggressive clinical course. Notably,
despite various studies outlining the prognostic relevance of

molecular markers [5, 9, 15, 16, 42, 43, 48–54], clinical
guidelines currently rely on staging, margin status [55], peri-
neural invasion [56], and resectability for treatment stratifi-
cation (NCCN guidelines Version 2/2018; www.nccn.org, last
accessed 12/22/2018).

Molecular genotyping in ACC is primarily performed in
research settings, and numerous studies have outlined rele-
vant mutational profiles [17, 57–59]. In addition, various bio-
logical [12, 17, 60], diagnostic [60–64], prognostic [16, 54, 64],
and therapeutic advances [14, 15, 59] have been proposed. It
is important to note that our study did not focus on identifi-
cation or description of novel biomarkers. In contrast, our
aim was to specifically address clinical utility of established
alterations in clinical practice. In other words, our integrated
precision medicine program explicitly prioritizes the individu-
alization of care and focuses attention on unique character-
istics of a particular patient subset. The approach thereby
differs from traditional evidence-based medicine, which
seeks to determine the best course of action for a patient
with an appeal to generalizable knowledge gained from
population-based studies [24, 65]. In the case of the orphan
disease ACC, this specifically means to demonstrate utility in
the small subset of meaningful patients. Demonstrating utility
of previously described molecular alterations in the relevant
subset of patients in clinical practice is the next logical and
important step toward identifying when expanded or inte-
grated genotyping should be considered standard of care.

The MYB translocation t(6;9)(q21-24;p13-23) results in a
fusion protein of two transcription factors (MYB and NFIB).
The MYB-NFIB fusion results in an increased expression of

Figure 3. Outcome analysis and clinical utility. (A): Distribution of NOTCH1, MYB, and MYBL1 alterations in a cohort of 221 cases.
(B): Progression-free survival of patients by NOTCH1/MYB/MYBL1 status (altered vs. nonaltered). Note: The grouping is based on
prognostic impact, and we acknowledge that MYB/MYBL1 and NOTCH1 signaling is functionally distinct. Kaplan-Meier survival
plots demonstrate shorter time to metastasis or local tumor progression for patients whose tumors showed NOTCH1/MYB/MYBL
alterations versus those who did not; the difference did not reach statistical significance (p, log-rank test). (C): Utility assessment
of molecular findings is twofold: (a) identification of potential actionable alterations in patients with nonresectable tumors (see
also Table 1) and (b) prognostication in surgically curable patients. (D): Progression-free survival of patients by NOTCH1/MYB/
MYBL1 status (altered vs. nonaltered). Kaplan-Meier plots show shorter progression-free survival time for patients with surgically
resectable tumors in the subgroup with NOTCH1/MYB/MYBL alterations (p, log-rank test).
Abbreviation: ACC, adenoid cystic carcinoma; HR, hazard ratio; PFS, progression-free survival.
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the protein Myb [43]. Myb is important for the growth of
multiple solid tumors, and MYB protein overexpression in
ACC is associated with a more aggressive clinical course [33,
47–49]. For example, Mitani et al. [40] reported that the
level of MYB expression in identical histological subtypes of
ACC is associated with a shorter survival time. Recently,
xenografting [66] and the first MYB-NFIB-positive cell line
(UM-HACC-2A) have been established and represent inter-
esting tools to explore novel therapeutic possibilities [67].
Therapeutically, MYB-targeted antisense oligodeoxynucleo-
tides (G4460; INX-3001; LR3001) [68] have not been effective
in clinical trials [69]; however, several lines of evidence
suggest that MYB is a promising therapeutic target [70–73].
Currently, the first clinical trial of a therapy that directly

targets MYB, in combination with an anti-PD-1 immune
checkpoint inhibitor, opened (MYPHISMO, NCT03287427),
and the first patient with ACC received her first infusion of
the MYB DNA vaccine in September 2018 [74]. Collec-
tively, these data suggest that identification of MYB alter-
ations represents a promising approach to identify a subset
of patients with ACC for molecularly targeted therapies.

NOTCH1 alterations also identify a subset of patients
with an aggressive disease course [50] that are potential
candidates for clinical trial enrollment. Importantly, NOTCH1
knockdown results in effective suppression of metastasis
in vivo [51], and the efficacy of gamma-secretase inhibitors
targeting the canonical NOTCH1 signaling pathway [19] is
currently being explored (NCT03422679). Ferrarotto et al. [75]

Figure 4. Financial sustainability of adenoid cystic carcinoma testing in clinical practice. (A): Timeline shows dates of service and
dates of charges. In 2015, CPT codes for NGS-based panel testing were available and introduced (vertical line). We excluded cases
with miscellaneous CPT codes (applied before availability of NGS codes indicated by open gray diamonds) and those payed for
from alternative sources (indicated by filled gray diamonds). The cases included in the reimbursement analysis span 2.5 years. (B):
Bar graphs comparing charged (left) and reimbursed amounts (right) separated by NGS- and non-NGS related fractions. Note: The
lower rate in the fraction of reimbursement of NGS codes when compared with non-NGS codes is likely related to a combination
of (a) lower rates of payments, (b) denials, and/or (c) a relative larger fraction of payments related to non-NGS codes. (C): Bar
graphs indicating reimbursement in percent; the location of the eight references (see Results) is provided on the world map.
Abbreviations: Author, first author of the publication; CP, commercial plans; CPT, current procedural terminology; EGFR, epidermal
growth factor receptor (single gene testing); GP/CMS, government plans/Center for Medicare and Medicaid services; MGP, Man-
aged government plans (i.e., Medicaid health maintenance organizations and managed Medicaid/Medicare plans); NGS, next-
generation sequencing; NHA/NHI, national health authority/national health insurance; SHIS, Germany’s statutory health insurance
system; UHCS, Japanese universal health care system.
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described activating NOTCH1 mutations that define a dis-
tinct subgroup of patients with adenoid-cystic carcinoma
who have poor prognosis, propensity to bone and liver
metastasis, and potential responsiveness to Notch1 inhibi-
tors in a patient-derived xenograft model. Furthermore, an
index patient with NOTCH1-mutant ACC showed partial
response to brontictuzumab [16]. Those results led to a clini-
cal trial for patients with ACC treated with brontictuzumab
(OMP-52 M51), a humanized monoclonal antibody directed
against the Notch-1 receptor with potential antineoplastic
activity (NCT02662608). Moreover, CB-103, a small molecule
inhibitor, is being tested in a phase IIA trial in up to 140
patients with preselected cancer indications with tumor cells
characterized by NOTCH overactivation (NCT03422679). In
addition, the first phase II clinical trial of a NOTCH inhibitor
recently opened (NCT03691207). These data collectively indi-
cate NOTCH1 and MYB genes as promising therapeutic tar-
gets. Most recently a clinical trial for NOTCH-mutant ACCs
has started at our institution (ACCURACY trial; NCT03691207).

Additional cancer-relevant alterations co-occurred within
the set of MYB/MYBL1/NOTCH1 aberrations that may con-
tribute to the more aggressive clinical course in this group
of ACC. Several other aberrations may lead to new thera-
peutic strategies (Table 1). For example, PARP inhibitors such
as rucaparib and other agents such as trabectedin are actively
tested in tumors with BRCA1 mutations (NCT01989546).
PIK3CA are responsible for coordinating a diverse range of
cell functions including proliferation and survival. Novel
therapeutics targeting different components of the PI3K
pathway showed preclinical efficacy in an array of human
cancer, and several compounds as well as dual PI3K-mTOR
inhibitors, PI3K inhibitors (that do not inhibit mTOR), AKT
inhibitors, and mTOR catalytic site inhibitors are moving
toward clinical trials (Table 1) [76–78]. Interestingly, ESR1
has also been linked to PIK3CA variants in metastatic breast
cancer [53, 79], and one of our ACC cases with a PIK3CA
mutation (number 10) also harbored an ESR1 aberration.
Strategies to block estrogen signaling have shown extraordi-
nary success in the prevention and treatment of breast can-
cer, and the development of therapeutic approaches that
directly target ESR1-mutated clones is an appealing concept.

Although primarily designed to identify therapeutically
actionable alterations (Table 1), our testing platform also
showed prognostically relevant signatures (Fig. 3). Many
head and neck cancer centers will not have local access to
molecular testing that integrates DNA and RNA NGS, FISH,
and IHC data. Furthermore, establishing such testing prac-
tices is challenging when cost-coverage for molecular tests
is restricted to settings that have been shown to directly
influence therapeutic decision-making. In some diagnosti-
cally challenging cases, there is value in detecting a fusion
that is highly specific for ACC; however, our testing approach
was not specifically built for ACC. We combined and rep-
urposed several existing infrastructures from former initia-
tives [80–83] to illustrate clinical utility in ACC. At first glance,
this cross-functionality seems straightforward; however, we
want to underscore that this platform is not a “one-time
research project” but represents a fully integrated clinical-
grade workflow. Two components are noteworthy: first, a
dedicated clinical data science team that maintains the

computational infrastructure; and second, adopting up-to
date U.S.-billing practices to approach financial sustainabil-
ity. With only 10 cases over multiple years, any economic
argument can only be anecdotal and numerous limitations
apply (e.g., variance by payor, coinsurances, copayments,
deductibles, etc.). Furthermore, some may argue that CMS
charges can only be regarded as an imperfect reference
cost and do not account for additional indirect cost compo-
nents, laboratory maintenance cost, etc. Importantly, when
taking into account that our approach requires navigation
of at least four distinct CPT codes from various payors, differ-
ent negotiated hospital contracts (that changed over time),
and the various components and tools of the U.S.-centric rev-
enue cycle, it becomes clear that achieving financial sustain-
ability in an orphan disease is a multiyear endeavor and that
the integrated testing approach has to entail a highly special-
ized and policy-tailored billing process [45–47], an arguably
overlooked aspect of personalized medicine. Demonstrating
financial sustainability is important; however, in other set-
tings, the implementation of integrated NGS testing in an
orphan cancer will require modification(s). Despite these limi-
tations, our comparison with other molecular testing initia-
tives (Fig. 4C) indicates largely compatible rates, and it is
critical to understand the underlying motivation of the reim-
bursement or funding source. In our setting—a U.S.-based,
CLIA-certified diagnostic laboratory in a tertiary care (aca-
demic) medical center—we were able to align the goals of pri-
vate payors for medically meaningful testing (and reduction of
unnecessary testing) with the needs of our providers and the
aims of the health care organization. When considering other
variables, for example, single-payer systems with national
quality improvement initiatives, or initiatives that aim to
tackle multiple diseases or even disease groups, financial sus-
tainability can only be achieved through meticulous planning
and the combination of mural and extramural funding
strategies. Simply put, the (financial) sustainability of a
novel initiative is a direct function of how well the core value-
proposition of the program is aligned with the aims of the
funding source (supplemental online Fig. 6). For orphan can-
cers, there is currently no generalizable “cost-benefit approach”
that can serve as a one-size-fits-all approach for the plethora of
possible settings. Therefore, managing the variable economic
burden of NGS testing programs remains context dependent,
and we have summarized the paradigm for achieving financial
sustainability in modern medicine by funding source (supple-
mental online Fig. 6). Interestingly, several centers recently
established rare tumor clinics [14, 21, 44], and we wanted to
share our financial data because these additional layers of com-
plexity in sustaining clinical genotyping are largely ignored, par-
ticularly when relevant subsets of patients with recurrent or
metastatic ACC only present 2–3 times per year.

CONCLUSION

Clinically integrated workup of patients with ACC can identify
a significant subset of potentially actionable molecular alter-
ations in nonresectable tumors and serves as a prognostication
tool for progression-free survival in initially surgically curable
patients. The full potential of molecularly informed, personal-
ized medicine relies on the availability of testing, access to

© AlphaMed Press 2019

Integrated Molecular Diagnostics in ACC1364



molecularly matched therapeutic strategies, and ultimately
demonstration of outcome differences. In our practice, a sig-
nificant fraction of patients could benefit from genotype-
stratified and targeted therapies—which matches the experi-
ence by others. However, clinical implementation requires
at least initial investment until financial sustainability is
achieved, especially at times of intense economic pressure
and demand to manage rapidly escalating health care costs.
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For Further Reading:
Zviadi Aburjania, Samuel Jang, Jason Whitt et al. The Role of Notch3 in Cancer. The Oncologist 2018;23:900–911.

Implications for Practice:
The Notch family is a highly conserved gene group that regulates cell‐cell interaction, embryogenesis, and tissue
commitment. This review summarizes the existing data on the third subtype of the Notch family, Notch3. The role of
Notch3 in different types of cancers is discussed, as well as implications of its modification and new strategies to affect
Notch3 signaling activity.
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