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Mycobacterium abscessus has been recognised as a dreadful respiratory pathogen
among the non-tuberculous mycobacteria (NTM) because of misdiagnosis, prolonged
therapy with poor treatment outcomes and a high cost. This pathogen also shows
extremely high antimicrobial resistance against current antibiotics, including the anti-
tuberculosis agents. Therefore, current chemotherapies require a long curative period
and the clinical outcomes are not satisfactory. Thus, there is an urgent need for discovering
and developing novel, more effective anti-M. abscessus drugs. In this review, we sum the
effectiveness of the current anti-M. abscessus drugs and drug candidates. Furthermore,
we describe the shortcomings and difficulties associated with M. abscessus drug
discovery and development.
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INTRODUCTION

A steady increase in the morbidity and mortality rates of non-tuberculous mycobacteria (NTM) has
been noted worldwide; surpassing the numbers of tuberculosis (TB), NTM is becoming a new global
health concern. NTM has been noted to increasingly cause pulmonary-associated morbidity and
mortality in the United States, although NTM lung disease remains uncommon in the general
United States population (estimated in 40 cases/100,000 persons). However, NTM is highly prevalent
among adults and children with cystic fibrosis (CF). According to an analytical study in the
epidemiology of pulmonary NTM sputum positivity from 16,153 patients with CF in the
United States, 20% (3,211) had a pathogenic NTM species. Among the NTM, 61% had
Mycobacterium avium complex (MAC) and 39% had M. abscessus (hereafter Mab) (Adjemian
et al., 2018). Among the NTM,Mab is described as an opportunistic, emerging, non-tuberculous, and
saprophytic Mycobacterium found commonly in soil and water systems (Falkinham, 2013;
Morimoto et al., 2018). However, this organisms can cause nosocomial outbreaks and pseudo-
outbreaks due to contaminated materials (Roux et al., 2016). For instance, NTM has been detected in
hospital ice machines, water-cooling systems and haemodialysis unit water supplies (Ratnatunga
et al., 2020). Furthermore, recent studies demonstrated that NTM species, includingMab, have been
identified in showerhead biofilms, which have become the primary source of NTM exposure to
humans with a high organism density (Gebert et al., 2018).

The clinical spectrum of Mab has been broadly categorised as a pulmonary and extrapulmonary
disease. Mab is the most common cause of rapidly growing mycobacteria (RGM) pulmonary
infections, particularly in immunocompromised patients, such as those with CF, human
immunodeficiency virus-positive status, chronic obstructive pulmonary disease, and
bronchiectasis (Bryant et al., 2013; Mougari et al., 2016; Skolnik et al., 2016; Wassilew et al.,
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2016; Andrew et al., 2019; Stephenson et al., 2019; Johansen et al.,
2020b). Furthermore, according to recent studies, most Mab
pulmonary disease cases have been identified in healthy older
adults with no history of smoking but who have lung airway
abnormalities (Ryan and Byrd, 2018). The pulmonary Mab
disease is known as a chronic and incurable disease and it
requires treatment with parenteral antibiotics for 2–4 months
followed by long-term macrolide-based antibiotic therapy
(Griffith et al., 2007). In contrast, Mab extrapulmonary
infection can occur many sites such as skin, soft tissue, and
bone infections after medical procedures or traumatic injuries
(Wi, 2019). The recommended duration of therapy for
extrapulmonary infection is usually a total of 4–6 months of
antibiotic treatment with an initial combination of parenteral
antibiotics for at least 2 weeks with a high success rate (Griffith
et al., 2007).

The Mab group is known to consist of three subspecies,
namely, Mab subsp. abscessus, Mab subsp. massiliense and
Mab subsp. bolletii (Minias et al., 2020). Each subspecies is
different in terms of clinical outcomes and typical
antimicrobial susceptibility profile (Blauwendraat et al., 2012;
Harada et al., 2012; Shin et al., 2013; Jeong et al., 2017; Abate et al.,
2019). The macrolide (azithromycin and clarithromycin)-
resistant ability of Mab subsp. abscessus is induced by an
adaptive resistance mechanism using the inducible ribosomal
methylase gene erm (41) (Stout and Floto, 2012; Rubio et al., 2015;
Christianson et al., 2016; Abate et al., 2019). Therefore, great
caution is required when using macrolide to treatMab infections
(Maurer et al., 2014). Although Mab subsp. massiliense is the
latest subspecies in this group; it is more widely distributed than
other subspecies (Sabin et al., 2017). This subspecies has more
favourable clinical outcomes than the other twomembers because
it lacks the functional erm gene (Koh et al., 2011; Shallom et al.,
2013; Park et al., 2017; Abate et al., 2019). Recent studies have
shown that the transmission source of Mab subsp. massiliense is
primarily the sputum with high organism loads rather than an
environmental source, and most recent outbreaks occur in
transplant centres, serving patients with CF (Sabin et al.,
2017). Meanwhile, Mab subsp. bolletii is the rarest among the
three subspecies, and it is also resistant to clarithromycin and
kanamycin (Sabin et al., 2017).

Based on the American Thoracic Society/Infectious Diseases
Society of America recommendation, Mab therapy comprises
intravenous injection of amikacin with cefoxitin or imipenem and
an oral dose of macrolide (Jeon et al., 2009). However, Mab is
resistant to many antibiotics, including the above regimen, thus
making it difficult to cure. Half of all patients were cured when
this regimen was used, but most cases relapsed and died (Kim
et al., 2019; McNeil et al., 2020). This poor success rate is mainly
caused by rapidly emerging drug resistance due to their natural
and acquired multidrug resistance to antibiotics. Even first-line
anti-TB drugs, such as isoniazid and rifampicin, are not active
againstMab. This resistance mechanism presumably involves the
efflux pump mechanism, drug inactivation by ADP-
ribosyltransferase and erythromycin resistance genes. Thus, no
antibiotic class or regimen is effective for long-term sputum
smear conversion in pulmonary Mab infections. Novel

alternative drugs to the existing regimen are therefore
required. Significant efforts to develop novel anti-TB drugs
have been launched, but these drugs are deemed less potent
against RGM, particularly for Mab (Chopra et al., 2011). For
instance, Telacebec (Q203), a drug candidate in phase II clinical
trial for Mycobacterium tuberculosis (Mtb), targets the QcrB in
cytochrome bc1 complex, which failed to inhibit the Mab growth
at the 10,000-fold minimum inhibitory concentration required to
inhibit the growth of 50% of Mtb (MIC50) (Sorayah et al., 2019).
Mab drug pipelines are rarely populated and are primarily
focused on the reformulation of approved antibiotics or
repurposing. According to records from NIH ClinicalTrials.
gov, there are only six recruiting, three completed, one
terminated and one unknown clinical trial to evaluate drug
efficacy. However, these clinical trials have been conducted
mainly using current antibiotics in different types of drug
administration, such as inhalation, new drug encapsulation
with biocompatible liposomes and new drug combinations
(Table 1). There are currently no FDA-approved antibiotics to
treat Mab pulmonary disease (Maggioncalda et al., 2020).
Although discovering novel drugs against Mab is receiving
much scientific attention, our current endeavours remain
insufficient. Thus, discovering new alternative compounds for
Mab infection treatment are urgently needed. In this context,
many different screens have been recently performed, such as
reporter-based assays, resazurin-based microplate assay and
image-based phenotypic screens (Gupta et al., 2017; Jeong
et al., 2018; Richter et al., 2018; Kim et al., 2019; Malin et al.,
2019; Hanh et al., 2020a, 2020b). However, there is still a poor,
promising new chemical lead waiting for clinical trials andmarket
release (Hanh et al., 2020a). This may be because of the intrinsic
drug-resistant mechanism that generates the low hit rate for
compounds targeting Mab (Malin et al., 2019). The hit rate of
Mab screens is extremely lower than the results obtained forMtb
screens (Malin et al., 2019). In addition, recentMab drug screens
have used preselected compounds and compound libraries
reconstructed using compounds with known antimycobacterial
or antibacterial properties (Malin et al., 2019). Therefore, new
libraries designed with expanded chemical diversity should be
prepared to identify new chemical entities. Lastly, more reliable
cell-based screening that can mimic the Mab-infected host
environment is strongly required.

Effectiveness and Limitation of Current
Anti-Mab Drugs and Drug Candidates
Several clinical guidelines are recommended and in use (Haworth
et al., 2017; Daley et al., 2020). However, these recommendations
are based on a lack of high-level clinical evidence, often the
clinical opinion or clinical case report (Lipman et al., 2021).Mab
infection normally requires 18 months of long-term therapy with
multidrug. The conventional regimen includes macrolide as a key
drug in combination with two parenteral agents, often amikacin
with a β-lactam-imipenem or cefoxitin for the initial phase
(Haworth et al., 2017). This therapy should be given for at
least 2–4 months, followed by oral macrolide based therapy
(Victoria et al., 2021). The 2017 British Thoracic Society
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guidelines recommended a new regimen for the initial phase as an
initial phase of at least 4 weeks course of intravenous amikacin,
tigecycline, and imipenem administration with a macrolide. For
the continuation phase, nebulized amikacin and an oral
macrolide in combination with one to three of the following
oral antibiotics guided: linezolid, clofazimine, minocycline
cotrimoxazole, and moxifloxacin (Haworth et al., 2017). The
main goal of this guideline is 12-month sputum culture
conversion. However, recurrence and several adverse effects
are frequent, making this outcome unrealistic for many
patients (Lyu et al., 2011; Koh et al., 2014). Here, we present
current anti-Mab drugs, problems and provide an update on
recent developments in the Mab drug-development pipeline.

Macrolide
Treatments for Mab infection require a long-term course with
multiple antibiotics. Among them, the second-generation
macrolides clarithromycin and azithromycin are cornerstone
components of Mab treatment (Griffith et al., 2007). Although
macrolides are the main agents of Mab multidrug therapy, the
treatment success rates are poor owing tomacrolide-resistant strains.
The primary macrolide-acquired resistance normally occurs via a
specific position on the 23S rRNA rrl gene; the 2058 (A2058G/C/T)
or 2059 (A2059G/C) mutation in rrl provides resistance to
clarithromycin (de Carvalho et al., 2018; Wu et al., 2018; Daniel-
Wayman et al., 2019; Richard et al., 2020). Furthermore,Mab. subsp.
abscessus andMab. subsp. bolletii contain intrinsic resistance against
macrolides mediated by erm (41). Upon exposure to the macrolide,
Mab induces the expression of the erm (41) gene, and its gene
product transfers methyl groups to adenine in the peptidyl region of
23S rRNA, consequently modifying the binding site of
clarithromycin on the 23S ribosomal RNA (Stout and Floto,
2012; de Carvalho et al., 2018) (Figure 1). Exposure to

subinhibitory concentrations of clarithromycin induces
transcription of erm (41) by induction of a transcriptional
regulator whiB7 (Pryjma et al., 2017). However, Nash et al.
reported some clinical isolates that contain non-functional erm
(41). These strains did not show macrolide-inducible resistance
under extended incubation with clarithromycin. Instead, the
authors revealed that the strains comprise loss-of-function on the
erm (41) gene with a T-to-C substitution at position 28 (C28
sequevar), resulting in an amino acid substitution from Trp to
Arg at codon 10 (Nash et al., 2009; Brown-Elliott et al., 2015).
Therefore, it would be worthy to sequence the erm (41) gene for
prediction of macrolide susceptibility. In contrast, isolates of Mab
subsp.massiliense carry a non-functional erm (41) gene that contains
397 bp deletion, including position 28T, consequently do not show
inducible-macrolide resistance, albeit it showed macrolide resistance
due to rrl mutants (Brown-Elliott et al., 2015).

To overcome the existing macrolide resistance mechanisms,
new drug discovery and drug design have been evaluated. For
instance, a novel class of macrolide antibiotics named
“macrolones” comprising a macrocyclic moiety, linker, and
either free or esterified quinolone group showed excellent
antibacterial activity towards erythromycin-resistant gram-
positive and gram-negative bacterial strains (Čipčić Paljetak
et al., 2016). Furthermore, the macrolones possess a low
clearance, large volume of distribution, long half-life and
possess favourable pharmacokinetic properties by accumulating
in inflammatory cells, consequently complying with a once-daily
dosing potential (Munić Kos et al., 2013). However, although there
are considerable data available on its in vitro activity, mode of
action, in vivo efficacy and its recognition as a superior compound
than other known macrolides, more detailed information on the
structure-associated binding mode to the ribosome is needed (Jelić
andAntolović, 2016). Furthermore, its activity againstMab is yet to

TABLE 1 | Current clinical trials evaluating regimens for Mab treatment (ClinicalTrials.gov).

Status Title Treatment Type No. of
participant

Phase Estimated
completion date

Recruiting Liposomal amikacin inhalation in Mab
patients

Liposomal amikacin Observational 400 March 31, 2024

Finding the optimal regimen for Mab
treatment

Amikacin/Tigecycline/Imipenem/Cefoxitin/
Azithromycin/Clarithromycin /Clofazimine/
Ethambutol/Linezolid/co-trimoxazole/
Doxycycline/Moxifloxacin/Bedaquiline/
Rifabutin

Interventional 300 2 and 3 August 31, 2023

Pilot study to assess the effect of intermittent
iNO on the treatment of NTM lung infection in
CF and non-CF patients

LungFit Interventional 20 N.A. May 2022

Study of Mycobacterial infections Observational 1000 January 1, 2001
IV gallium study for patients with cystic
fibrosis who have NTM

Gallium nitrate Interventional 40 1 April 30, 2023

The Italian registry of pulmonary Non-
tuberculous Mycobacteria

Observational 500 December 31,
2022

Completed Inhaled nitric oxide for patients with Mab Nitric oxide Interventional 9 2 April 11, 2019
Liposomal amikacin for inhalation in the
treatment of Mab lung disease

LAI plus multi-drug regimen Interventional 30 2 December 31,
2019

Terminated Trial of inhaled molgramostim in CF subjects
with NTM infection

Molgramostim nebulizer solution and eFlow®

Nebulizer System (PARI Pharma GmbH)
Interventional 14 2 October 2, 2020

LungFit: experimental device that produces nitric oxide from the ambient air.
INO, inhaled nitric oxide; IV, intravenous; LAI, liposomal amikacin for inhalation; NA, not applicable.
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be determined. A better understanding of the macrolones in
various animal models and how the macrolones in Mab impact
potency is also needed.

β-Lactams and β-Lactamase Inhibitor
β-lactams are a widely-used antibiotic class, and their safety and
efficacy profiles have been well-documented. β-lactams inhibit the
synthesis of an essential component of the bacterial cell wall, the
peptidoglycan (Hartmann et al., 1972). Peptidoglycan of the Mab
contains predominantly 3→3 cross-links (64–74%) generated by
L,D-transpeptidases that are considered attractive targets for anti-
Mab drugs. (Lavollay et al., 2011). Penicillin-binding proteins
(PBPs) bind to β-lactams and this binding, in turn, interrupts
the terminal transpeptidation process; consequently, it induces loss
of viability and lysis of bacterial cells (Eckburg et al., 2019) (Figure
1). These have been studied extensively to treat drug-resistantMtb
infections, and certain β-lactam subclasses also exhibit activity
against Mab. However, most of the other β-lactam antibiotics are
not considered owing to their rapid hydrolysis by broad-spectrum
β-lactamase (MAB_2875; BlaMab), which was reported as the
major determinant of β-lactam resistance in Mab (Dubée et al.,
2014; Soroka et al., 2014; Pandey et al., 2019). Only two β-lactams,
such as cefoxitin and imipenem, which are relatively stable in the
presence of BlaMab, showed moderate in vitro activities, and both
compounds also exhibited a favourable in vivo activity in theMab-
infected zebrafish and mouse model (Table 2) (Bernut et al., 2014;
Lerat et al., 2014; Moigne et al., 2020). Both drugs are currently
recommended in treatment guidelines (Kozikowski et al., 2017;
Pandey et al., 2019).

Interestingly, recent research on avibactam, a non-β-lactam
β-lactamase inhibitor combined with β-lactam antibiotics in

Mab, has brought significant attention back to the re-use of
β-lactams for Mab treatment. Treatment with avibactam clearly
showed reduced MICs of several β-lactams againstMab (Kaushik
et al., 2017; Eckburg et al., 2019; Story-Roller et al., 2019).
Furthermore, Dubée et al., demonstrated that knockout of the
β-lactam-modifying gene (MAB_2875) restored the activity of
β-lactams. Furthermore, BlaMab is inactivated by the β-lactamase
inhibitor avibactam, resulting in significantly improved
intramacrophagic and in vivo activity in a zebrafish model of
Mab infection (Dubée et al., 2014; Lefebvre et al., 2017). Recently,
the use of avibactam has gained more interest (Figure 1). The
triple combination of rifabutin, imipenem and avibactam
achieved five-fold killing in the numbers of intracellular
survival of Mab (Le Run et al., 2018). Therefore, inhibition of
functional β-lactamase activity would be crucial for the β-lactam-
repurposing strategy following Mab treatment. In addition, an
interesting result was also reported by Pandey et al. They
discovered that dual β-lactam combinations, such as that of
ceftazidime with ceftaroline or ceftazidime with imipenem,
showed a persistent bactericidal effect in vitro, and these
combinations also showed dramatically reduced bacterial
burden to near baseline levels of infection against Mab-
infected THP-1 human macrophages. Again, these unexpected
synergistic activities provide the possibility of re-use of a large
family of β-lactam drugs as a treatment strategy against Mab
infections through proper combinations (Pandey et al., 2019).

Tetracycline Antibiotics
Tetracyclines were discovered in 1945; they were known to inhibit
bacterial growth by blocking the attachment of charged
aminoacyl-tRNA to the A site on ribosomes, inducing failure

FIGURE 1 | Mechanisms of action (MOA) of anti-Mab drugs and drug candidates.
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TABLE 2 | The current state of Mab antibiotics, with compounds currently going through development. * Indicates MIC50 value.

Class Name Chemical structure MIC90 (mg/L) Efficacy

Tetracycline

Tigecycline 2–16
• Increasing lifespan of Mab-infected fruit fly
• Proving dose-dependently effective against Mab in GM-CSF knockout mice
• Combination therapy showed treatment success in retrospective analysis
• Severe adverse effect mainly gastrointestinal distress

Omadacycline 2 • Tolerability is acceptable for patients with Mab disease
• Improved AUC/MIC than tigecycline (8–10 times)
• Significantly less gastrointestinal distress and fewer TEAEs

Eravacycline 1 • Improved AUC/MIC than tigecycline (2 times)

TP-271 0.06–0.5 • In vivo efficacy has not yet tested against Mab infected animal
• Currently under investigation in clinical phase I

Rifamycin

Rifabutin 0.9–4.2 • Good intracellular penetration/distribution
• Less drug-drug interaction
• No antagonistic effect with anti-Mab antibiotics
• Showing very good in vivo efficacy against Mab either in a zebrafish model and in NOD.CB17-Prkdcscid/

NCrCrl mouse model

Rifamycin O 3–4.7* • Good anti-Mab activity in zebrafish model of infection

Oxazolidinone

Tedizolid 4–8 • 2–16 fold greater in vitro activity than linezolid against Mab
Bacteriostatic activity

Delpazolid 1.2* • Comparable efficacy to linezolid in mouse model
• Less myelosuppression in phase I clinical trial
• Currently in clinical phase II for pulmonary TB

Diarylquinoline

Bedaquiline 0.062–0.125 • Good in vivo efficacy in zebrafish with less abscess and cord
• Significant bacterial reduction in GKO and SCID mouse model
• Less effectiveness in nude mouse model
• Doubtful result in small scale salvage therapy (4 patients) → only one patient showed improvement of

clinical symptoms

TBAJ-876 0.2–0.7 • Improved tolerability and PK profiles than bedaquiline
• Good in vivo efficacy in mouse infection model
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TABLE 2 | (Continued) The current state of Mab antibiotics, with compounds currently going through development. * Indicates MIC50 value.

Class Name Chemical structure MIC90 (mg/L) Efficacy

Moxifloxacin > 8 • Inducible mutational resistance
• Maybe used as oral drug in combination with other anti-Mab drug
• No mutation on gyrA and gyrB has been identified in Mab

Fluoroquinolones

DC-159a 16 • 4- to 8-fold lower MIC than other quinolones to Mab

Clofazimine ≤1 • Synergistic effect with AMK and CLA in in vitro combination
• Long half-life, slow metabolic elimination, high conc. in macrophage MOA is not clear
• Good in vivo efficacy in fruit fly, SCID, GKO, and GMCSF mouse
• CFZ containing regimen was revealed as effective against Mab in retrospective study

Cefoxitin 32–64 • Moderate in vitro activity
• Good in vivo efficacy in GKO mouse model of Mab infection

Imipenem 16–64 • Moderate in vitro activity
• Good anti-Mab activity in zebrafish model of infection
• Favorable in vivo efficacy in C3HeB/FeJ mouse model of Mab infection
• Synergistic activity with ceftazidime (in vitro and macrophage infection model)

β-lactams Ceftazidime 32–1024 • Poor in vitro activity
• Synergistic activity with ceftaroline or imipenem (in vitro and macrophage infection model)

Ceftaroline 2–128 • Moderate in vitro activity
• Synergistic activity with ceftazidime (in vitro and macrophage infection model)

β-lactamase inhibitor

Avibactam • No activity against Mab
• A non-β-lactam β-lactamase inhibitor, efficiently inhibits BlaMab.
• β-lactam combinations plus avibactam exhibited synergistic effect
• Those combination showed significant CFU reductions in the lungs of mice
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TABLE 2 | (Continued) The current state of Mab antibiotics, with compounds currently going through development. * Indicates MIC50 value.

Class Name Chemical structure MIC90 (mg/L) Efficacy

PIPD1 0.125–0.5 • Excellent activity in Mab-zebrafish infection model
• Resistant mutation was identified on MAB_4508

Indole-2-
carboxamides

0.25 (compound 5)
0.063
(compound 25)

• ICs showed statically significant reduced bacterial load in acute SCID mouse model

MmpL3 inhibitors

EJMCh-6 0.031–1 • Very good activity against intracellular Mab
• Significant activity in zebrafish model of Mab infection

Benzothiazole amides 0.5 (CRS400226) • 0.64 log10 bacterial load reduction with minor airway-centric inflammation in GM-CSF KO mouse

Epetraborole 0.1–1.35 • Significant activity against Mab in vitro, intracellular and in zebrafish infection model
• Clinical phase II study for UTI and intra-abdominal infection was terminated due to rapi d emergence of

resistant mutant

AR-12 4-8 • A phase I clinical trial has been completed
• AR-12 has received recently FDA IND-approval for cancer treatment
• Orphan drug status in Europe for selected indications
• Anti-pathogenic activity against bacteria, fungi, and viruses
• Very good in vivo efficacy in Mab infected mouse model

New anti-Mab
inhibitors

SPR719 2–4 • Showed good in vivo efficacy result in Mab. subsp. bolletii infected SCID mouse

Etamycin 3.8–24.9 • Inhibit growth of intracellular Mab
• Good activity in Mab-zebrafish infection model

Thiostrepton 1.4–7.7 • Significant inhibition of Mab growth in vitro and in macrophages
• Treated macrophages decreased proinflammatory cytokine production
• Good activity in Mab-zebrafish infection model
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of protein synthesis (Obrecht et al., 2011) (Figure 1). Usually, the
changes of tetracycline efflux or ribosomal protection become
resistant to tetracycline (Greer, 2006). For this reason, several
tetracycline analogues have been designed and synthesised to
prevent the development of resistance to tetracyclines. Although
Mycobacterium smegmatis andMtb showed low levels of intrinsic
resistance to tetracycline, Mab is approximately 500-fold more
resistant to tetracyclines than M. smegmatis and Mtb, making
them unavailable for treatment (Rudra et al., 2018).

Tigecycline, the first commercially available glycylcycline, was
created to bypass the critical mechanisms of bacterial resistance to
tetracyclines. Changes in the tetracycline structure allow
tigecycline to show good activity against tetracycline-resistant
pathogens, such as penicillin-resistant Streptococcus pneumoniae,
methicillin-resistant Staphylococcus aureus (MRSA) and
Staphylococcus epidermidis (MRSE), and vancomycin-resistant
enterococcus (VRE) species. Furthermore, tigecycline is a poor
substrate of the MabTetX (MAB_1496c), tetracycline-
inactivating monooxygenase, and it remains more effective
than other tetracyclines analogues (Johansen et al., 2020b).
Tigecycline was approved in Europe and the United States to
treat complicated skin diseases and complicated intra-abdominal
infections as the first drug in this class of antimicrobials (Greer,
2006). Tigecycline has in vitro activity against the Mab complex,
and the minimum inhibitory concentration required to inhibit
the growth of 90% of the organisms (MIC90) was 2–16 mg/L
(Singh et al., 2014). In the Drosophila infection model, the
lifespan of Mab-infected Drosophila treated with tigecycline is
much-expanded than that of Mab-infected Drosophila treated
with linezolid, amikacin and cefoxitin. The combination of
tigecycline and linezolid has an excellent in vivo efficacy in
boosting infected fly survival and reducing Mab dissemination
compared with a cocktail regimen (clarithromycin, amikacin plus
cefoxitin) (Oh et al., 2014). Furthermore, inhaled tigecycline was
effective against Mab in a dose-dependent manner in
granulocyte-macrophage colony-stimulating factor (GM-CSF)
knockout mice (Pearce et al., 2020). The most extensive
clinical trials were conducted for 52 patients with Mab and
M. chelonae infections to monitor the effect of tigecycline on
patients. Tigecycline-containing regimens were used as a salvage
treatment for patients with underlying CF without prior
antibiotic therapy. In this study, intravenous (IV) tigecycline
given (50 mg daily) for ≥1 month as part of a multidrug
regimen resulted in a clinical remission rate of more than
60%. However, adverse events were also reported in more
than 90% of the cases. The general adverse effects were
vomiting and nausea (Wallace et al., 2014). Furthermore, a
retrospective analysis was also performed to evaluate the in
vivo efficacy and adverse effects of tigecycline administration,
wherein 32 of the 53 patients withMab pulmonary disease (60%)
met the criteria for treatment success, 19 (49%) of the 39 patients
withMab subsp. abscessus pulmonary disease met the criteria for
treatment success and 13 (93%) of the 14 patients with Mab
subsp. massiliense pulmonary disease met the criteria for
treatment success. However, tigecycline treatment has also
resulted in severe adverse effects, mainly gastrointestinal
distress, such as nausea and vomiting (in 29 of 60 cases;

48.3%) (Chen et al., 2019). Thus, intravenous administration
of tigecycline is deemed undesirable for long-term treatment of
patients (Kaushik et al., 2019). Furthermore, in 2010 and 2013,
the US FDA reported an increased risk of mortality associated
with tigecycline use. Therefore, a new version of tigecycline with
similar or better efficacy and fewer adverse effects, preferably with
oral bioavailability, is desperately needed to improve the
treatment for Mab infections (Kaushik et al., 2019).

For these reasons, two newly developed tigecycline analogues,
omadacycline and eravacycline, have been reported to show
therapeutic potential. Omadacycline has an in vitro activity
against the wild-type and drug-resistant Mab with an MIC90

2 mg/L near the MIC of tigecycline. However, eravacycline
showed half in vitro MIC90 (1 mg/L) than tigecycline.
Considering the steady-state area under the curve (AUC) and
MICs obtained against Mab, the free drug AUC/MIC ratios for
omadacycline and eravacycline, given intravenously, are expected
to be approximately eight to ten times higher and twice higher
than tigecycline, respectively. This improved the intravenously
administered pharmacokinetic/pharmacodynamic parameters,
and activity data suggest that eravacycline and omadacycline
could be more effective than tigecycline clinically (Kaushik et al.,
2019). Recently, oral (PO) and IV formulations of eravacycline
(brand name Xerava) were clinically examined, but only the IV
formulation was FDA-approved for treating complicated cIAIs in
patients who are 18 years or older. Eravacycline’s mechanism of
action is similar to tetracycline because it blocks protein synthesis
by binding to ribosomes (Lee and Burton, 2019). Omadacycline is
associated with significantly less nausea and fewer treatment-
emergent adverse events than tigecycline (Gotfried et al., 2017).
Recently, a clinical study was reported for using omadacycline on
four patients with culture-positiveMab disease (two patients had
a cutaneous disease, one had the pulmonary disease and another
had osteomyelitis and bacteraemia). In this report, the patients
were treated with an omadacycline regimen, including other
antimicrobial agents, for a median duration of 166 days.
Omadacycline-containing regimens showed a clinical cure in
three of the four patients. Omadacycline is relatively well
tolerable during long-term treatment, although one patient
discontinued therapy at the sixth month because of nausea.
Despite this positive case report, further experiments are
needed to determine the role of omadacycline in treating Mab
disease (Pearson et al., 2020).

TP-271 is a synthetic fluorocycline antibiotic belonging to
tetracyclines. Like other fluorocyclines, TP-271 inhibits protein
synthesis by acting on the 30S ribosomal subunit. TP-271 showed
in vitro activity againstMabwith anMIC90 range of 0.06–0.5 mg/L,
although this compound has not been tested for its in vivo efficacy
in animal models with Mab infection. TP-271 has demonstrated
broad-spectrum in vitro and in vivo activities against various
community-acquired organisms, including Acinetobacter
baumannii, Staphylococcus spp., Streptococcus spp., Legionella
pneumophila, Haemophilus influenzae, Moraxella catarrhalis
and L. pneumophila, and other biothreat pathogens (Cynamon
et al., 2012). Furthermore, TP-271 also showed potent in vivo
efficacy in mouse and nonhuman primate models of inhalational
Francisella tularensis and Bacillus anthracis (Grossman et al.,
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2017a; Grossman et al., 2017b). TP-271 is currently in phase I
clinical trial, in which the safety and exposure in healthy volunteers
receiving TP-271 intravenously and orally is being evaluated
(Grossman et al., 2017b). Therefore, TP-271 is worth evaluating
for in vivo efficacy against inhaled Mab in animal models.

Rifamycin
Rifamycins were first isolated in 1957 from Streptomyces
mediterranei, which was later re-named Amycolatopsis
mediterranei (Sensi et al., 1959; Verma et al., 2011). Further
studies showed that although rifamycin B was microbiologically
inactive, its activity depended on its transformation into an active
product in aqueous solutions, such as test cultures or body fluids.
The transformed products, rifamycin O, SV and S, were then
isolated and are microbiologically active. Of these, rifamycin SV
had the best in vivo activity, tolerability and solubility; it has been
used to treat gram-positive bacterial infections in many countries.
However, rifamycin SV has poor anti-TB activity (Banerjee et al.,
1992). Rifampicin targets the β-subunit of bacterial RNA
polymerase (RpoB; Rv0667) in Mtb (Rominski et al., 2017;
Ganapathy et al., 2019). In this context, rifampicin resistance
is primarily caused by rv0667 mutation as acquired drug
resistance. Critically, rifampicin retains bactericidal activity
against intra-macrophages and slow metabolising Mtb, such as
drug-tolerant and non-replicating bacteria. Furthermore,
rifamycins can sterilise mycobacteria in caseum, the necrotic
material at the centre of granulomas, which is difficult to
eradicate. Thus, rifampicin showed strong potency against Mtb
in vivo and reduced relapse rate, consequently shortening TB
therapy to 6 months (Ganapathy et al., 2019) (Figure 1).

However, rifampicin is excluded from the treatment of Mab
lung disease owing to its low potency. It showed a high in vitro
MIC90 value against all Mab subspecies in cation-adjusted
Mueller–Hinton broth (approximately 165 mg/L) (Aziz et al.,
2017). As rifampicin does not cause acquired resistance by rpoB
mutation in Mab, its resistance by Mab is attributed to an
intrinsic mechanism. Recently, Rominski et al. showed that
rifampicin ADP-ribosyltransferase (MAB_0591; Arr_Mab),
which catalyses ADP-ribosylation at the C23 position of
rifamycin, is a significant innate rifamycin resistance in Mab
subsp. abscessus ATCC 19977 via gene knockout studies.
Deletion of MAB_0591 improved the potency of rifamycin
compared with the Mab parental type strain and the
rifamycin MIC was increased when mutant was
complemented with MAB_0591. Thus, Arr_Mab is the major
innate rifamycin resistance determinant of Mab (Rominski
et al., 2017).

Also, the Mab genome encodes many proteins, such as
members of the major facilitator family, ATP-banding cassette
transporters and MmpL proteins, which may be involved in drug
efflux systems. It also encodes a small multidrug-resistant family,
a family of lipophilic drug efflux proteins and a multidrug-
resistant stp protein involved in spectinomycin and
tetracycline resistance similar to Mtb (Nessar et al., 2012; Sassi
and Drancourt, 2014).

However, rifamycin has been recently used to manage Mab.
Aziz et al. conducted in vitro screening using a collection

comprising 2,662 US FDA-approved compounds and
narrowed down rifabutin as a hit. This rifamycin analogue had
an MIC90 of 2.5 mg/L against Mab bamboo strain, three Mab
subspecies and clinical isolates (Aziz et al., 2017). In this context,
rifabutin has been spotlighted recently. Furthermore, rifabutin
showed in vivo efficacy against Mab in a zebrafish model,
extending the lifespan of the Mab-infected zebrafish and in
NOD.CB17-Prkdcscid/NCrCrl mouse model compared with
clarithromycin (Johansen et al., 2020a; Dick et al., 2020).
Rifabutin treatment applications have some benefits, namely
high intracellular penetration, high volume of distribution,
adequate concentrations at the infection site, less drug–drug
interaction and better toleration by a large proportion of
patients. Furthermore, there are no antagonistic effects with
other clinically used anti-Mab antibiotics that have not been
reported (Ganapathy et al., 2019). In addition, the chemical
structures of rifabutin are different from other rifamycin
analogues. It lacks a hydroquinone moiety that Mab readily
metabolises at the C1 and C4 positions. Thus, this structural
difference is considered a key factor for anti-Mab activity (Hanh
et al., 2020b). Nonetheless, rifabutin is also a substrate of Arr, a
member of rifamycin; consequently, its activity is inhibited by
Arr. Thus, co-treatment with Arr-inhibitor or structural
modification of rifabutin might improve its potency against
Mab (Schäfle et al., 2021). Recently, another rifamycin
analogue, i.e., rifamycin O, which lacks hydroquinone in the
C1 and C4 positions, also showed anti-Mab activity in an infected
zebrafish model (Hanh et al., 2020b).

Oxazolidinone
Oxazolidinone is determined to have bactericidal activity against
many gram-positive bacteria, such as vancomycin-intermediate
strains, VRE, MRSA and penicillin-resistant pneumococci.
Linezolid is the first oxazolidinone to be developed; it exhibits
a high degree of in vitro activity against various gram-positive
pathogens. It also inhibits bacterial growth by binding to a site on
the bacterium’s 50S subunit 23S ribosomal RNA (Figure 1). This
binding prevents 70S ribosomal unit formation; consequently,
protein synthesis is inhibited (Rosati, 2017; Cho and Jang, 2020).
Furthermore, linezolid exhibits bactericidal activity against Mtb
and has been used to treat rifampicin-resistant and multidrug-
resistant TB. However, prolonged administration is often limited
by long-term side effects, such as reversible myelosuppression,
potentially irreversible optic and peripheral neuropathies (Cho
and Jang, 2020). Linezolid has shown a weak in vitro activity
against Mab infections with a modal MIC of 32 mg/L and an
MIC90 of 64 mg/L (Wallace et al., 2001).

Compared with linezolid, tedizolid is a next-generation
oxazolidinone with a favourable toxicity profile and superior
penetration into the epithelial lining fluid. Its MIC50 and
MIC90 were 1 and 4–8 mg/L, respectively, across all Mab-
tested strains, and the values were 2–16-fold lower than those
of the linezolid. The superior in vitro potency of tedizolid against
Mab suggests that it is a potential treatment agent for Mab
infections (Brown-Elliott and Wallace, 2017). Furthermore,
pre-exposure of Mab complex to tedizolid sub-MICs did not
initiate any drug-inducible drug resistance. Time-kill kinetics
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assays demonstrated the bacteriostatic activity of tedizolid against
all Mab subspecies, even at high drug concentrations (four to
eight times of the MIC) (Tang et al., 2018).

A novel oxazolidinone, delpazolid (code no. LCB01-0371) that
contains cyclic amidrazone was developed by LegoChem
Biosciences and showed improved safety, tolerability and
pharmacokinetics (PK). It has been reported that delpazolid
does not cause adverse events, such as myelosuppression,
which is a severe side effect of linezolid, even after 3 weeks of
repeated dosing in phase 1 clinical trial (Cho and Jang, 2020).
Delpazolid has a potential broad-spectrum in vitro activity
against Mab ATCC 19977 with MIC50 of 1.2 mg/L.
Furthermore, it resulted in reduced bacterial load in the lungs
to approximately 3.7 log10 CFUs compare to the efficacy of
linezolid at 100 mg/kg. Currently, delpazolid is in phase II
clinical trials for pulmonary TB. Thus, delpazolid may be a
promising new class of oxazolidinones with enhanced
protection that could eventually take the place of linezolid in
the long-term treatment ofMab (Kim et al., 2017). Recently, Wen
et al. evaluated the in vitro susceptibility of 115 isolates and 32
reference strains that are members of different RGM species
against four oxazolidinones, namely, delpazolid, sutezolid,
tedizolid and linezolid. The results showed that tedizolid had
the most potent inhibitory activity (MIC50 � 1 mg/L andMIC90 �
2 mg/L) against Mab in vitro. Simultaneously, delpazolid
presented the best activity against Mycobacterium fortuitum,
giving important insights into the potential clinical application
of oxazolidinones to treat RGM infections (Wen et al., 2021).
However, the use of oxazolidinone in clinical infection is not
simply considered by its MIC value. Thus, PK profiles and safety
issues should be compared together with in vivo infection models.
However, there is no exact comparison of PK profiles, safety
issues and in vivo efficacy between tedizolid and delpazolid.
Delpazolid received an FDA orphan drug designation, a
qualified infectious disease product designation, and was
selected as a fast-track target drug (Cho and Jang, 2020).

Diarylquinoline
Bedaquiline is a diarylquinoline antibiotic that inhibits the proton
pump of mycobacterial ATP synthase, resulting in ATP depletion,
unstable pH homeostasis and cell death (Andries et al., 2005; Koul
et al., 2007) (Figure 1). It was authorised by the FDA and the
EuropeanMedicines Agency in December 2012 to treat multidrug-
resistant TB (MDR-TB) (Olaru et al., 2015). In vitroMIC range of
bedaquiline againstMab subspecies clinical isolates is 0.007–1 mg/
L, with an MIC50 and MIC90 of 0.06 and 0.12 mg/L, respectively
(Brown-Elliott and Wallace, 2017). Furthermore, verapamil, a
calcium channel antagonist recognised to inhibit bacterial efflux
pumps, has been tested with bedaquiline to potentiate the activity
of bedaquiline against Mab. In the study, Viljoen et al., reported
that verapamil increased the efficacy of bedaquiline against Mab
clinical isolates and low-level resistant strains, both in vitro and a
THP-1 macrophage infection model. Thus, the authors suggested
that combining efflux pump inhibitors, such as verapamil and
bedaquiline, may have clinical potential as adjunctive therapy
(Viljoen et al., 2019). Bedaquiline has shown various in vivo
activity against Mab-infected animal models, such as zebrafish

and immunocompromised mice. Research by Dupont et al. has
indicated that bedaquiline has a strong protective impact on
infected zebrafish larvae from Mab-induced killing with a
reduced number of abscesses and cords (Dupont et al., 2017).

Furthermore, Obregón-Henao et al., first tested the efficacy of
bedaquiline using acute GKO and severe-combined
immunodeficient (SCID) mouse treatment model (Obregón-
Henao et al., 2015). In the models, bedaquiline (30 mg/kg)
significantly reduced bacterial loads in the lungs, spleens and
livers 15 days after treatment. However, by contrast, another
study demonstrated that bedaquiline (25 mg/kg) did not
modify the decrease in bacterial burden (less than 1
log10 CFU) during the 2 months when its activity was
evaluated in a nude mouse, that is, athymic mice with
depletion of T cells (Lerat et al., 2014). Thus, bedaquiline
efficacy in the in vivo animal model is uncertain and can
depend on the animal model. However, recently Le Moigne
et al., demonstrated that treatment with the bedaquiline plus
imipenem combination enhanced Mab clearance rather than
antibiotic treatment alone in C3HeB/FeJ mice model. Thus,
studies showed that the activity of bedaquiline can be
potentiated imipenem activity in combination (Moigne et al., 2020).

In 2015, Philley et al. reported the preliminary results of
bedaquiline as a salvage therapy for patients with Mab lung
disease. It had a small-scale off-label use of bedaquiline for
treatment failure of lung diseases caused by Mab. In the study,
bedaquiline was used to treat four patients with nodular and
cavity radiographic features with Mab disease. It showed
clinical improvement in all cases after 3 months with
bedaquiline-containing regimen treatment and without
severe side effects. However, only one patient reported
improved clinical symptoms after 6 months of observation
(Philley et al., 2015). Thus, there is currently no clinical
evidence to show that bedaquiline is a potential option for
treating Mab infection. Although bedaquiline shows
significant clinical activity, it might not be used for long-
term Mab treatment since it is highly lipophilic, shows a
long terminal half-life and has a cardiotoxicity liability
associated with QT interval prolongation (Sarathy et al., 2020).

Recently, TBAJ-876, a less lipophilic bedaquiline analogue, has
a higher clearance and a lower cardiotoxic potential; also, it has
been evaluated for Mab. TBAJ-876 displayed submicromolar
in vitro activity (MIC90 ranged 0.2–0.7 mg/L) against Mab
reference strains, including three subspecies of Mab and
clinical isolates similar to bedaquiline. Furthermore, TBAJ-876
showed similar in vivo efficacy to bedaquiline at 10 mg/kg. It
reduced the bacterial burden of Mab at 30 mg/kg compared with
bedaquiline (20 mg/kg) in aMab-infected mouse model (Sarathy
et al., 2020). This demonstrated that TBAJ-876, with improved
tolerability and PK profiles, may clinically aid in the treatment of
Mab lung disease.

Fluoroquinolones
Fluoroquinolones are used as second-line drugs for MDR-TB, and
it inhibits the supercoiling action of DNA gyrase, a unique target of
fluoroquinolones (Figure 1). The fluoroquinolone antibiotics
include ciprofloxacin, gemifloxacin, levofloxacin, moxifloxacin
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and ofloxacin. Fluoroquinolones are recommended for treating
macrolide-resistant Mab lung disease based on drug susceptibility
testing results. In vitro, ciprofloxacin and moxifloxacin have
showed high activities, with 57 and 73% susceptibility for Mab
isolates, respectively (Park et al., 2008). However, in vitro MIC
value is high. MICs of moxifloxacin forMab complex range from 2
to more than 8 mg/L (MIC50 of 8 mg/L and MIC90 of more than
8 mg/L) (Hatakeyama et al., 2017). Although fluoroquinolone
cannot be used clinically as monotherapy because of its
inducible mutational resistance, both ciprofloxacin and
moxifloxacin may be used as alternative oral agents for treating
Mab lung disease combined with other drugs (Park et al., 2008).
Since GyrB quinolone-resistance determining region (QRDR)
confers resistance to fluoroquinolones in Mtb, Mab was also
expected to comprise amino acid changes within the GyrA
QRDR (Nessar et al., 2012). However, recently, Kim et al.
reported that amino acid substitutions associated with
fluoroquinolone resistance were unidentified in any of the Mab
gyrase genes (gyrA and B) from moxifloxacin susceptible,
intermediate and resistant strains (22 Mab subsp. abscessus and
24Mab subsp. massiliense) (Kim et al., 2018). Therefore, Kim et al.
explained that there is no clear correlated evidence between
mutation of the DNA gyrase genes and moxifloxacin resistance
inMab, indicating that alternative mechanisms might be involved
in moxifloxacin resistance, such as efflux pumps, which is well
known in Mtb (Kim et al., 2018).

DC-159a is a newly synthesised broad-spectrum 8-methoxy-
fluoroquinolone and has shown bactericidal activities against
various respiratory pathogens, including multidrug-resistant
Streptococcus pneumoniae and quinolone-resistant strains
(Clark et al., 2008; Hoshino et al., 2008). Furthermore, DC-159a
showed potent in vitro activity against quinolone-resistant
multidrug-resistant Mtb (MIC90, 0.5 mg/L) and drug-susceptible
isolates (MIC90, 0.06 mg/L). In the in vitro activity comparison
with Mtb, DC-159a was 4–32-fold more potent than other
quinolones (Disratthakit and Doi, 2010). DC-159a also showed
the highest activities against NTM, such as M. fortuitum, MAC,
M. chelonae andM. abscessus. The MIC range of DC-159a against
Mab was 4–32mg/L, which is 2–4-fold lower than those of other
tested quinolones, such as moxifloxacin, levofloxacin and
gatifloxacin (Disratthakit and Doi, 2010). However, its activity is
unsatisfactory compared with other anti-Mab candidates because
the in vitroMIC value is higher than others. Still, there is no in vivo
efficacy data for Mab (Soni et al., 2016).

Clofazimine
Clofazimine (CFZ) belongs to the riminophenazine group and
has demonstrated an impressive activity against rapid-growing
Mycobacterium (Mab,M. fortuitum andM. smegmatis) and slow-
growingMycobacterium (Mtb, MAC andM. leprae) (Cholo et al.,
2017). MostMab clinical isolates had CFZMICs of ≤1 mg/L (Wu
et al., 2018). Recently, CFZ has been used for Mab treatment
(Martiniano et al., 2017; Yang et al., 2017). Furthermore, CFZ has
shown a synergistic effect with other antimicrobial agents,
including amikacin and clarithromycin, against M. avium and
Mab in vitro. CFZ has several advantages as an effective drug
because it has a long half-life, slow metabolic elimination, low

cost, high concentration in macrophages and rapid localisation
within phagocytes (Shen et al., 2010). However, CFZ has no exact
mechanism of action (MOA), and information on its resistance in
patients is yet undetermined (Figure 1). Although the exact MOA
for CFZ is not fully understood, the cell membrane seems to be
the primary action site. It has been demonstrated that CFZ is a
prodrug and can disrupt bacterial membrane via interaction with
intracellular redox cycling, releasing reactive oxygen species
(Yano et al., 2011). Furthermore, another putative MOA is
that CFZ stimulates phospholipase A2 (PLA2) activity,
resulting in an accumulation of detergent-like
lysophospholipids and disrupting fundamental cellular
functions. Also, it has been hypothesised that it inhibits cell
replication by binding to the guanine base of deoxyribonucleic
acid (McGuffin et al., 2017). However, no study has been
conducted to examine CFZ resistance in patients, and the
MOA of CFZ in Mab remains unestablished. Recently,
Yuanyuan et al. investigated the resistance mechanism of CFZ
using 29 laboratory-induced CFZ-resistant Mab strains through
whole-genome sequencing, wherein three genes (MAB_2299c,
MAB_1483 and MAB_0540) were identified to be most
commonly associated with CFZ resistance. However, future
studies are needed to address the role of the identified
mutations (Chen et al., 2018). CFZ shares a resistant
mechanism with BDQ by up-regulating MmpL5 due to
mutations in Rv0678, which is the transcriptional regulator in
Mtb. Besides, loss-of-function mutations in pepQ (Rv2535c) that
encode putative Xaa-Pro aminopeptidase show four times higher
MICs than those for the H37Rv control in theMIC determination
test with CFZ and BDQ. However, the exact mechanism by which
mutations in pepQ provide BDQ and CFZ cross-resistance
remains unclear (Andries et al., 2014; Almeida et al., 2016).
Based on the BLAST similarity match, Rv0678 and PepQ
(Rv2535c) have 33 and 66% amino acid sequence identity with
MAB_1857c and MAB_2838c, respectively.

There are some positive in vivo results with CFZ for theMab-
infected animal model. Drosophila infected with Mab had its
lifespan extended by 3 days after treatment with CFZ (Oh et al.,
2014). Furthermore, Andrés et al. evaluated diverse mice
infection models, such as nude (nu/nu), SCID, GKO and GM-
CSF knockout mice. When GKO mice were used forMab in vivo
study, CFZ treatment significantly reduced bacterial burden in
the lung, spleen and liver after five and 15 days of treatment.
These anti-mycobacterial activities were enforced when CFZ was
combined with bedaquiline (Obregón-Henao et al., 2015). Also,
there are some retrospective studies of CFZ treatment for Mab-
infected patients. Yang et al. reported a retrospective study
involving 42 patients with Mab lung disease treated with CFZ-
containing regimens between November 2013 and January 2015.
In the study, CFZ achieved 24% sputum-negative culture
conversion after CFZ-containing antibiotic treatment,
including symptoms and radiographic improvement. Thus, the
authors suggested that CFZ-containing regimens improve
treatment outcomes for patients with Mab lung disease (Yang
et al., 2017). Besides, Carey et al. also performed a retrospective
cohort analysis of patients infected with Mab subsp. abscessus/
bolletii/massiliense, M. fortuitum or M. chelonae. The patients
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were treated with a CFZ-containing regimen for over 7 years in an
institution. During each treatment course, CFZ was given along
with a median of five other antibiotics. Interestingly, treatment
with the initial regimen was achieved in 43% of patients with
pulmonary infection and 71% of patients with a nonpulmonary
infection. As a component of multidrug therapy for both
pulmonary and nonpulmonary RGM infections, CFZ was safe
and relatively well tolerated (Carey et al., 2019).

Inhalation Route: Nitric Oxide/Liposomal
Amikacin/Molgramostim
Nitric oxide (NO) is naturally synthesised by a NO synthase in
mammalian cells. No synthase activity is upregulated in the
pulmonary system after infection or stimulation by cytokines
in normal subjects (Xue et al., 2018). In CF patients, the increase
of airway NO level results in improvement of lung function
(Grasemann et al., 1997; Ho et al., 1998; Keen et al., 2010).
Furthermore, NO has been shown to act as a broad-range
antimicrobial agent, seen in vitro, ex vivo and animal infection
models (Goldbart et al., 2020). Yaacoby-Bianu et al., previously
reported that adjunctive-inhaled nitric oxide (iNO) therapy at
160 ppm for 30 min, five times/day for up to 26 days to CF
patients resulted in reduced Mab load in sputum and
improvement in pulmonary function (Yaacoby-Bianu et al.,
2018). Furthermore, iNO treatment increased time to
positivity in Mycobacterium culture with safety and tolerability
albeit Mab culture conversion was not achieved (Bentur et al.,
2020). As shown in Table 1, the iNO for patients with Mab has
recently completed phase II clinical trials and pilot study to assess
the effect of intermittent iNO on the treatment of NTM lung
infection in CF and non-CF patients are currently recruiting in its
clinical phase (Wu et al., 2018).

Amikacin is well known as one of the most active antibiotics
for treatingMab pulmonary disease through the combination of
one or more parenteral drugs (cefoxitin, imipenem or
tigecycline) (Lee et al., 2017). Furthermore, it shows
concentration-dependent bactericidal effects through
irreversibly binding to the bacterial 30S ribosomal subunit,
specifically in contact with 16S rRNA and S12 protein (Shi
et al., 2013) (Figure 1). However, amikacin accumulates poorly
in cells, which its efficacy is limited against intracellular
infections (Zhang et al., 2018). The method for the targeted
delivery of amikacin in the host cell is to package the antibiotic
into liposomes, sphere-shaped vesicles with a membrane
composed of a phospholipid bilayer (Akbarzadeh et al.,
2013). The liposomes are used for drug delivery due to their
unique properties, such as small size, low toxicity, tissue/cell
targeting (Beltrán-Gracia et al., 2019). Based on these
advantages, liposome encapsulation has been applied to
amikacin to improve its killing ability in treating intracellular
Mab infections in macrophages. When macrophages infected
with the Mab were treated with amikacin and liposomal
amikacin for inhalation (LAI), LAI at 10 mg/L showed
significant effectiveness than free amikacin for intracellular
Mab (Rose et al., 2014). This intracellular activity was further
assessed in patients with treatment-refractory pulmonary NTM

disease. In a clinical phase II study forMab-infected patients, of
four patients who achieved sputum culture conversion, three
were converted after receiving LAI and one while receiving
placebo at 28 days end-of-study follow-up visit. Furthermore,
among the four patients who were converted, two had negative
cultures 12 months after LAI discontinuation, one reverted to
positive cultures, and one did not consent to participate in the
12-month follow-up phase (Olivier et al., 2017). Its efficacy and
safety profiles are being further evaluated in a phase II trial
against Mab. Currently, clinical phase II trials, especially LAI
efficacy in Mab patients, are recruiting (Table 1).

Inhaled molgramostim is a form of GM-CSF. GM-CSF is a
protein that occurs naturally in the human immune system
and plays a crucial role in activating the immune system to kill
bacteria. The altered immune system by molgramostim may
prevent the build-up of harmful bacteria, such as NTM in the
lungs (Degiacomi et al., 2019). A phase II clinical trial was
conducted to test the effectiveness of inhaled mogramostim
against NTM, including Mab, in adults with CF (Table 1).
However, no Mab-infected patient achieved sputum culture
conversion after 48-week treatment. Inversely, the participants
experienced serious side effects during the treatment, and the
most common adverse effect was the aggravation of
bronchiectasis. The full result of inhaled molgramostim
from the clinical phase II trial will be released soon (Silva,
2020).

Gallium
Iron is essential for bacteria to mediate many key processes, such as
DNA synthesis, general metabolism, electron transport and oxidative
stress resistance (Andrews et al., 2003). Gallium (Ga) has a nearly
identical ionic radius as iron, and some bacterial uptake systems are
unable to distinguish gallium from iron. Iron is uptaken by bacterial
cells, and it undergoes reduction for participation in redox cycling,
which is essential for life. However, Ga cannot be reduced under
normal physiological conditions within the cell, therefore, disrupting
iron-dependent processes (Crunkhorn, 2018; Goss et al., 2018). For
this reason, many studies have demonstrated that gallium compounds
can be used as antibacterial agents against many human pathogens,
including multidrug-resistant CF clinical isolates (Goss et al., 2018).
Ga in the form of Ga(NO3)3 is an FDA-approved drug for treating
hypercalcaemia ofmalignancy (Warrell et al., 1986). Recently, Abdalla
et al. assessed the growth inhibitory activity of different types of Ga
compound against wild-typeMab and clinical isolates obtained from
CF and other patients. They demonstrated that Ga-protoporphyrin is
themost potent type of Ga compound in vitro and intracellularly, and
it completely inhibited the Mabs at much lower concentrations than
Ga(NO3)3 (Abdalla et al., 2015). Furthermore, nanoparticles
encapsulating Ga meso-tetraphenylporphyrine (GaTP) showed
greater bactericidal activity than Ga(NO3)3 against Mab in vitro
and intracellularly (Choi et al., 2018). Also, they evaluated the
effect of drug and drug combination with Ga(NO3)3 and Ga
porphyrin (GaPP) against Mab in vitro and in a murine
pulmonary model with Mab infection. In this study, the authors
observed that Ga(NO3)3 combined with GaPP showed significantly
potent synergistic inhibitory activity against Mab. These findings
suggest that combinations of different Ga compounds can be

Frontiers in Pharmacology | www.frontiersin.org August 2021 | Volume 12 | Article 72472512

Quang and Jang Therapeutic Agents and Candidates for Mycobacterium abscessus

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


synergistically used for anti-Mab treatment in the clinic (Choi et al.,
2020). Currently, Ga evaluates its safety and tolerability in adult
patients with CF infected with NTM, including Mab as phase I
(Table 1).

MmpL3 Inhibitors
MmpL3 is highly conserved across the mycobacteria. It is
responsible for translocating mycolic acids in a trehalose
monomycolate (TMM) form across the inner membrane, thus
playing an essential role in cell wall synthesis (Figure 1). TMM
molecules are precursors of trehalose dimycolate (TDM; cord factor)
or to arabinogalactan yielding wall-bound mycolates (McNeil et al.,
2020; Sarathy et al., 2020). ThemmpL3 knockdown strain ofMtb led
to a failure of cell division and, consequently rapid bacterial death
due to TMM accumulation (Degiacomi et al., 2017). Recently,
several MmpL3 inhibitors have been identified from the
phenotypic screening of compound libraries against Mab and
MAC. The availability of bactericidal inhibitors that target
MmpL3 in Mab will provide opportunities to treat pulmonary
Mab infections (Li et al., 2018).

PIPD1
PIPD1 is defined as a new piperidinol-based molecule. It targets
the mycolic acid transporter, MmpL3, which is required to
transport TMMs and abrogate the mycolylation of
arabinogalactan (Dupont et al., 2016). PIPD1 shows a potential
broad-spectrum in vitro activity against smooth (S) and rough (R)
Mab CIP104536 with a MIC of 0.125 mg/L. The range of MBC99

(the concentration of the drug at which 99% of input bacilli were
killed) against Mab S is 0.125–0.5 mg/L. In the Mab-zebrafish
model, the treatment of infected zebrafish with PIPD1 showed
increased embryo survival and decreased bacterial burden. Besides,
MAB_4508 encoding a protein homologous to MmpL3 is detected
as a resistant mutation to PIPD1 (Dupont et al., 2016).

Indole-2-Carboxamides
Indole-2-carboxamides (ICs) are another MmpL3 inhibitor and
have activity against a broad spectrum of NTM pathogens. Two
IC derivatives (compounds 5 and 25) prevented mycolic acid
translocation from the cytoplasm to the periplasmic space by
inhibiting MmpL3, consequently inducing bacterial death. Both
compounds showed excellent in vitro activity against wild-type
Mab ATCC 19977 (MIC of compound 5 � 0.25 mg/L and
compound 25 � 0.063 mg/L) (Franz et al., 2017). Compounds
25- and 5-resistant mutant harbours a missense mutation
(A309P) in the MmpL3 protein and this mutant showed 16–128-
fold increase in MICs of compounds 25 and 5, respectively (MIC of
compound 5 against the A309Pmissensemutant � 32mg/L;MIC of
compound 25 against the A309P mutant � 1mg/L) (Pandya et al.,
2019). Both derivatives showed statistically significant reduced
bacterial load in the lung and spleen of Mab-infected mice in the
acute SCID treatment mouse model. This in vivo effectiveness of ICs
compounds was similar to amikacin used as a positive control
(Pandya et al., 2019). The sequencing result of the MmpL3 gene
from laboratory-induced resistant mutants against high-dose PIPD1
or on indole-2-carboxamides revealed a common Ala309Pro
substitution in MmpL3. Additionally, the overexpression of

MmpL3 carrying the Ala309Pro mutation in Mab showed high-
level resistance to PIPD1 and indole-2-carboxamides (Dupont et al.,
2016; Kozikowski et al., 2017).

In other studies with IC analogues by Kozikowski et al., lead
compounds 6 and 12, which have favourable absorption,
distribution, metabolism and excretion properties, also
exhibited strongly in vitro activity against Mab clinical isolates
from CF and non-CF patients and especially compound 12
showed significantly reduced number of Mab-infected cells.
The biochemical assay revealed that treatment of compound
12 strongly accumulates TMM on thin-layer chromatography,
resulting in the defect of trehalose dimycolate production (TDM)
synthesis, consequently failure of mycolylation of
arabinogalactan (Kozikowski et al., 2017). These compounds 6
and 12 were further studied in combinations with imipenem and
cefoxitin in vitro by checkerboard assay to evaluate their synergistic
effect againstMab. Raynaud et al., demonstrated that combination
between IC (compounds 6 and 12) plays a synergistic role with
imipenem and cefoxitin in vitro and, especially compound 12 also
showed synergistic effect with imipenem in THP-1 macrophages.
This potential synergistic effect requires further pre-clinical animal
study (Raynaud et al., 2020b).

EJMCh-6
EJMCh-6, which is a benzimidazole analogue targeting MmpL3
in Mab, shows a potential broad-spectrum in vitro activity
against smooth (S) Mab CIP104536T with a MIC of 0.125 mg/L.
EJMCh-6 is bacteriostatic in vitro and this compound showed
potent activity with MIC values ranging from 0.031 to 1 mg/L
against the various strains and subspecies of Mab that were
isolated from patients with or without CF. In the THP-1 cell
model of infection with Mab, EJMCh-6 exerted a very strong
activity against intramacrophage-residing Mab. In the Mab-
zebrafish model, approximately 80% of the treated embryos
survive at 12 dpi after being treated with 0.75 mg/L EJMCh-6
(Raynaud et al., 2020a).

Benzothiazole Amide Compounds
Benzothiazole Amide Compounds (CRS400226, CRS400153,
CRS400359 and CRS400393) target MmpL3 and further
showed excellent in vitro activity against Mab infections with
an MIC90 of 0.5 mg/L. Among those analogues, Mary et al.
assessed the in vivo efficacy of CRS400226 against Mab in
chronic lung infection using GM-CSF mice for 28 days.
Intratracheal administration of CRS400226 at 25 mg/kg/day
for 28 days resulted in 0.64 log10 CFU reduction compared
with the vehicle control. The histological assay revealed that
CRS400226-treated animals had only minor areas of airway-
centric inflammation (De Groote et al., 2018).

Newly Discovered Anti-Mab Inhibitors
Leucyl-tRNA Synthetase Inhibitor (Epetraborole and
Benzoxaborole EC/11770)
Epetraborole (also known as AN 3365; GSK 2251052) is a
benzoxaborole analogue and leucyl-tRNA synthetase inhibitor
(O’Dwyer et al., 2015; Purnapatre et al., 2018). It has shown a
novel mode of action against gram-negative bacterial infections,
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such as urinary tract infections. In previous studies, the
benzoxaborole analogue showed antitubercular activity against
Mtb andM. smegmatis (Palencia et al., 2016). Recently, Kim et al.
performed in vitro dual-screen against Mab R and S variants
using a pandemic response box that comprises 400 structurally
diverse compounds (201 antibacterials, 153 antivirals and 46
antifungals) and is a drug library assembled by the Medicines
for Malaria Venture (MMV) (Kim et al., 2021). Through the
screen, the authors identified epetraborole, which showed
significant activity against Mab wild-type strain growth in
three subspecies, drug-resistant strains, clinical isolates in vitro
(MIC90 ranges from 0.1 to 1.35 mg/L), intracellular and in the
zebrafish infection model. However, according to
ClinicalTrials.gov in 2017, a clinical phase II study of
epetraborole for treating complicated urinary tract infection
and intra-abdominal infection was terminated due to the rapid
emergence of drug resistance during treatment (Purnapatre et al.,
2018). Recently, another benzoxaborole analogue named
benzoxaborole EC/11770 was also identified against Mab by
testing advanced compounds that already showed activity
against Mtb. The EC/11770 showed antibacterial activity
against Mab and M. avium complexes. Furthermore, EC/11770
inhibited the growth of the Mab biofilm in vitro model and
showed effective in vivo efficacy in the NOD SCID mice lung
infection model. Fortunately, EC/11770 showed low-resistant
mutant frequency, and leucyl-tRNA synthetase was confirmed
as its target (Ganapathy et al., 2021).

AR-12 (OSU-03012)
AR-12 (OSU-03012) is a novel derivative of celecoxib that
inhibits phosphoinositide-dependent kinase-1 (PDK1) activity
in different cell models and has further progressed to phase I
clinical trial as an anticancer agent. Intriguingly, it exhibits anti-
pathogenic activity against bacteria, fungi and viruses.
According to mechanistic studies, AR-12 represses the host
cell chaperone machinery, thus preventing proper viral
protein folding and effective viral assembly. AR-12 also
causes autophagy, which aids in clearing intracellular viruses,
unfolded proteins or both (Abdulrahman et al., 2017). In the
aspect ofMab activity, AR-12 displayed broad anti-Mab activity
against 194 clinical Mab isolates (148 subsp. abscessus and 46
subsp. massiliense) with a moderate MIC value (MIC90 of 4 and
8 mg/L). Furthermore, AR-12 showed growth inhibitory activity
against Mab residing within primary peritoneal macrophages.
Lastly, AR-12 inhibited Mab replication in a mouse model with
a lung infection. AR-12 (50 mg/kg) caused significant
reductions of approximately 3.7 log10 CFU in the lung after
2 weeks of treatment. The histological assay also revealed a
reduction in inflammatory pathology and bacterial counts in the
lungs of AR-12-treated mice compared with untreated mice
(Zhang et al., 2020).

SPR719
SPR719 (previously VXc-486) is a novel aminobenzimidazole
that targets ATPase subunits (GyrB/ParE) in Mtb (Locher et al.,
2015). It is a novel class that targets the ATPase subunits of gyrase
by a mechanism distinct from fluoroquinolones (Verma et al.,

2020). The MIC90 value for subspecies Mab subsp. abscessus, M
ab subsp. massiliense and M. abscessus/massiliense hybrid was
2–4 mg/L. AlthoughMab contains a natural A92S mutation in its
gyrB, the potency of SPR719 against Mab in the MIC test was
greater than that of moxifloxacin, which was used as a control
(Locher et al., 2015). Recently, Rubio et al. (2018) reported the in
vivo efficacy result of SPR720 (a prodrug of SPR719) using a SCID
mice model of infection with Mab subsp. bolletii (strain 103) at
ASM Microbe 2018. Treatment was administered via oral dosing
(25, 50, 100, 200, 300 and 400 mg/kg/day). After 16 days of
treatment, the bacterial burden in the lung, spleen and liver
was enumerated. From the study, a daily dosage of 100 mg/kg
demonstrated the most significant bacterial reduction in the lung,
spleen and liver compared with that in the control group (Rubio
A, Stapleton M, Verman D).

Etamycin
Etamycin (also called viridogrisein) is a cyclic peptide
antibiotic isolate of marine actinomycete. Recently,
etamycin showed potent activity against wild-type Mab, three
subspecies of theMab complex and clinical isolates, including the R
and S variant, at an MIC50 level of 1.6–7.2 mg/L. Furthermore,
etamycin inhibited the growth of Mab that resides in
macrophages without cytotoxicity. The in vivo efficacy of
etamycin in the zebrafish infection model was greater than
that of clarithromycin. ZF’s survival rate of 44 mg/L (50 μM)
etamycin treatment was 85%, higher than that observed for
the treatment with 37.4 mg/L (50 μM) clarithromycin at
13 days post-infection (Hanh et al., 2020a).

Thiostrepton
Thiostrepton is an FDA-approved antimicrobial drug for animal
use and is a quinaldic acid moiety containing a natural thiopeptide.
It has been remarkably determined to be an effective translational
blocker that binds to nucleotides A1065 and A1095 on helices 43
and 44 of the 23S rRNA. Also, it binds proline residues within the
N-terminal domain of uL11 that is a ribosomal protein.
Thiostrepton has antibacterial activity against Staphylococcus
aureus (MRSA), methicillin-resistant Enterococcus faecium,
penicillin-resistant Streptococcus pneumoniae, vancomycin-
resistant enterococci, Mtb and M. marinum. Thiostrepton
significantly inhibited the growth of Mab in vitro and
macrophage-infected Mab. Furthermore, thiostrepton
significantly decreased proinflammatory cytokine production in
macrophages, suggesting an inhibitory effect of thiostrepton on
inflammation-induced during Mab infection. Also, thiostrepton
exhibits antimicrobial effects in vivo in zebrafish models of Mab
infection (Kim et al., 2019). Nevertheless, thiostrepton has
limitations for its clinical use. It has a large molecular size,
lacking bioavailability and poor aqueous solubility (Just-Baringo
et al., 2014). Recently, newly developed semisynthetic thiopeptide,
LFF571, byNovartis showed an improved pharmacokinetic profile,
such as aqueous solubility, compared to thiostrepton. LFF571
tested for Clostridium difficile, which causes intestinal infections
in humans. LFF571 showed excellent efficacy in a hamster model
with a lower dose and fewer recurrences than vancomycin (Trzasko
et al., 2012).

Frontiers in Pharmacology | www.frontiersin.org August 2021 | Volume 12 | Article 72472514

Quang and Jang Therapeutic Agents and Candidates for Mycobacterium abscessus

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


CONCLUSION

Mab is described as an environmentally derived opportunistic
pathogen that likely causes lung and skin infections in patients
with a weak immune system in various environments.Mab infection
can be acquired when taking a shower from the showerhead and
during cosmetic surgery and acupuncture. Therefore, it is currently
essential to proactively identify the potential severity of Mab
infection in communities and healthcare institutions. It is also
important to re-evaluate the case of Mab misdiagnosed as TB to
determine the current infection situation of Mab accurately.
Presently, the most crucial aspect of treating Mab is the
formation of a sputum smear transition quickly. As mentioned
above, various antibiotics, including anti-TB drugs, are currently
used to treat Mab through combination therapy, but only a few
drugs can derive sputum smear conversion. Therefore, developing
new drug recombination using various antibiotics, including newly
identified anti-TB drugs and various efflux pump inhibitors, may be
a priority.

Next, the development of new antibiotics using new libraries
would be essential. Lipinski’s rule-of-five (Ro5: not more than five
and one hydrogen bond donors and hydrogen bond acceptors,
respectively, and a partition coefficient (log P) value less than 5) has
been used for selecting candidates with good oral bioavailability
properties. However, the Ro5 sometimes cannot explain the
bioactivity of natural products that systematically break the Ro5
with bioavailability and bioactivity. Thus, screening natural
products with expanded chemical diversity for discovering new
drugs would be an alternative step for drug development against
Mab. Natural compounds with bioavailability and bioactivity that
can penetrate membranes of host cells and kill intracellular Mab
would be new weapons that will expand the success rate in a drug
screen. Drug screen model systems for excavating these substances
are also very crucial. Developing new drugs forMab through a new
screen model that mimic the human environment is needed.

Investing in pharmaceutical companies forMab is currently
passive. This is probably because there are fewer economic
benefits for chronic diseases, such as cancer, diabetes, and
degenerative neurological and brain diseases. Therefore,
research in small- and medium-sized enterprises and

universities is currently leading to a small number of
studies on Mab infections and antibiotics. However, a
report by the United Kingdom government says the number
of deaths from antibiotic-resistant bacteria by 2050 will far
outweigh the number of deaths caused by chronic diseases,
such as cancer, diabetes and diarrhoeal disease. Without
antibiotics, we cannot perform surgery on premature
infants, treat diseases like cancer and perform organ
transplants and plastic surgery. Lung disease caused by Mab
infection is steadily increasing worldwide; and due to an
increase in the population of elderly individuals through an
ageing society, and the increase in long-term care patients,
Mab infection is seen to be a global public health concern.
Therefore, developing new drugs for Mab, which minimises
side effects, is a challenge that must be undertaken. Significant
investment must be made to develop new drugs and
fundamental research on Mab, which is resistant to various
antibiotics. Thus, this will lead to the screening of Mab-
effective drugs in clinical trials.
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