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INTRODUCTION

Rib fractures are a common finding after thoracic 
trauma, occurring in approximately 40% of these patients 
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Objective: To assess the diagnostic performance of a deep learning-based algorithm for automated detection of acute and 
chronic rib fractures on whole-body trauma CT.
Materials and Methods: We retrospectively identified all whole-body trauma CT scans referred from the emergency department 
of our hospital from January to December 2018 (n = 511). Scans were categorized as positive (n = 159) or negative (n = 352) 
for rib fractures according to the clinically approved written CT reports, which served as the index test. The bone kernel series 
(1.5-mm slice thickness) served as an input for a detection prototype algorithm trained to detect both acute and chronic rib 
fractures based on a deep convolutional neural network. It had previously been trained on an independent sample from eight 
other institutions (n = 11455).
Results: All CTs except one were successfully processed (510/511). The algorithm achieved a sensitivity of 87.4% and specificity 
of 91.5% on a per-examination level [per CT scan: rib fracture(s): yes/no]. There were 0.16 false-positives per examination 
(= 81/510). On a per-finding level, there were 587 true-positive findings (sensitivity: 65.7%) and 307 false-negatives. 
Furthermore, 97 true rib fractures were detected that were not mentioned in the written CT reports. A major factor associated 
with correct detection was displacement.
Conclusion: We found good performance of a deep learning-based prototype algorithm detecting rib fractures on trauma CT 
on a per-examination level at a low rate of false-positives per case. A potential area for clinical application is its use as a 
screening tool to avoid false-negative radiology reports.
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(1). Efforts in the polytrauma setting are focused on the 
detection of life-threatening conditions, such as aortic 
dissection and organ laceration. This fact in combination 
with the lack of time (2), a noisy work environment (3), 
satisfaction of search (4), and the frequent co-occurence 
of multiple traumas on whole-body computed tomography 
(CT) (5) lead to a significant number of missed rib fractures 
in this setting (6). While most rib fractures heal without 
surgical intervention (7), there are three reasons why it is 
nonetheless important to detect rib fractures: first, they 
are indicators of trauma-associated conditions that require 
immediate treatment, such as pneumothorax, and their 
onset can be delayed for several days (8). Second, often 
as a consequence of inadequate pain control, respiratory 
complications, such as posttraumatic pneumonia occur 
secondary to rib fractures (9, 10). Finally, the number and 
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Somatom Definition Edge (n = 5; 128-slice system), and 
Somatom Definition FLASH (n = 7; 2 x 128-slice system; 
all scanners: Siemens Healthineers, Erlangen, Germany). 
Scanning was performed following our standard protocol 
for whole-body trauma CT: patients were placed in the 
supine position with the scan ranging from the skull 
vertex to the upper thighs. Iopromide (Ultravist 370, Bayer 
Pharmaceuticals, Berlin, Germany) at a standard injection 
rate of 3.0 mL/s and a body weight-adapted volume of up 
to 120 mL was used as contrast agent. The peak kilovoltage 
was 120 kVp, and an automatic tube current modulation 
was performed. Transversal images in bone reconstruction 
kernel (70f) with a slice thickness of 1.5 mm served as the 
only input for the algorithm. 

Index Test and Standard of Reference
The algorithm’s output series with marked areas of 

suspected rib fractures was defined as the index test. The 
written CT reports established the standard of reference. 
These CT reports had been previously approved by a board-
certified radiologist with at least 5 years of experience 
in emergency radiology at a level-1 trauma center. To 
determine the accuracy of the reports on acute fractures, we 
randomly selected a subset of 50 CT scans and performed 
a second reading without time constraints and without 

type of rib fractures can be a basis for further treatment 
strategies (11, 12). Thus, an accurate detection of rib 
fractures on CT scans contributes to appropriate patient 
care (13).

To address the problem of missed rib fractures on 
trauma CT, some authors have proposed multiplanar (6) 
and rib unfolding reconstructions (14). A complementary 
approach comprises algorithms based on deep convolutional 
neural networks (DCNNs) (15) that successfully detect 
other findings on CT, such as myocardial infarction (16), 
intracranial hemorrhage (17), and acute abdominal findings 
(18). Given the efficiency of DCNNs in detection of findings 
on CT and other modalities (19-21), we hypothesized that 
they are also suited to detect rib fractures. While there are 
multiple studies on deep learning (DL)-based detection 
of fractures on plain radiographs (22-27), the number of 
algorithms detecting fractures on CT is limited. Studies 
on algorithms detecting vertebral body (28, 29) and skull 
fractures have been performed (30), but only one preliminary 
study dealt with the detection of rib fractures (31).

Therefore, the aim of this study was a comprehensive 
assessment of the diagnostic performance of a DL-based 
algorithm for automatic detection of rib fractures on trauma 
CT scans acquired within 1 year at a level-1 trauma center.

MATERIALS AND METHODS

The local ethics committee approved the study protocol 
and waived the requirement of obtaining informed consent 
(Project ID: 2019-00510).

Case Selection
We retrospectively identified all whole-body trauma CT 

scans and the corresponding written reports acquired at our 
department in 2018 with an in-house developed radiology 
information system/picture archiving and communication 
system (PACS) search engine (n = 511). Selection criteria 
were the procedure code and time period (January to 
December 2018). Examinations were classified into positive 
(only acute, only chronic, or both acute and chronic) 
and negative for rib fractures according to the written CT 
reports (Fig. 1). Two radiology residents (1st and 3rd year 
of residency) performed this classification task. 

Image Acquisition
Scans were acquired using three different CT scanners: 

Somatom Definition AS+ (n = 499; 128-slice system), 

Fig. 1. Study flowchart. DCNN = deep convolutional neural network

Rib fractures
n = 159

Acute
n = 124

Chronic only
n = 35

Processing of 1.5 mm bone kernal series by
DCNN for rib fracture detection

Visual validation of n = 510 result series and
measures of diagnostic accuracy on (a) per-

examination and (b) per-finding level

No rib fracture
n = 352

Processing failed
n = 1

All trauma CT scans of 2018
n = 511
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knowledge of the reports.

Algorithm Characteristics 
The prototype algorithm used for rib fracture detection 

was trained to detect acute and chronic fractures and 
consisted of two stages: first, a region proposal stage, 
which was a three-dimensional convolutional deep neural 
network. Its architecture was based on ResNet (Aidoc 
Medical, Tel Aviv, Israel). ResNets enable the training of 
neural networks with many layers (32). The algorithm 
prototype had been trained using 11455 independent chest 
CT scans from eight other medical institutions, acquired 
on 15 different scanner models. These had been reviewed 
by two radiologists, one making annotations and another 
confirming those annotations. Hyperparameter optimization 
included approximately 30 experiments, performed with the 
parallelized stochastic gradient descent using the Horovod 
framework (33). Experiments were processed on different 
servers with one, two, four, and eight NVIDIA GPUs (NVIDA, 
Santa Clara, CA, USA). The DCNN provided suggestions 
for suspected rib fractures. Subsequently, a second stage 
based on a Fast Region-based CNN disqualified some of the 
initial suggestions to reduce false-positives and selected 
locations for arrows indicating final findings. The output 
series is the original transversal series with overlaid arrows 
pointing at suspected rib fractures. On the internal test 
dataset, the performance was as follows: sensitivity 91.2% 
and specificity 90.7% on the per-examination level; and 
sensitivity 78.0% on the per-finding level. 

Data Processing and Image Analysis
We performed full study data anonymization. The 1.5-

mm transversal images in bone kernel (70f) were transferred 
to the detection algorithm. Processing the data comprised 
an automated cutting of the whole-body CT to the areas 
that displayed the ribs based on lung segmentation. 
These cropped series served as the only input for the core 
algorithm. 

The output series was reviewed on a validation platform 
using a conventional PACS monitor (Fig. 2). A radiology 
resident initially reviewed all cases. Another resident and a 
board-certified radiologist discussed to reach a consensus 
on findings that were inconclusive to the first reader 
(e.g., does the finding display a true rib fracture or an 
artifact?) and all rib fractures that had been detected by 
the algorithm but had not been described in the written 
CT reports. Table 1 shows the detailed evaluation scheme 
for suspected findings. Acute fractures were defined as 
fractures without any sign of healing, such as callus 
formation or complete or partial consolidation of the 
fracture gap. A non-displaced, acute fracture was defined as 
a fracture with cortical disruption but maintained alignment 
(34). Rib fractures missed by the algorithm were marked 
with a bounding box.

Statistical Testing
Statistical analyses were performed with SPSS Statistics, 

version 22 (IBM Corp., Armonk, NY, USA) and Microsoft 
Excel 2010 (Microsoft Corp., Redmond, WA, USA). P values 

Fig. 2. Validation platform used for algorithm assessment. Original 1.5-mm transversal series of trauma CT used as input on left side. Key-
image of output series with enlarged finding suspected of representing acute rib fracture marked with orange arrowhead on right side. 
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Patients with and without rib fractures did not statistically 
differ in sex (χ2 = 0.23; p = 0.63) or age (U = 19830; p = 
0.44). The rate of positive examinations for rib fractures 
(acute and/or chronic) according to the report was 31.2%. 
On a per-finding level, 894 rib fractures were described 
in the reports. Table 2 summarizes the characteristics of 
the fractures. A second reading was performed for the 
49 findings that had been marked as inconclusive by 
the first reader. Our analysis of a subset of 50 randomly 
selected CT scans showed that 83.3% (ten of 12) of scans 
showing acute rib fractures were correctly described in the 
corresponding reports.

Performance of the Detection Algorithm
Of 511 trauma CT scans that were performed at our 

department in 2018, one scan that was negative for rib 
fractures according to the written CT report could not be 
processed because of failure in automatic cropping.

Per-Examination Level
On a per-examination level, the algorithm produced 139 

true-positives, 30 false-positives, 321 true-negatives, and 
20 false-negatives. This corresponded to a sensitivity of 
87.4% (139 of 159 scans with rib fractures according to the 
report detected) and specificity of 91.5% (321 of 351 scans 
without rib fractures correctly classified as negative) on a 
per-examination level. Table 3 provides more details on the 
performance measures. Figure 2 shows a typical example 
of an acute fracture of the 9th right rib that was correctly 
identified by the algorithm and marked with an orange 
arrowhead. Our sub-analysis showed that the detection 
sensitivity of scans that contained acute fractures was 
significantly higher (91.9%) compared to that of scans that 
contained only chronic fractures (71.4%).

Per-Finding Level
On a per-finding level, there were 587 true-positives 

(sensitivity: 65.7%; 95% confidence interval: 92.4–68.8) 

less than 0.05 were considered statistically significant. We 
performed descriptive statistics to describe patients’ age 
and sex. To assess if there were statistically significant 
differences between patients with and without fractures, 
we performed the Chi-squared test for sex and the Mann-
Whitney U test for age. On a per-examination level, 
an examination was defined as true positive when the 
algorithm correctly identified at least one fracture in a case 
with rib fractures according to the report. If the algorithm 
did not detect any fracture in an examination with at least 
one fracture according to the report, this examination 
was classified as false negative. Cases that were classified 
negative for rib fractures by both the report and the 
algorithm were rated as true negative. We calculated the 
sensitivity, specificity, positive predictive value (PPV), 
negative predictive value (NPV), accuracy, and F1 score for 
the whole dataset and subsets.

On a per-finding level (“per-fracture”), we calculated 
the number of false-positives per examination. To analyze 
the correlation of location, displacement, and acuteness 
with the detection rate, a binomial logistic regression 
with location, acuteness and degree of displacement 
as independent variables and detection (yes/no) as the 
dependent variable was performed. In this model, the 
following categories were used to obtain dichotomy: left/
right; acute/chronic; nondisplaced/displaced (nondisplaced 
vs. all other categories). Exp(B) is the exponentiation of the 
B coefficient, which is interpreted as the odds ratio within 
the model (35). To further investigate the association of 
detection with the localization of a fracture within a rib 
(anterior, lateral, or posterior) and level of the fractured rib 
(upper = rib 1–4; middle = rib 5–8; and lower = rib 9–12), 
we performed Chi-squared statistics.

RESULTS

Examination Characteristics
The mean age of the patients was 58.4 ± 22.5 years. 

Table 1. Evaluation Scheme
Feature Subfeature (If Any) Characterization

Location Side Left/right
Section Anterior/lateral/posterior 
Number of rib 1–12

Acuteness - Acute/chronic

Degree of displacement -
No displacement (= nondisplaced acute fractures + chronic fractures)/ 
  half-shaft/full-shaft/multifragmentary)

Mentioning in written report Yes/no
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and 307 false-negatives. Furthermore, 97 true rib fractures 
(65 acute and 32 chronic) were detected by the algorithm 
and confirmed by consensus reading but were not 
mentioned in the written CT reports. The binary logistic 
regression model set up to ascertain the effects of laterality, 
displacement, and acuteness of fractures on the likelihood 
of detection was statistically significant (χ2 = 69.2; p 
< 0.001). While laterality had no impact on detection 
rates within the model, displaced rib fractures were 4.84 
times (Exp(B)) more likely to be detected compared to 
nondisplaced fractures (p < 0.001). Acute fractures were 
4.60 times (Exp(B)) more likely to be detected compared 
to chronic fractures (p < 0.001). Furthermore, Chi-squared 
tests revealed significant associations between the fracture 
location and detection (χ2 = 36.8, p < 0.001 for the position 
within a rib [anterior, lateral, posterior]; χ2 = 16.4, p < 0.001 
for the level of the rib [upper, middle, or lower]), with 
anteriorly and superiorly located fractures more likely to be 
missed. Table 2 provides detailed information on detection 
rates for all subcategories. The 81 false-positives translated 
to 0.16 false-positives per examination. Table 4 summarizes 

the number and reasons for false-positives. Additionally, 
we found 137 “double annotations,” fracture was marked 
multiple times by the algorithm. Figure 3 displays examples 
of false-positives. To further illustrate the clinical relevance 
of a rib fracture detection tool, Figure 4 shows an example 
of multiple, traumatic fractures in a 46-year-old woman 
after a car accident that required surgical stabilization.

A fully anonymized basic study dataset containing 

Table 2. Characteristics of True-Positive Fractures That Were either Described in Written CT Reports (n = 894) or Additionally 
Detected by the Algorithm (n = 97)

Feature
Rib Fractures Described in Written CT 

Reports (n = 894)
Detection Rates for 
Subcategories in %

Rib Fractures Additionally Detected 
by Algorithm (n = 97)

Side
Left 401 66.8 (268/401) 39
Right 493 64.7 (319/493) 58

Section
Posterior 295 73.9 (218/295) 29
Lateral 383 68.7 (263/383) 41
Anterior 216 49.1 (106/216) 27

Height
1–4 281 56.2 (158/281) 19
5–8 432 69.4 (300/432) 58
9–12 181 71.3 (129/181) 20

Acuteness
Acute 688 67.7 (466/688) 65
Chronic 206 58.7 (121/206) 32

Degree of displacement
No displacement 670 58.4 (391/670) 83
Half-shaft 118 88.1 (104/118) 10
Full-shaft 62 90.3 (56/62) 1
Multifragmentary 44 81.8 (36/44) 3

Table 3. Algorithm Performance on Per-Examination Level with 95% Confidence Intervals in Brackets
Sensitivity Specificity PPV NPV Accuracy F1 Score

87.4% (81.2–92.1) 91.5% (88.0–94.2) 82.3% (76.6–86.8) 94.1% (91.4–96.0) 90.2% (87.3–92.6) 0.85

NPV = negative predictive value, PPV = positive predictive value

Table 4. Morphologic Correlates of False-Positives
Anatomical Correlate Number of Findings

Normal rib 18
Intercostal vessel 15
Breathing artifact 13
Out of bounds 11
Transition zone rib–costal cartilage 10
Fractures of other bones 10
Contrast agent artifact 3
Bone marrow calcification 1

Fractures of other bones = scapula, finger, processus transversus, 
Normal rib = intact rib misclassified as fracture, Out of bounds = 
fracture-mark with no anatomical correlation
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(sensitivity: 65.7%). Main factors associated with the 
correct detection of fractures by the algorithm were 
displacement and acuteness. 

The superior performance of the algorithm on a per-
examination level compared to the per-finding level may be 
explained by the fact that in an emergency setting, multiple 
rib fractures are more frequent than isolated rib fractures. 
In our dataset, only 9.4% of scans with rib fractures 
contained only one rib fracture. The detection of only part 
of multiple fractures is sufficient to identify a positive case 
correctly on the per-examination level. Due to a high NPV 
of 94.1%, the algorithm prototype preserves its usability as 
a secondary reading tool on a per-examination level.

Only one preliminary study evaluated an algorithm for 
the detection of rib fractures on CTs: Yan et al. (31), as 
well deployed CNN, yielding a sensitivity of 95.0% and a 
significantly lower PPV of 55.7% for the detection of rib 

information on the characteristics of the individual 
fractures and whether they were detected by the algorithm 
and mentioned in the radiology report can be found in 
Supplementary Table 1. 

DISCUSSION

Our study assessed the diagnostic performance of a DL-
based prototype algorithm for the automated detection of 
rib fractures on trauma CT. On a per-examination level, the 
algorithm reached a sensitivity of 87.4% and specificity 
of 91.5%. This is comparable to the accuracy of practicing 
radiologists (14). The F1 score was 0.85, and there were 
0.16 false-positives per examination, mostly because 
of detections of intact ribs, normal intercostal vessels, 
and breathing artifacts. On a per-finding level, 587 of 
894 fractures mentioned in the reports were detected 

Fig. 3. Three typical cases of false-positives marked with orange arrowheads, due to (A) fracture of transverse process, (B) 
breathing artifacts, and (C) physiological transition zone between rib and costal cartilage.

BA C

Fig. 4. Trauma CT scan of 46-year-old woman with multiple acute fractures of adjacent ribs after car accident (A) shows 
displaced, acute rib fracture (sixth lateral rib) that was (B) detected (orange arrowhead) and (C) subsequently required surgical 
stabilization.

BA C
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fractures, tested on a set of 244 fractures. The measure 
of false-positives and false-negatives per case was not 
reported.

Our results are comparable to those of other researchers 
investigating the performance of algorithms for the 
detection of fractures of other bones on CT. In their 
study on the performance of a support vector machine for 
detection of vertebral body fractures, Burns et al. (28) 
found a sensitivity of 81.3% on a per-finding level and 
2.7 false-positives per case. The number of false-positives 
per case that we found was much smaller (0.16), which 
translates to a better usability in clinical workflows. Bar 
et al. (29) assessed an algorithm for detection of vertebral 
compression fractures based on a segmentation step and 
a patch-based CNN and reported a sensitivity of 83.9% 
and specificity 93.8%. While these results are similar to 
ours, the authors did not include information on false-
positives. However, comparability is limited because 
each type of fracture has different characteristics and 
surrounding anatomical structures. We additionally found 
137 rib fractures that were annotated multiple times by 
the algorithm. The consequences of this depend on the 
way the algorithm is used: if the algorithm is used to flag 
scans with fractures on the per-examination level, there 
is no consequence; if the algorithm is used to determine 
the exact number of fractures, and results are checked by 
a radiologist in a second step, the workflow efficiency is 
reduced; and if the detailed results are adopted without 
checking, this results in a wrong assessment of the number 
of rib fractures.

Altogether, the algorithm detected 97 acute fractures 
not mentioned in the written CT report. This is of interest 
to clinicians since Battle et al. (36) have demonstrated 
that a higher number of rib fractures is associated with an 
increased mortality, underpinning the importance of correct 
rib fracture detection. Moreover, we found that detection 
rates for fractures located anteriorly were lower than those 
for other locations. Interestingly, this is in line with the 
results of Ringl et al. (14) and might have resulted from the 
diagnostically challenging area of transition from the rib to 
the cartilage. 

Our study has several limitations. First, due to the 
retrospective design and limited availability of fracture-
specific clinical data, the results could be linked neither 
to clinical symptoms nor to clinical outcomes. Second, the 
analysis was performed on data acquired on scanners of one 
vendor and at one center only. Therefore, the performance 

might differ across institutions and scanners. However, 
CT trauma protocols are highly standardized, as they are 
optimized to target specific clinical questions. Therefore, we 
do not expect a relevant bias. Third, the algorithm output 
was assessed by one radiologist only with a consensus 
reading of two radiologists in inconclusive cases. However, 
the fact that the assessment of patients with trauma is a 
task that residents learn early in their professional career 
supports our conclusion that it only slightly affects the 
validity of the study. Fourth, the reference standard was 
defined by the clinically approved written CT reports. We 
chose this definition because we consider these reports to 
be a valid basis for a reference standard. A complete reading 
of all 511 cases by multiple readers was not possible 
because of the substantial time required for this task. 
Due to the continuum of bone healing and the resulting 
indefinite cut-off between acute and chronic fractures, we 
decided to include both fracture types. 

Since the algorithm provides good results on a per case 
level and has a high NPV, the algorithm is usable as a 
screening tool to flag scans with at least one suspected rib 
fracture. If no rib fractures were detected by the radiologist 
in charge during the first reading of a trauma CT scan 
flagged as suspicious by the algorithm, a quick second 
check for rib fractures might be appropriate to avoid false-
negatives.

In conclusion, the algorithm we evaluated on a large 
dataset independent from its training data showed good 
diagnostic performance for the automated detection of rib 
fractures on whole-body trauma CT on a per-examination 
level. Thus, despite lower sensitivity on a per-finding level, 
it constitutes a foundation for a clinical decision support 
tool for reading assistance.

Supplementary Materials

The Data Supplement is available with this article at 
https://doi.org/10.3348/kjr.2019.0653.
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