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Targeted analysis of data-independent acquisition (DIA) data is a powerful mass spectrometric
approach for comprehensive, reproducible and precise proteome quantitation. It requires a
spectral library, which contains for all considered peptide precursor ions empirically deter-
mined fragment ion intensities and their predicted retention time (RT). RTs, however, are not
comparable on an absolute scale, especially if heterogeneous measurements are combined.
Here, we present a method for high-precision prediction of RT, which significantly improves
the quality of targeted DIA analysis compared to in silico RT prediction and the state of
the art indexed retention time (iRT) normalization approach. We describe a high-precision
normalized RT algorithm, which is implemented in the Spectronaut software. We, further-
more, investigate the influence of nine different experimental factors, such as chromatographic
mobile and stationary phase, on iRT precision. In summary, we show that using targeted anal-
ysis of DIA data with high-precision iRT significantly increases sensitivity and data quality.
The iRT values are generally transferable across a wide range of experimental conditions. Best
results, however, are achieved if library generation and analytical measurements are performed
on the same system.
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1 Introduction

Liquid chromatography mass spectrometry (LC-MS) is a pow-
erful and widely used approach to identify and quantify pro-
teins [1]. Its unbiased and comprehensive nature makes it
ideal to characterize proteins, detect differentially abundant
proteins, to profile proteomes or to discover biomarkers [2,3].

An LC-MS acquisition method that is currently rapidly
evolving is data-independent acquisition (DIA). DIA has been
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introduced to increase the depth of analysis and to overcome
the limitations of reproducibility of classical data-dependent
acquisition (DDA or shotgun proteomics) [4–11]. Classically,
DIA data was analyzed with shotgun search engines. Prior
to shotgun searching, DIA data can also be preprocessed
to reduce the complexity of MS2 spectra [6, 12, 13]. These
approaches have the advantage that no spectral library is
required, the indexed retention time (iRT) concept is not
relevant to those approaches. However for reasons of per-
formance, the currently most widely used DIA method for
proteomic experiments uses targeted analysis of DIA data
based on spectral libraries [14]. This method can be per-
formed on most high-resolution MS platforms of the newest
generation and has been shown to outperform shotgun pro-
teomics in comprehensiveness, quantitative reproducibility
and precision [14–19]. The approach is especially well suited
for quantitation of dozens to hundreds of samples from
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Significance of the study

Spectral libraries are crucial for the targeted analysis
of DIA data. Accurate normalized RTs significantly con-
tribute to the quality of a spectral library. Here, we
investigate the influence of high-precision iRT predic-
tion on identification and quantitation and its stability

across different systems. For this purpose, we varied
nine different experimental factors that influence trans-
ferability of iRT. Our results will help to understand
and improve the quality and transferability of spectral
libraries.

different conditions and states, where high reproducibility
and data completeness becomes important.

In the targeted analysis of DIA data, the complexity of
chimeric spectra originating from the large DIA precursor
windows is handled by making use of a spectral library. Typ-
ically, spectral libraries are generated by performing shot-
gun proteomics on the sample type of interest [20–22]. Pep-
tide information is condensed, consensus relative fragment
ion patterns are generated and retention times (RTs) are
homogenized. Then, the spectral library is used to query the
DIA mass spectra and generate extracted ion current chro-
matograms for precursor and fragment ions which build the
basis for data analysis [14, 23]. Because the expected elution
time is typically available in the spectral library, the extracted
ion current chromatograms can be limited to a specific win-
dow in the chromatogram where the peptide is expected to
elute. The more accurate the elution time can be predicted
the smaller the resulting window. A small window results in
faster data processing and effectively higher specificity and
sensitivity because signals outside the window are blinded
out.

RTs can be normalized using the iRT approach, if a spectral
library is compiled from heterogeneous DDA runs or if the
DDA runs used to generate the spectral library were generated
with different gradient lengths as compared to the DIA runs
[17,20,24]. The iRT scale was initially developed for the simple
scheduling of SRM assays. Later on the concept was adopted
for the targeted analysis of DIA data [14, 17]1. The iRT scale
is defined on a set of 11 non-naturally occurring peptides
[24]. Based on these 11 peptides the set of iRT anchor points
can be extended to other peptides. This approach has been
used to define iRT values for a set of peptides conserved
in eukaryotic cells and was validated in several species [25].
Targeted analysis of DIA data based on iRT prediction has
been shown to improve sensitivity and speed of the analysis1.
Furthermore, with iRT, spectral libraries can be generated
from heterogeneous DDA runs, they can be transferred to
other experiments and shared with other laboratories while
retaining the advantages of RT prediction for the targeted
analysis.

1Bernhardt, O. M., Selevsek, N., Gillet, L. C., Rinner, O., Picotti, P.,
Aebersold, R., and Reiter, L. (2012) Spectronaut A fast and efficient
algorithm for MRM-like processing of data independent acquisition
(SWATH-MS) data. Proceedings of the 60th ASMS Conference on
Mass Spectrometry and Allied Topics, 2012, Vancouver, BC, Canada.

A number of software tools exist for the targeted analysis
of DIA data among which are Spectronaut, OpenSWATH,
Peak View and Skyline [26, 27]. All of them make use of RT
prediction.

The original iRT scale is based on a linear transformation
over the whole gradient and does not consider local fluctua-
tions or non-linearities, which cannot be captured with a lin-
ear model. In this study, we made use of the high-precision
iRT which is generally applicable and was implemented in
Spectronaut. Instead of using a linear regression, Spectro-
naut uses a segmented regression for the conversion of RT
to iRT (spectral library generation) and iRT to RT (DIA data
analysis) [17]. The segmented regression approach makes use
of many more than the 11 iRT anchor peptides (described in
detail in Methods).

Here, we investigated how iRT precision influences the
identification of peptides and precision as well as the repro-
ducibility of quantitation. We, furthermore, systematically
evaluate the influence of iRT precision on the transferabil-
ity of spectral libraries. For this purpose, we simulated iRT
inaccuracy and compared this to nine distinct experimental
factors such as column length, temperature and mobile phase
acid to measure their influence on iRT precision.

2 Materials and methods

2.1 Materials

Frozen HeLa cell pellets were purchased from Dundee cell
products. Jurkat cell pellets were kindly provided by Dr.
Thomas Uhlmann (Dualsystems AG, Schlieren). Iodoac-
etamide, tris(2-carboxyethyl)phosphine, trifluoroacetic acid,
formic acid, ammonium formate, ACN, HPLC water, ammo-
nium bicarbonate and urea were purchased from SIGMA-
Aldrich. Trypsin sequencing grade was purchased from
Promega. RapiGest was purchased from Waters.

2.2 Sample preparation

A 15-cm dish of confluent cells was washed three times with
PBS and then lysed by resuspension in 8 M urea and 0.1 M
ammonium bicarbonate (to 1 �g/�L protein). For Jurkat cells,
106 cells were collected by centrifugation and washed with
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PBS, then the pellets were resuspended in 8 M urea and 0.1 M
ammonium bicarbonate (to 1 �g/�L protein). The lysates
were reduced with 5 mM tris(2-carboxyethyl)phosphine for
1 h at 37�C. Subsequently, the lysate was alkylated with 25
mM iodoacetamide for 20 min at 21�C. The lysate was diluted
to 2 M urea and digested with trypsin at a ratio 1:100 (en-
zyme to protein) at 37�C for 15 h. The samples were spun
at 20 000 × g at 4�C for 10 min. The peptides were desalted
using C18 MacroSpin columns from The Nest Group accord-
ing to manufacturer’s instructions. After drying, the peptides
were resuspended in 1% ACN and 0.1% formic acid. The
Biognosys’ iRT kit, was added to all of the samples according
to manufacturer’s instructions (required for the DIA analysis
using Biognosys’ Spectronaut).

2.3 High pH reversed phase fractionation

The HeLa digest was further fractionated using high pH re-
versed phase chromatography. 50 �g of the digest was ad-
justed to pH 10 using 0.2 M ammonium formate. Next, the
sample was applied to a MicroSpin C18 column (The nest
group). The peptides were eluted at 5, 10, 15, 20, 25 and 50%
ACN in 0.05 M ammonium formate. Then the samples were
dried and resuspended in 1% ACN in 0.1% formic acid. The
peptide concentration was determined using a Spectrostar
Nano (BGM Labware).

2.4 Mass spectrometric acquisition

As a reference setup, 2 �g of the samples was analyzed using
a self-made analytical column (75 �m x 40 cm length, fritted
tip New Objective) packed with ReproSil-Pur 120A C18-AQ,
1.9 �m at 50�C on an Easy-nLC 1000 connected to a Q Exac-
tive mass spectrometer (Thermo Scientific) (if not specified
else). The peptides were separated by a 2 h segmented gradi-
ent from 5 to 8% ACN in 2 min, next to 12% ACN in 9 min,
next to 29% ACN in 94 min and to 34% ACN in 12 min with
0.1% formic acid at 300 nL/min, followed by a linear increase
to 90% ACN in 2 min and 90% ACN for 8 min. For the 1,
2, 3, 4, 8 h runs a linear scaling of the segments was per-
formed. For DDA MS runs, the “fast” method from Kelstrup
was used with alterations as described in [28]. The full scan
was performed between 350 and 1650 m/z. Stepped collision
energy was +/−10% at 25%. The DIA-MS method consisted
of a survey scan at 70 000 resolution from 350 to 1650 m/z
(AGC target of 5×106 or 120 ms injection time). Then, DIA
windows were acquired (AGC target 3×106 and auto for in-
jection time, the DIA windows are described in Supporting
Information Table-1). Stepped collision energy was 10% at
25%. The spectra were recorded in profile mode. The default
charge state for the MS2 was set to 4. The SWATH-MS data
was recorded on an Eksigent nanoLC connected to a Sciex
Triple TOF 5600 mass spectrometer. 1 �g of the samples was
analyzed on a self-made analytical column (75 �m x 20 cm)

packed with 3 �m Magic C18AQ medium (Bruker) at 50�C.
The peptides were separated by a 2 h linear gradient from
5 to 35% ACN with 0.1% formic acid at 300 nL/min, fol-
lowed by a linear increase to 98% ACN in 2 min and 98%
for 8 min. The raw mass spectrometric data, the spectral
library and the quantitative data tables have been deposited
to the ProteomeXchange Consortium via the PRIDE partner
repository with the dataset identifier PXD004188.

2.5 Mass spectrometric raw data analysis

DIA data was analyzed with Spectronaut 8, a mass spectrome-
ter vendor independent software from Biognosys. The default
settings were used for targeted analysis of DIA data in Spec-
tronaut. In brief, RT prediction type was set to dynamic iRT
and correction factor for window 1 (to linear with no extended
calibration for the 11 iRT peptide-based analyses). Mass cal-
ibration was set to local mass calibration (Supporting Infor-
mation Fig. 1). Decoy generation was set to scrambled (no
decoy limit)2. Interference correction on MS2 level was en-
abled. The FDR was estimated with the mProphet approach
[28] and set to 1% at peptide precursor level. Protein infer-
ence, which gave rise to the protein groups, was performed
on the principle of parsimony using the ID picker algorithm
as implemented in Spectronaut [29]. For the iRT noise exper-
iments, the extraction for the extensive recalibration was set
to 0.75 fraction of the gradient. The DDA spectra were an-
alyzed with the MaxQuant Version 1.5.1.2 analysis software
using default settings with the following alterations (mini-
mal peptide length was 6). The identifications were filtered
for 1% FDR on peptide and protein level. The DDA files were
searched against the human UniProt fasta database (state
11.12.2014, 42 004 entries), and the Biognosys iRT peptides
fasta database (uploaded to the public repository PRIDE). The
peptide coefficients of variation (CVs) were calculated using
the summed intensities of their respective fragment ions, the
protein CVs were calculated based on the summed intensities
of their respective peptides. When we use the word peptides
in this study we refer to peptide precursors.

2.6 Extended iRT calibration set and spectral library

generation

To generate an extended iRT calibration set, the following
steps were performed. Highly accurate apex RTs for a
large number of peptides derived from a HeLa digest were
determined using DIA. DIA instead of DDA was used
because apex RTs derived from DIA are more accurate (data

2Bernhardt, O. M., Bruderer, Gandhi, T., Miladinović, S. M., Bober,
M., Ehrenberger, T., Rinner, O., and Reiter, L. (2014) General guide-
lines for validation of decoy models for HRM/DIA/SWATH as ex-
emplified using Spectronaut. Proceedings of the 62nd ASMS Con-
ference on Mass Spectrometry and Allied Topics, 2014, Baltimore,
MD, USA.
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not shown). First, a spectral library was generated from the
DDA spectra using the classic 11 iRT peptides and linear
regression in Spectronaut. Second, three linear DIA MS runs
of HeLa lysate (linear from 0 to 40% B in 2 h) were analyzed
using the above-described spectral library and the classical
11 iRT peptide method. For this analysis in Spectronaut, a
linear regression using the iRT peptides was chosen in the
settings. Then, a report was generated on peptide precursor
level containing the modified peptide sequences and the apex
RTs. The mean and SD of the RTs for peptide precursors
were calculated for the triplicate (only precursors identified in
all three acquisitions were included). The peptide precursor
identifications were binned into 20 equally sized RT bins
from the first to the last eluting peptide precursor. Per bin,
the 80% of the peptide precursors with the lowest SD were
selected (to minimize outliers from, e.g., in source fragmen-
tation) to result in the final extended iRT recalibration set (the
11 iRT peptides were all kept). Finally, a linear regression
iRT � RTmean based on iRT-pep b (iRT=0) and iRT-pep
l (iRT=100) was performed as described in [24] and iRT
values were assigned to all peptides using this regres-
sion. The two peptides iRT-pep b and iRT-pep l were
originally used to define the iRT scale. The resulting
HeLa iRT calibration set was loaded into Spectronaut
(21 155 anchor peptides (including the original iRT pep-
tides), Supporting Information Table 2, public repository
PRIDE).

To generate the final spectral library, DDA data was ac-
quired, searched with MaxQuant and a spectral library was
generated using the spectral library generation functionality
of Spectronaut which made use of the previously generated
HeLa iRT calibration set. The default settings for spectral li-
brary generation were used. In brief, segmented regression to
determine iRT in each run was used as described below. iRTs
were calculated as median iRTs across all DDA runs. Frag-
ment ions <300 m/z and >1800 m/z as well as fragment ions
with less than three amino acid residues were not considered.
Fragment ions with neutral losses were included. A peptide
precursor was added to the spectral library if minimally three
fragment ions could be detected in the MS2 spectrum. Maxi-
mally six, most intensive, fragment ions were kept.

2.7 iRT � RT and RT � iRT segmented regression

and extraction window width estimation as

implemented in Spectronaut

Both, during spectral library generation and for targeted anal-
ysis of DIA data, Spectronaut performs a segmented regres-
sion if enough data points are available (min. 200 for spectral
library generation, min. 50 for targeted analysis of DIA). For
spectral library generation, the set of anchor points corre-
spond to the overlap of the DDA results with internal data
base of iRT calibration anchor points in Spectronaut. For this
publication, the internal database consisted of the 21 155 an-
chor points derived from the HeLa cell line sample (described

above). For DIA analysis, the anchor points correspond to an
automatic first pass analysis always performed by Spectro-
naut with a linear regression and very wide extraction win-
dows.

For the segmented regression, the data points are split up
into bins along the RT (spectral library generation) or iRT
(DIA analysis) dimension. Each bin contains max(n/40, 20)
data points, where n is the total number of anchor points.
The total number of bins is max(n/40, 20)×2 – 1 because the
bins are overlapping by half. For each bin, a robust Theil-
Sen regression is performed. The median x-value of this bin
is used as reference for this bin. The reference y-value is
calculated using the Theil–Sen regression. After calculating
the reference x-y points for all bins, the points are connected
using lines between them. At the edges the values are linearly
extrapolated.

For the estimation of the window width, the same set of
iRT/RT anchor points is split into bins along the iRT dimen-
sion (min. 30 anchor points otherwise a fix window is ap-
plied). This time the bin size of the bins is chosen n/log2(n),
where n is the total number of anchor points. The bin overlap
is n/log2(n)-1, this means the bin is “sliding” by one index
over the anchor points. The reference x-value for a bin is cal-
culated as the average iRT. The reference y-value is calculated
as (w + q)*0.5, where w is the median chromatographic width
of all detected peaks in this bin and q is the 75th percentile
of the difference between measured RT and predicted RT
(estimated as described above). These reference x-y points are
fed into the same segmented regression as described above
with bin size m/10, where m is the number of reference x-y
points. The window width is chosen two times the predicted
value of this regression.

3 Results

3.1 High-precision iRT in DIA

The iRT system was initially developed for SRM. With 11 iRT
peptides it was mostly used with linear gradients and has a
limited RT precision. In order to augment iRT to very high
precision, we had to extend the set of iRT anchor points. For
this purpose, we measured our sample with a linear gradient
in DIA triplicates. We performed a linear regression using
the original 11 iRT peptides ([24] and methods) to obtain
an iRT calibration set with 21 155 peptides (including the
original iRT peptides) and assigned iRT (Fig. 1A, Supporting
Information Table 2). These anchor points were imported
in Spectronaut. As of release 8, Spectronaut holds a large
database of iRT anchor points generated in a similar fashion,
extending the presented human iRT set. The presented set
can serve as a basis for segmented, local regression also in
other software packages. This large set of anchor points can be
used during the spectral library generation process to deliver
very high-precision iRTs (Fig. 1B and methods).
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Figure 1. Introduction of high-precision iRT determination. (A) The 11 originally published iRT peptides were used to extend the iRT set of
anchor points with three DIA MS runs (iRT-pep b = 0, iRT-pep l = 100, red-dotted lines). (B) A spectral library with high-precision iRT values
were generated by segmented regression of DDA data based on an extended iRT recalibration set of 21 155 peptides. (C) In the whole XIC
of a DIA run, multiple peak groups are observed. (D) The usage of high-precision iRT prediction enables the focus of the targeted analysis
on a small fraction of the total XIC leading to improved sensitivity and data quality. (E) In DIA, the iRT values of a set of high-quality peptide
identifications can be used for a segmented regression of RT as a function of iRT (visualization as in the Spectronaut software). (F) The
distance to the middle of the estimated RT extraction window for a DIA-MS measurement when using a segmented regression (red) and
as a comparison when using a linear regression (green) is shown (visualization as in the Spectronaut software).

For DIA-MS, the iRTs of the spectral library are used to
predict the RT and perform a targeted analysis of the peptide
signals. The more precise the predicted RT values are the
smaller the extraction window and the higher the quality of
the analysis (Fig. 1C and D). It minimizes potential ambiguity
of similar peptides species (for example of similar precursor
mass and similar fragmentation patterns), by zooming for
the analysis only into an XIC of a usually 0.5–2% of the gradi-
ent (for high-precision iRT). The usage of thousands of high
quality iRT values is well suited for the recalibration of the
segmented, non-linear acquisitions (Fig. 1E and methods).
Further, the window size dynamically changes and adapts to
the less precise parts of the gradient (Fig. 1F and methods).

Outlier points in terms of iRT residuals (Fig. 1E and F) are
likely to be false discoveries estimated at 1% (q-value � 0.01).

3.2 Effect of iRT precision

The above-described approach results in high-precision iRT.
When the experimental conditions change as in the reuse of
a spectral library in another laboratory with a different setup,
the precision would likely decrease. Therefore, we investi-
gated the effect of the iRT precision on the performance of
DIA acquisitions. Also, we wanted to compare high-precision
iRT to not using any RT prediction at all (full ion trace
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Figure 2. Isolated effect of iRT precision on identification. (A) Imprecise iRT values were simulated by adding normally distributed iRT
noise to the reference spectral library (0, 1, 2, 4, 8 and 16 iRT SD). The modified spectral libraries were used for the targeted analysis of a
HeLa in a technical triplicate DIA. Additionally, the DIA runs were analyzed using no RT prediction (Full XIC) and linear regression based
on the 11 original iRT peptides. The peptide (B) and protein (C) identifications were calculated for the analyses with the modified spectral
libraries. The mean identifications with SD were plotted.

extraction) as well as the original iRT based on only 11 an-
chor points and linear regression. For this study, a HeLa
spectral library was generated on the reference setup based
on DDA acquisitions of whole sample (14 MS runs) and
high pH reversed phase fractionation (six MS runs). The
HeLa spectral library contained 77 296 peptide precursors,
58 601 peptide sequences of 5412 protein group identifi-
cations. (Supporting Information Table 3, public repository
PRIDE.)

To simulate a decrease in iRT precision, we used the spec-
tral library with high-precision iRT and added normally dis-
tributed iRT noise to it (iRT SD). These variants were applied
to a HeLa technical triplicate DIA on the reference setup
(Fig. 2A and Supporting Information Table 4 public reposi-
tory PRIDE). Except for the full ion trace extraction and the
linear 11 iRT peptide analysis, default Spectronaut settings
were used, which means that the extraction window width is
automatically chosen (see methods).

The analysis using the unmodified high-precision iRT
spectral library revealed an absolute median delta iRT of

0.53 (0.27% of the gradient). The median extraction window
width was 4.1 min (3.4% of the gradient). A maximal iden-
tification of 53 659 peptide identifications corresponding to
almost 5000 protein groups (4871 exactly) was achieved in a
single 2 h Q Exactive DIA measurement.

We could monitor a significant drop in peptide identifi-
cations upon iRT inaccuracy introduction up to 23% (high-
precision iRT to iRT SD 16). Full XIC performed similar
to iRT SD 16 (Fig. 2B). The protein identifications dropped
by roughly 500 (Fig. 2C). The classic workflow with the 11
iRT peptide anchor points performed in the range of iRT SD
6. The automatically, dynamically selected extraction width
in Spectronaut increased in a linear fashion with iRT noise
(Supporting Information Fig. 2 and Table 5).

Additionally, we wanted to assess the benefit of high-
precision iRTs in linear DIA runs. Therefore, we performed
linear DIA runs with HeLa samples and analyzed the data ei-
ther with the classical 11 iRT peptides linear or the segmented
regression. The segmented regression resulted in 18% more
identified precursors in the linear DIA runs, this difference

C© 2016 The Authors. PROTEOMICS published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. www.proteomics-journal.com



2252 R. Bruderer et al. Proteomics 2016, 16, 2246–2256

Figure 3. Effect of iRT precision on quantification. CVs for the analyses of HeLa in technical triplicate DIA when using spectral libraries
with decreasing iRT precision, when using no RT prediction at all (full XIC) and when using only the original 11 iRT peptides and linear
regression. The mean identifications with SD were plotted. (A) CVs of the overlapping peptides were calculated based on normalized
intensities. (B) CVs for the overlapping protein identifications were calculated based on summed peptide intensity per MS run.

was significant (t-test, two sample, two tails, p-value = 7.6 ×
10–5) (Supporting Information Fig. 3).

3.3 Quantification analysis of iRT precision

Next, we wanted to see the effects of increasing iRT inaccuracy
on the precision of quantitation. We calculated the CVs of
only the overlapping peptides for all the analyses (28 908
overlapping peptides) (Fig. 3A). The CVs of the identified
peptides remained stable (median around 5%).

For proteome profiling studies comparing different states,
the differential abundance of proteins is of foremost inter-
est. We calculated the CVs for 3640 overlapping proteins
from all analysis (Fig. 3B). Only a slight increase (relatively
7% increase for CVs of full XIC compared to the unmod-
ified high-precision iRT spectral library) in CVs was ob-
served likely due to decreasing coverage of peptides per
protein.

3.4 Effect on reproducibility

A major advantage of DIA over DDA mass spectrometry was
shown to be the high reproducibility of identification and
quantification [17, 25, 30, 31]. We analyzed the impact on tar-
geted DIA search using the iRT noise modified spectral li-
braries for the profiling of peptides.

For this purpose, we counted the number of consistent
identifications of peptides for DIA triplicates. With increasing
iRT noise in the spectral libraries, the set of completely iden-
tified peptides (identified in all three replicates) dropped by
23% (Fig. 4A). The set of completely profiled proteins dropped
by 16% (Fig. 4B). To verify whether our findings are relevant
for other DIA setups, we performed the same analysis on
a classical SWATH-MS acquisition with a triple TOF 5600

instrument using a linear gradient [14]. The spectral library
was performed on this instrument using 24 DDA MS runs
of a HEK-293 sample. We observed a similar dependence on
identification and a retaining of high quality of quantification
for CVs of 16 335 overlapping peptides and improvement to
the linear iRT approach (Supporting Information Fig. 4).

3.5 Experimental factors influencing iRT precision

iRT precision was very high, if the spectral library was gen-
erated with the identical experimental setup as the DIA
runs were. We were interested how the variation in vari-
ous experimental factors affects iRT. This is especially rel-
evant for the transferability of spectral libraries to other
laboratories.

We varied nine important experimental factors resulting in
30 different DIA measurements in total. The DIA data were
analyzed using the high-precision iRT approach. First, influ-
ence of the varying experimental factors was investigated by
comparing the iRT SDs of the two most extreme conditions
per factor (Fig. 5A). These SDs can be related to the analysis
of Fig. 2 to estimate its effect. The mobile phase acid had
the largest influence (TFA to formic acid, Fig. 5B). Surpris-
ing to us was the relatively large influence of the gradient
length (1 to 8 h, Fig. 5B). Not surprisingly, the stationary
phase had a relatively large influence, i.e., the third largest. A
small influence was observed for different human cell lines,
column replicates and sample loading. A change of the mo-
bile phase acid resulted in an iRT SD of less than 3. When
comparing this to Fig. 2B this would roughly correspond to
adding iRT noise with SD of 3 and would result in more
than 45 000 peptides identified (about 90% of the maximum)
which is still higher than typically achieved with a single DDA
run.
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Figure 4. Effect of iRT precision on reproducibility of identification. Reproducibility for the identifications for a HeLa in technical triplicate
DIA was analyzed when using spectral libraries with decreasing iRT precision, when using no RT prediction at all (full XIC) and when using
only the original 11 iRT peptides and linear regression. (A) The set of peptides that were identified without missing values were counted.
(B) The set of protein identifications that were identified without missing values were counted.

3.6 Influence on iRT precision within the specific

factors

Within one varying factor, we were also interested in the
specific conditions that show the largest iRT deviations.

The iRT values of the peptides were compared to the re-
spective mean iRT of all 30 conditions and a delta iRT was
calculated (Fig. 5B). The TFA condition showed the strongest
iRT deviation of all investigated factors. For the stationary
phases the Acquity beads showed the largest deviations. We
could also see a larger deviation than expected when going
from a 20 cm to a 30 cm column. All other influences were
either minor or behaved linearly.

3.7 Influence of changing the experimental

condition on identification of peptides

We also looked at the cumulative effect of changed condi-
tion and increased iRT accuracy on identification of peptides
when compared to the reference condition (see methods)
(Supporting Information Fig. 5). The non-linear regression
was used for the data analysis. The usage of a 10 cm column
resulted in the strongest reduction of identifications. As ex-
pected, changing the gradient length had a strong influence
in identifications. The 8h acquisitions resulted in over 86%
coverage of the spectral library used. For the different column
and gradient length, the different stationary phases, the DIA
methods were adapted to keep data points per peak constant,
which also contributed to the differences in identifications in
these acquisitions.

4 Discussion

Targeted analysis of DIA is a powerful method for the com-
prehensive, reproducible and precise quantitation of dozens

to hundreds of samples [17,18,30]. A spectral library is a cru-
cial part of such an analysis [17,18,20,22]. Three major factors
influence the performance of a spectral library: the selection
of contained peptides, the selection of fragment ions and rel-
ative intensities thereof and the peptide RT information. In
this study, we were interested in the added value of the RT
information contained in a spectral library. We were mainly
interested in two aspects: The influence of iRT precision on
the analysis and the influence of experimental factors on the
precision of iRT and hence on the transferability of spectral
libraries.

By extending the set of iRT anchor points to thousands a
robust segmented regression can be used to convert RT to
iRT (spectral library generation) or iRT to RT (targeted DIA
data analysis). This has the advantage that heterogeneous
shotgun runs can be combined to generate spectral libraries
and for DIA data analysis smaller XIC extraction windows
can be used which positively influences the sensitivity and
speed of analysis. This holds true also for linear gradients, as
demonstrated in Supporting Information Figs. 2 and 4.

We found a significant correlation between iRT precision
and the number of identifications. When going from high-
precision iRT to no RT prediction at all the number of peptide
precursor identification dropped up to 30% (11% on protein
level). Also when comparing to the classical iRT using linear
regression and only the original 11 iRT peptides the identifica-
tions dropped by 13% (6% on protein level) for non-linear DIA
runs. Notably, even 40 000 peptide precursors (4500 protein
groups) identified without RT prediction are a high number
for a 2 h measurement on a Q Exactive mass spectrometer
[32].

When looking at quantitation the influence of iRT was
minor. For the proteins the slight increase in CVs can be
explained with decreasing peptide coverage of the proteins.
We concluded that high coverage improves quantitation on
protein level, even if mainly low abundant signals are added.
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Figure 5. Experimental factors
influencing iRT precision. (A)
Experimental iRT values were
determined for nine practi-
cally relevant experimental fac-
tors: stationary and mobile
phases, column and gradient
length, column temperature,
flow rates, column replicates,
sample types and sample on
column amount. The SD of the
iRT values for overlapping pep-
tides of the most diverging con-
ditions per factor were calcu-
lated. (B) The deviation in iRT
to the reference spectral library
was determined for all condi-
tions within the experimental
factors.

C© 2016 The Authors. PROTEOMICS published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. www.proteomics-journal.com



Proteomics 2016, 16, 2246–2256 2255

Generally, quantitation was of high quality with median CVs
below 10%.

Given the importance of the spectral libraries, it is nat-
ural to think about sharing these spectral libraries to avoid
generating them over and over again [20, 22]. The transfer-
ability of spectral libraries is a pivotal aspect, especially when
changing an experimental condition between spectral library
generation and DIA measurement. A possible reason for un-
equal experimental factors could be distinct instrumentation
in two different laboratories. When looking into the influence
of experimental factors, we found that the most influential
factor on iRT precision out of nine factors tested is the mo-
bile phase acid (i.e., most likely the pH resulting from the
acid). This was not unexpected, however, the scale of influ-
ence was found to be relatively small: the median iRT SD
was only �2.5 which corresponds to roughly 1.3% of the to-
tal gradient length. The second most influencing factor was
the gradient length and the third most influencing factor
was the stationary phase. This suggests that it is better to
keep the gradient length constant and use other means to
increase the coverage of the spectral library such as sample
pre fractionation or measuring the samples most distantly
related in the experiment. Three factors had almost no influ-
ence on iRT precision: varying the sample (three different hu-
man cell lines), exchanging the column or varying the sample
load.

High-precision iRT, as supported in the software Spectro-
naut, increases the sensitivity and speed of targeted DIA anal-
ysis. Generally, the quality of identification (45 000 peptide
precursors) and quantitation (CVs of 40 000 peptide precur-
sors at median of about 6%) is very high when comparing
to state of the art literature, even when experimental con-
ditions change between the spectral library generation and
DIA acquisition [33–35]. Nevertheless, for the transferability
of spectral libraries it is advisable to keep the experimental
conditions as similar as possible to the setup used to generate
the spectral library. Especially, a change of the mobile phase
acid should be avoided.

A possible solution to improve RT prediction for spec-
tral libraries from a clearly distinct setup might be to use
an in-run trained RT prediction algorithm and predict the
delta rather than the absolute RT. The data points needed
for the training could be easily generated from a first pass
analysis.

In general, our findings are valuable for RT alignment
algorithms and RT prediction. This data set can be used as
a resource to develop in silico RT prediction algorithms for
different experimental conditions.
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