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Abstract: Myotonic dystrophy type 1 (DM1) is a complex, multisystemic neuromuscular
disorder with several pathological phenotypes, disease severities and ages of onset. DM1
presents significant challenges in clinical management due to its multisystemic nature,
affecting multiple organs and systems beyond skeletal muscle. Tackling this condition
requires a comprehensive approach that goes beyond symptom management, particularly
considering the complexity of its manifestations and in the delayed diagnosis. In this
review we will discuss the multisystem symptoms of DM1 and how this understand-
ing is guiding the development of potential therapies for the improvement of patient
outcomes and quality of life. This review aims to explore the available treatments and
potential novel disease-modifying therapies targeting DM1 molecular mechanisms to ad-
dress the broad multisystem symptoms of DM1. Effective strategies to manage symptoms
remain crucial, such as physical therapy, medications for myotonia and diligent cardiac
care. Metabolic management and hormonal therapies play crucial roles in addressing
endocrine and metabolic abnormalities. Nevertheless, promising targeted therapies that
include antisense oligonucleotides (ASOs) for RNA degradation, small molecules to disrupt
protein-RNA interactions and gene editing offer a prospective approach to the underlying
mechanisms of DM1 and improve patient outcomes across the different organ systems.

Keywords: rare disease; myotonic dystrophy type 1; multisystem disease; disease-modifying
therapy; clinical trials; muscular dystrophy

1. Introduction
Myotonic dystrophy type 1 (DM1), also known as Steinert’s disease (OMIM#160900), is

the most common form of muscular dystrophy among adults, although it affects both adults
and children [1]. DM1 is an autosomal dominant disease caused by unstable expanded
cytosine–thymine–guanine (CTG) repeats within the 3′ untranslated region (3′ UTR) of
the DMPK (Dystrophia Myotonica Protein Kinase; OMIM* 605377) gene at chromosome
19q13.3 [2–5]. Although DM1 present high inter- and intra-individual variability [6],
the cardinal symptoms are myotonia often affecting the hands, tongue and jaw due to
slow muscle relaxation [7], distal progressive muscle wasting and weakness, facial and
bulbar involvement, high palate and dysphonia [8]. DM1 prevalence estimates differ
across different geographic and ethnic groups, and delayed and missed diagnoses make it
challenging to determine the real prevalence of DM1 [9,10]. Globally, DM1 has a reported
prevalence of 9.27 cases per 100,000 individuals [11] and is estimated to affect between
1 in 2100 and 1: in 8000 people [12], making it one of the most common rare diseases.
Widespread chronic pain affecting the hands and feet suggests an involvement of small and
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large fiber neuropathy [13,14]. The disease displays a multisystemic complexity, affecting
several body systems, besides the skeletal muscle, such as the heart [15–17], the eye [18],
the respiratory system [19–21], the endocrine system [22,23] and the central nervous system
(CNS) [24–26] (Figure 1). Beyond the primary symptoms, DM1 patients have an increased
risk for both benign tumors and malignancies [27–30] and higher complications of adverse
reactions to anesthesia and analgesic drugs relative to the general population [31]. To this
date, there are no disease-modifying therapies available for DM1.

Figure 1. Broad spectrum symptoms of myotonic dystrophy type 1 (DM1). The figure shows the
multisystem effects of DM1, emphasizing the involvement of the muscular, cardiovascular, respiratory,
gastrointestinal, neurological and reproductive systems. It also highlights neurological and endocrine
dysfunctions linked to the disease, demonstrating the widespread and complexity of DM1 in the
body. Figure created with BioRender (BioRender.com).

2. Myotonic Dystrophy Type 1 Classification
The hallmark of DM1 is the abnormal expansion of the CTG trinucleotide repeats

beyond a normal range. In stable, unaffected individuals, the length of the CTG expansion
ranges from five to thirty-four repeats, which are stably inherited and have a low mutation
rate. DM1 patients have CTG expansions exceeding 50 repeats and extending from hun-
dreds to thousands of repeats becoming highly unstable and often expanding further in
both germline and somatic cells. DM1 alleles also include a ‘premutation range’ with CTG
repeat lengths ranging from 38 to 49 [32,33]. Individuals with permutations show none or
few mild symptoms, but are more likely to pass a pathologically expanded mutant allele to
the next generations [34]. DM1 displays the phenomenon of anticipation, characterized by
larger repeat expansions from one generation to the next, resulting in an earlier onset and
more pronounced clinical features [9].

From the clinical perspective, DM1 is typically classified according to the age of onset
and the severity of disease symptoms. DM1 is classified into three phenotypes (mild, classic
and severe) based on severity and clinically categorized as congenital-onset, infantile-onset,
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juvenile-onset, adult-onset and late-onset [35]. Each phenotype is associated with CTG
repeat expansions larger than 100 and up to several thousands, with major overlap in CTG
repeat sizes across different phenotypes [24,36,37] (Figure 2).

Congenital-onset DM1 is the most severe form and is characterized by a CTG repeat
length greater than 1000 repeats [35,37]. The first clinical symptoms appear prenatally or
at birth, with an estimated incidence ranging from 2 to 28 per 100,000 live births [38]. In
the ‘severe’ form, also referred to as congenital DM1, symptoms can include hypotonia,
generalized muscle weakness and myopathic facies, which may result in feeding difficulties
and require respiratory support [39]. In contrast to juvenile- and adult-onset, myotonia is
typically absent in congenital DM1 in early childhood [40].

The first clinical symptoms in infantile-onset DM1 appear around the ages one to ten.
Although symptoms can develop after the first year of life, they are often more noticeable
in early childhood, with initial signs being cognitive or behavioral rather than physical.
This can include intellectual disabilities and attention deficits, which could complicate
early diagnosis [41,42]. In juvenile-onset, the first clinical symptoms are detected between
ages 10 and 20; this form usually presents with a broader range of physical symptoms
particularly muscle weakness [43]. Both infantile-onset and juvenile-onset conditions
develop symptoms like those noticed in adults and normally present more than 400 CTG-
repeats [44,45]. Adult-onset or ‘Classic DM1 form’ is the most common type of DM1,
typically developing between the ages of 20 and 40 [46]. This type is associated with CTG
repeat expansions ranging from 50 to less than 1000 repeats and has a global prevalence of
9.27 per 100,000 [11]. This form has been associated with premature aging, with signs of
early cognitive decline and, in some cases, dementia [47,48]. In support of this, longitudinal
studies show progressive cognitive decline and changes in brain white matter. These studies
also reveal that the longer the disease lasts, the more severe the neurocognitive dysfunction
becomes, signifying worsening brain function over time [49]. Finally, the late-onset, also
known as ‘Mild DM1 form’, typically starts after the age of 40 and is characterized by mild
distal muscle weakness and cataracts [50]. These patients typically have a CTG repeat size
of 50 to 100 and have a normal or only minimally shortened lifespan [46].

Figure 2. Myotonic dystrophy type 1 (DM1) phenotypes and clinical manifestations. The grey arrow
illustrates the overall disease severity trend across the DM1 subtypes: as CTG repeat sizes increase,
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both disease severity and symptom complexity tend to worsen, often appearing earlier in life.
Each phenotype is associated with a characteristic set of symptoms, ranging from mild manifes-
tations in lower repeat ranges to severe and multisystemic involvement as the repeat length in-
creases [38,51–58]. Figure created with BioRender (BioRender.com). Abbreviations: DM1, myotonic
dystrophy type 1; CTG, cytosine-thymine-guanine. These clinical features have been oversimplified
for comparison purposes.

3. Myotonic Dystrophy Type 1 Molecular Pathophysiology
To date, the pathological mechanisms underlying DM1 pathogenesis remain partially

understood. Some models have been proposed to explain the pathological mechanisms for
DM1, namely the chromatin rearrangement, RNA toxicity and DMPK haploinsufficiency
models (Figure 3). However, currently, no single model accounts for the full spectrum of
clinical symptoms observed in DM1 patients.

Figure 3. Proposed models of DM1 pathological mechanisms. The CTG expansion affects chromatin
rearrangement, leading to epigenetic repression of neighboring genes. Once transcribed into RNA,
these repeat expansions exert a toxic RNA gain-of-function effect within the cells. The CTG repeat
expansion in the DMPK gene interferes with normal gene expression by altering transcription or by
causing the retention of CUG expanded transcripts, which may lead to DMPK haploinsufficiency,
contributing to disease pathology. Figure created with BioRender (BioRender.com) Abbreviations:
DMPK, myotonic dystrophy protein kinase; DMWD, DM1 locus WD repeat containing; SIX, home-
obox gene; (CTG)n, expansion of (cytosine-thymine-guanine) n; mRNA, messenger ribonucleic acid;
CELF, CUGBP Elav-like family; MBNL1, muscleblind-like splicing regulator 1; miRNA, micro-RNA;
circRNA, circular RNA; RAN, ras-related nuclear protein.
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Concerning chromatin rearrangement at the DM1 locus (Figure 3), the transcription
of the DMPK gene yields into sense and anti-sense transcripts, playing important roles
in the regulation of gene expression and the pathogenic mechanisms associated with the
disease. Processing of anti-sense transcript might be involved in chromatin ultrastructure
regulation and may extend into an insulator element found between the DMPK and SIX5
genes. Double-stranded RNA structures formed either by CUG transcripts folding into
hairpin structures or complementary binding of sense and anti-sense DMPK transcripts,
may activate RNA interference (RNAi) pathways [59–61]. The repressive chromatin envi-
ronment may lead to reduced transcription of DMPK and adjacent genes, contributing to
disease pathology.

Considering the RNA gain of toxic function (Figure 3), the mutant DMPK RNA con-
taining expanded CUG repeats (CUGexp) accumulates in the nucleus, building ribonuclear
foci with RNA hairpin structures that trap RNA-binding proteins (RBPs) important for
mRNA transport, alternative splicing and decay. Muscleblind-like protein 1 (MBNL1) and
CUG-BP-ELAV-like family member 1 (CUGBP1 or CELF1) are key RBPs affected. The
sequestration of MBNL proteins by DMPK CUGexp mRNA within the nucleus leads to a
reduction in their functional activity and availability in the cell [62]. A significant result of
MBNL1 sequestration is the interference with its typical function in the alternative splicing
of transcripts related to mitochondrial structure and dynamics, like optic atrophy 1 (OPA1)
and Mitofusin-2 (MFN2), which are essential for mitochondrial fusion [63,64]. Alterations
in the splicing of these genes lead to an increase in mitochondrial fission, resulting in abnor-
mal mitochondrial structures marked by fragmentation, swelling, disorganized cristae and
clustering around the nucleus [65,66]. These structural abnormalities are associated with
aberrant mitochondrial performance, which includes decreased ATP production, height-
ened oxidative stress, and ineffective mitophagy, factors that contribute to the cellular
dysfunction seen in DM1 [67,68].

In contrast, CUGBP1 is not sequestered in a similar manner but is instead hypoth-
esized to undergo hyperphosphorylation mediated by several protein kinases, such as
protein kinase C (PKC), cyclin D3 (CCND3), cyclin-dependent kinase 4 (CDK4), AKT
serine/threonine kinase 1 (AKT1), glycogen synthase kinase 3 beta (GSK3B) and double-
stranded RNA-dependent protein kinase (PKR) [69,70]. These kinases modify CUGBP1
by affecting its stability, localization and activity. Hyperphosphorylation of CUGBP1 en-
hances its activity, leading to dysregulation in alternative splicing, mRNA translation and
transcript decay [71]. This aberrant regulation disrupts normal cellular functions and
contributes to the molecular pathology of DM1, even though CUGBP1 itself is not directly
sequestered by toxic RNA repeats [72].

The symptoms observed in DM1 patients are believed to be caused by MBNL and
CUGBP1 dysfunctions. In the nucleus, the misregulation of splicing factors MBNL and
CUGBP1 interrupts the normal developmental splicing process, preventing the suitable
switch from embryonic splice isoforms to adult-specific isoforms in adult tissues [73].
Misspliced effector genes, such as muscle-specific chloride channel (ClC1), NMDA receptor
(NR1), insulin receptor (IR), cardiac troponin T (cTNT), MTMR1 and Tau (MAPT) have
been identified as key targets of MBNL and CELF1. The dysregulation of these genes
due to mis-splicing contributes to the multisystemic symptoms observed in DM1 [74,75].
Mutant DMPK RNA interferes with the function of specific transcription factors (TFs),
depleting them from active chromatin through an RNA leaching mechanism, and thereby
demonstrating a decreased level of transcription from the CLCN1 promoter [76–78].

DMPK haploinsufficiency (Figure 3) caused by the CTG expansion results in an
approximately 50% reduction in DMPK expression, either due to altered transcription or the
retention of CUG-expanded transcripts, leading to disease pathology [79,80]. DMPK plays
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a crucial role in the phosphorylation of proteins like sarcolipin (SLN), phospholamban
(PLB), phospholemman (PLM) and Lipin, which are necessary for muscle contraction
and relaxation [35]. It is reasonable to conclude that protein phosphorylation plays a
key regulatory role in DM1 [81]. In fact, phosphorylated PLB and SLN interact with
Sarco/Endoplasmic reticulum Ca2+-ATPase (SERCA), leading to elevated calcium levels
in the cytoplasm. This results in prolonged muscle contraction, which causes myotonia in
DM1 [82,83].

Despite all this information, none of these theories can account for all the multisystemic
symptoms. However, more recent research has shed light on additional events that could
contribute to the disease complexity. Among these, repeat-associated non-ATG (RAN)
translation plays a central role in disease pathology by generating toxic non-physiological
peptides or proteins through bidirectional transcription and several reading frames [84,85].
This aberrant RNA accumulation contributes to cellular toxicity and triggers apoptotic
pathways by forming nuclear RNA foci and accumulating in the cytoplasm [86], resulting
in toxicity that contributes to the multisystemic manifestations seen in DM1. The presence
of RAN-translated proteins has been seen in multiple DM1 cell types, although their
detection remains challenging due to low expression levels compared to controls [87,88].
The understanding of RAN translation’s role in DM1 continues to progress, emphasizing
its potential impact on disease progression.

Beyond RAN translation, microRNA (miRNA) changes have been implicated in DM1
pathogenesis [80]. Aberrant expression of miRNAs in DM1 disrupts normal gene expression
and regulatory networks, which may intensify disease progression [89]. Altered signaling
pathways, such as those involving transforming growth factor-beta (TGF-β) [90], extracel-
lular signal-regulated kinase (ERK) [91,92] and AMP-activated protein kinase (AMPK) [93],
underscore the complexity of the molecular landscape in DM1. These disruptions in signal-
ing pathways are often directly or indirectly influenced by the toxic effects of expanded
CUG repeats [94].

Emerging research also points the dysregulation of nuclear envelope (NE) integrity
and function as a significant contributor to DM1 pathogenesis [95]. Intriguingly, primary
DM1 myoblast and myotube cultures have shown changes in the expression of NE trans-
membrane proteins (NETs) and modifications to the structure of the NE [96,97]. A study
using DM1 patient-derived fibroblasts showed abnormalities in NE structures, including
altered levels and mislocalization of NE proteins (Lamin A/C, LAP1, SUN1, nesprin-1 and
nesprin-2). These changes were accompanied by a high prevalence of micronuclei, increased
number of nuclear inclusions and nuclear deformations (blebs, lobes, invaginations). These
results emphasize NE dysfunction as a pathological feature in DM1 [98].

Additionally, genome organization, regulation, repair, signaling and cellular mechan-
ics are all significantly impacted by the NE [99,100]. For instance, variations in the nuclear
pore complex function caused by defective NETs can hinder mRNA export, contributing to
the nuclear retention of toxic RNA species [101–103].

Furthermore, mitochondrial dysfunction [67,104] and oxidative stress [105,106] are
gradually being recognized as contributing factors to DM1 pathophysiology.

4. Multisystem Symptoms Management and Overview of the Current
Clinical Treatments
4.1. Musculoskeletal System

Patients with DM1 present muscle weakness with a characteristic pattern, affecting
both distal and facial muscles, with proximal muscles becoming involved as the disease
progresses. While myotonia is the hallmark of the disease, it is generally mild to moderate
and may not always require treatment [107]. However, some patients experience severe and
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disabling myotonia, which significantly impacts their quality of life, leading to fatigue, pain,
droopy eyelids, handshaking and breathing and swallowing difficulties [108]. In such cases,
anti-myotonic drugs may be used, such as mexiletine, which significantly reduces hand
grip myotonia in DM1 patients with no serious events [109–111], although no substantial
outcome was observed in the 6 min walk test [110]. The results from two ongoing clinical
trials revealed that administration of mexiletine in DM1 patients, three times daily at
dosages of 150–200 mg, has demonstrated to be both effective and well-tolerated, leading to
a reduction in handgrip relaxation time [111]. The Myotonic Dystrophy Foundation (MDF)
advocates mexiletine as a consensus-based care recommendation for adults with DM1 and
a safe first-choice anti-myotonic medication for reducing muscle stiffness [112]. Given the
risk of pro-arrhythmogenic effects, an ECG should be conducted before starting therapy,
followed by regular ECGs and clinical supervision by cardiologists [113].

Another important aspect of this disease is the progressive muscle wasting or at-
rophy that presents a distal pattern, affecting the muscles of arms, hands, ankles, jaw,
tongue and neck flexors. In advanced stages of DM1, mobility assistive devices such as
powered wheelchairs and motorized scooters are usually utilized to help patients with
muscle deterioration in the daily living activities [114,115]. Further, a fundamental as-
pect of managing muscle weakness in DM1 involves a regular assessment of functional
independence, respiratory muscle weakness, mobility disturbances, dysphagia and speech
difficulties [116].

Although multiple drugs are being tested, few have shown reliable improvements in
muscle function and strength in patients with DM1 [117–120]. Activating AMPK through
combinatorial therapies for rescuing skeletal muscle defects and maximizing therapeutic
benefits presents a favorable strategy for improving muscle function in DM1 [121,122].
Moreover, incorporating regular aerobic exercises at low to moderate intensity to improve
mobility [123], along with the support from speech, physical and occupational therapists
or orthopedic treatments as required, is essential for enhancing patients’ quality of life,
despite the lack of evidence-based conclusions [112,116,124,125]. Accurately measuring
muscle strength is crucial for understanding the progression of DM1, which impacts both
cardiac and skeletal muscles. The most used methods for assessing cardiac muscle strength
include echocardiography and the measurement of ejection fraction [126]. In contrast,
skeletal muscle strength is typically evaluated through quantitative muscle testing, manual
muscle testing, maximum isometric torque and the Medical Research Council (MRC) scale.
These tools guide therapeutic intervention and provide insights into the extent of muscle
involvement [127].

4.2. Respiratory System

Respiratory failure is the primary cause of mortality in patients with DM1 [128],
often resulting from a combination of central respiratory drive issues, skeletal muscle
weakness and upper airway muscle dysfunctions, leading to obstructive sleep apnea and
aspiration [129–131]. However, many healthcare providers may overlook DM1 as a pos-
sible underlying cause, particularly in individuals without a clear history of respiratory
issues [129,132]. Chronic respiratory difficulties affect about 30% of the DM1 population
making it a life-threatening disorder [36,133]. Obstructive sleep apnea appears in 52–86%
of patients and central apnea appears in 44%, along with sleep-associated hypoventilation
and hypoxemia [133–135], all of which subsidize to an increased rate of cardiac irregulari-
ties [136,137]. A significant number of patients with DM1 present a high prevalence of sleep
disorders, with most cases being obstructive in nature [138]. In fact, by using polysomno-
graphic test and multiple sleep latency test (MSLT), several notable polysomnographic
abnormalities were recognized in DM1 patients compared to controls [139]. Chronic res-
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piratory insufficiency, with or without sleep apnea, can be effectively managed using
non-invasive home mechanical ventilation (HMV), which has been shown to relieve symp-
toms, providing an opportunity of survival benefit to patients [140]. On the other hand, a
large observational study hypothesized that adherence to HMV treatment in DM1 patients
is not consistently associated to their respiratory characteristics, making it unreliable for
those at risk because of low adherence [141].

Upon diagnosis, DM1 patients should receive baseline respiratory function tests and
undergo annual assessments of vital capacity in both sitting and supine positions [142].
For patients with dysphagia, impaired cough or compromised lung function, it is crucial to
monitor for recurrent respiratory infections and consider the use of cough assistance de-
vices [44,112,142]. Screening for sleep-disordered breathing is necessary, with non-invasive
ventilation (NIV) being considered if extreme daytime sleepiness (EDS) is present and
ventilation criteria are met [143]. For patients who do not respond to NIV, medications
such as modafinil, methylphenidate and a theobromine/caffeine combination have demon-
strated effectiveness and good tolerance in treating EDS [143–145]. Additional research
into the natural progression of lung dysfunction in DM1 patients will help assess risks,
provide insights into the disease’s pathogenesis and develop suitable outcome measures
and treatments for upcoming therapeutic trials.

4.3. Cardiovascular System

Cardiac involvement is observed in approximately 80% of DM1 cases [146,147], often
preceding muscular impairment. The cardiac alterations in DM1 include conduction
disturbances, arrhythmias and subclinical diastolic and systolic dysfunction in the earliest
stages of the disease [148–151]. Severe ventricular systolic dysfunction typically occurs
later with the disease progression. Although dilated and end-stage cardiomyopathy are
rare in DM1, myocardial infarction accounts for around 5% of cardiovascular deaths, and
unexpected cardiac death occurs in 30% of patients [148,151].

Clinical presentations may include chest pain, pre-syncope, dyspnea and palpitations [152].
Despite significant advances in understanding the pathophysiology of skeletal muscle

in DM1, the mechanisms underlying cardiac arrhythmogenic aspects remain unclear [153].
Initial screening for symptomatic individuals consists of an electrocardiograph, echocardio-
gram and Holter ECG monitorization [154]. In cases where surface ECGs reveal uncertain
abnormalities, invasive electrophysiological studies can be valuable [155]. Detecting my-
ocardial structural and functional abnormalities is possible through non-invasive use of
contrast-enhanced cardiac MRI [147,156].

Implantable cardioverter defibrillators (ICDs) have proven to offer a survival benefit
in selected patient groups, particularly those with high risk of sudden cardiac death due
to inherited arrhythmias, heart failure or previous cardiac arrest [157]. However, recent
advancements in heart failure therapy and clinical trials have sparked a renewed interest
and raised emerging questions about the role of primary prevention ICDs, particularly in
individuals with non-ischemic heart failure, in reducing mortality and improving patient
outcomes [158].

Additionally, pacemakers may be used in DM1 patients to treat symptomatic brad-
yarrhythmia or prophylactically in those at an elevated risk of complete heart block [159].
The use of class 1 antiarrhythmic drugs in DM1 patients should be approached with caution
due to their paradoxical proarrhythmogenic effects [155]. Mexiletine is also encouraged by
cardiologists occasionally to relieve atrial fibrillation [160]. A thorough evaluation must be
carried out before initiating the use of an anti-arrhythmics in patients with DM1 to rule
out any underlying abnormalities. Therefore, cardiologists with experience in treating
DM1 patients should oversee monitoring during drug initiation and the mexiletine-related
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monitoring [111,161]. An algorithm has been developed by cardiologists and neurologists
to guide decision-making regarding mexiletine treatment and conducting cardiac moni-
toring [161]. The guidelines for permanent pacemaker implantation in DM1 patients with
cardiac conduction disturbances are like those for the general population [162]. Although,
some DM1 patients who do not meet the formal criteria have depicted better outcomes
with an invasive strategy, highlighting the necessity for risk stratification and personal-
ized care and the importance of developing DM1-specifc guidelines [163]. When treating
DM1 patients, cardiologists should recognize preclinical echocardiographic indicators of
heart impairment to identify those who require intensive therapeutic management in a
timely manner [149]. Additionally, regardless of cardiological symptoms, yearly ECGs are
encouraged in DM1 patients [112].

4.4. Gastrointestinal System

Smooth musculature is also impacted by myotonia and weakness, leading to the
prevalence of gastrointestinal (GI) symptoms that can affect the DM1 patient’s quality of
life. These patients frequently present a variety of GI symptoms, affecting all regions of the
GI tract, including liver and gallbladder, esophagus, small and large intestines, stomach
and anal sphincter [164,165]. Dysphagia (difficulty in swallowing), is the most common
GI complaint [166], resulting from myotonia and weakness of the oropharyngeal muscles
and/or impaired esophageal motility [167]. Other frequent symptoms include acid reflux,
intestinal pseudo-obstruction, variations between diarrhea and constipation that can mimic
irritable bowel syndrome, as well as gallbladder problems with a comparatively high inci-
dence of cholecystectomy and liver complications [165,168,169]. These GI manifestations
result from a combination of several factors, including connective tissue alterations, smooth
muscle dysfunction [48], autonomic neuropathy and neuromuscular impairment [14]. Some
studies suggested a possible correlation between the CTG repeat length and the GI signs
such as constipation, dysphagia and abdominal discomfort [166,170]. Emerging research
also indicates that the gut bacterial community, in combination with biochemical factors,
may influence the GI tract, even though no significant changes in the gut microbiome com-
position have been observed between the different DM1 phenotypes [164]. This happens
because of the microbiome’s functional activity, metabolic pathways and interactions with
immune responses or metabolic byproducts that could impact GI health without altering its
overall configuration [171]. These complex interactions highlight that even in the absence
of significant compositional changes, the gut bacterial community can still contribute to
GI manifestations in DM1 through functional or metabolic mechanisms [172]. Beyond
microbiome composition, there is need to fully understand its role in DM1-associated
GI dysfunction.

Clinicians should closely observe for symptoms such as frequent coughing, weight
loss, dysphagia and dysphonia [112,173]. If necessary, dietary adjustments and swallowing
techniques should be effectively taught to the patients [174,175], along with rehabilitation
approaches to avoid aspiration and severe respiratory challenges [176]. In cases of severe
dysphagia and frequent aspiration, surgical interventions like gastrostomy placement
may be considered [44]. For patients experiencing constipation and diarrhea, dietary
modification can be considered as a first-line therapy [177]. However, if symptoms persist,
the use of pharmacological therapy, including proton pump inhibitors, anti-dyspeptic
drugs, metoclopramide and gentle laxatives, may be appropriate [112,178]. A recent study
recommends early screening for GI and urological symptoms as part of standard care for
children with DM1, stating that pharmacological treatment has shown excellent results in
managing GI symptoms [179].
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4.5. Central Nervous System

In DM1, CNS involvement is an important feature that impacts patients’ quality of
life and prognosis. Cognitive deficits, behavioral changes and affective disturbances are
predominant [180], with neuropathological findings in DM1 patients including neuronal
loss and neurofibrillary aggregates, particularly affecting regions responsible for memory,
motor control and emotional regulation [181–183]. The importance of CNS involvement
underlines the need for a complete rehabilitation strategy to improve the quality of life of
patients with DM1, beyond just medical care. Clinicians should frequently assess cognitive,
behavioral and psychiatric symptoms, conducting detailed neuropsychological evaluation
post-diagnosis [118]. Regular assessment of fatigue and sleep disturbances should be
conducted using scales such as the daytime sleepiness scale (DSS), fatigue severity scale
(FSS), DM1-specific fatigue and daytime sleepiness scale (FDSS), Epworth sleepiness scale
(ESS) and excessive daytime sleepiness (EDS) evaluation, to monitor and manage these
common symptoms [44,184]. Cognitive behavioral therapy (CBT) has been effective in
reducing severe fatigue in DM1 individuals, resulting in improvements on daily activities
and social involvement [185].

4.6. Visual System

Several ocular structures may be affected in DM1 patients, such as lens, retina, cornea,
ciliary body, eye muscles and eyelids [186]. Common ocular symptoms include cataracts,
ptosis, thicker corneas, macular alterations and decreased intraocular pressure (IOP), retic-
ular maculopathies and Fuchs’ endothelial corneal dystrophy (FECD) [187,188]. Cataracts
often present a distinctive Christmas tree shape and tend to progress early in patients
with DM1, including in those with moderate disease signs [186]. FECD, which recently
identified as an ocular manifestation in DM1, occurs in about 46% of patients and seems to
be triggered by DMPK trinucleotide expansion through RNA-mediated toxicity [186,189].
Other ophthalmic manifestations include weakness in the orbicular muscles, epiretinal
membranes, optic atrophy, poor adaptation to dim light, irregularities in iris pigment and
alterations in the retinal pigment epithelium (RPE) [186].

Due to these risks, it is recommended that DM1 patients have yearly ophthalmologist
visits, including a slit lamp examination [44,112]. Cataracts should be treated with surgical
extraction when vision is impaired, and symptomatic oculomotor abnormalities, such as
brow ptosis, can be corrected surgically if they interfere with daily activities. Also, eyelid
crutches may be considered for patients undergoing ptosis [190]. Finally, to avoid misdi-
agnosing surgically treatable conditions such as epiretinal membrane, optical coherence
tomography (OCT) is recommended for DM1 patients with visual impairments [191].

4.7. Endocrine System and Metabolism

Endocrine and metabolic abnormalities are well-known in DM1, with hyperinsu-
linemia following glucose ingestion often indicating prediabetes or impaired glucose
tolerance [192]. This leads to a higher occurrence of thyroid, parathyroid and gonadal dys-
functions, as well as irregular adrenal hormone levels [97,193]. Initial evaluations should
include hormonal status, covering sex hormones, thyroid and parathyroid hormones, lipid
profiles and glucose metabolism [112,194]. It is also suggested to annually monitor the
hemoglobin A1C (HbA1c) and fasting serum glucose levels [195].

To manage glucose metabolism disorder, therapy should follow established guidelines
and the diagnostic criteria of the American Diabetes Association (ADA) [196]. Metformin
is often considered the first-choice drug for DM1 patients with compromised glucose
metabolism, as it effectively reduces blood glucose levels by suppressing hepatic gluco-
neogenesis and promoting glucose uptake [197,198]. Poorly treated diabetes mellitus can
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complicate the clinical scenario by causing diabetic polyneuropathy, which exacerbates gait
instability and distal weakness [199]. Fatigue and muscle impairment can also be caused
by hyperparathyroidism [200,201]. Implementing healthy lifestyle changes concerning diet
and exercise, along with the appropriate use of various medications, can help regulate
blood glucose and insulin levels, thereby addressing insulin resistance [202].

Recently, studies indicated that metabolome evaluation in these patients is crucial
and may contribute to a better characterization and discrimination between DM1 disease
phenotypes and severities [203]. Several experimental approaches using Fourier transform
infrared spectroscopy (FTIR) allow the evaluation of metabolic profiles by categorizing
samples through their biochemical composition. FTIR spectra were acquired and analyzed
using skin DM1 patient-derived fibroblasts and controls. The results obtained showed clear
discrimination between both DM1-derived fibroblasts with different CTG repeat lengths
and with the age of disease onset. These results suggest that FTIR spectroscopy is a valuable
tool for discriminating both DM1-derived fibroblasts with different CTG length and the
age of onset and to study the metabolomic profile of patients with DM1 [203].

4.8. Reproductive System

DM1 patients often suffer fertility-related dysfunctions, with approximately 80% of
affected males developing testicular atrophy by adulthood [204]. While less is known about
female fertility in DM1, studies have shown a decreased in ovarian sensitivity [205–207],
poor-quality embryos, and lower pregnancy rates among female patients [208,209]. In rare
cases, premature ovarian failure may occur [210]. Maternal complications during pregnancy
can include prolonged labor due to uterine dysfunction, uterine overdistention linked with
polyhydramnios and post-partum hemorrhage developing from atonic uterus [211–213].
Fertility issues in DM1 should be assessed through blood tests to assess reproductive
hormones and semen evaluation for sperm count and quality [204,214].

While no effective treatments are available to restore fertility, assisted reproductive
technology (ART), with or without oocyte or sperm donation, may be beneficial to improve
the chance of conception [215]. Intensive obstetric and perinatal care is strongly recom-
mended due to the increased risks, particularly during pregnancy and delivery [216,217].
In cases of polyhydramnios, amniotic fluid volume reduction can be considered to manage
preterm labor or substantial maternal distress, using amnioreduction and/or prostaglandin
synthetase inhibitors [218,219]. Future research is essential to improve treatments and
outcomes for reproductive issues in patients with DM1.

4.9. Integumentary System

DM1 patients often present skin-related abnormalities, such as frequent dysplastic
nevi, xerosis, alopecia and seborrheic dermatitis, beside premature aging signs [220]. These
patients commonly exhibit skin abnormalities, with the most common cases primarily re-
lated to the severity of the genotype and serum vitamin D levels. An increase in nevi count
is associated with larger CTG expansions, while both dysplastic nevi and xerosis are linked
to lower vitamin D levels [221]. While limited research exists on skin involvement in DM1,
associations have been observed with baldness (early male frontal alopecia) [222], epithelial
tumors (pilomatricomas and non-melanoma skin cancers (NMSC)) [223]. Pilomatricomas
are firm lumps that often appear near the head or neck below the skin’s surface [224].
Isolated pilomatricomas may appear during childhood and could be an early sign of the
disease, which should be first recognized by pediatric dermatologists [44], as it can be effec-
tively treated by surgical removal. While skin changes have been reported with DM1, the
specific mechanism of the disease in causing these alterations is still uncertain. Identifying
dermatological markers of DM1 could further provide clinicians with valuable insights.
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5. Towards the Development of Promising Therapeutic Interventions
for DM1

In recent years, emerging studies in DM1 focused on addressing the involved molecu-
lar mechanisms and on exploring the generation of therapeutic approaches, which collec-
tively could develop more effective and long-lasting treatments [225,226].

Disruptions caused by the expansion of CTG trinucleotide repeats in the DMPK
gene underlie the widespread splicing defects and cellular dysfunctions related to DM1.
Consequently, developing therapies for DM1 requires a deep understanding of its molecular
pathology, which has led the identification of key therapeutic targets [227], paving the way
for drug development and advancing promising candidates through clinical trials to assess
their safety and effectiveness.

A major therapeutic approach strategy already proposed for DM1 involves using
CRISPR-Cas9 technology to excise the expanded CTG repeats from the DMPK gene. This
strategy focuses on the removal of the expanded CTG repeats from the mutant DMPK
gene, efficiently correcting the mutation at the DNA level. By targeting the root cause of
DM1, CRISPR-Cas9 can effectively target and excise the repeat expansions in cell models,
restoring normal DMPK function [228] (Figure 4A).

In addition to gene editing, RNA-targeting therapies have emerged as an important
area of focus. Degrading mutant DMPK mRNA in patient tissues using antisense oligonu-
cleotides (ASOs) and small interfering RNAs (si-RNAs) have been developed, triggering
transcript degradation mediated by RNase H for ASOs or the RNA-induced silencing
complex (RISC) for siRNAs. By eliminating the mutant mRNA, these therapies aim to
restore the normal function of MBNL1 and reduce toxic foci formation, leading to improved
cellular function and splicing outcomes [229,230] (Figure 4B). Recent studies have shown
the potential for synergistic effects when combining ASOs with small molecules that target
splicing regulators. These combinatorial strategies enhance therapeutic efficacy by pre-
senting several molecular defects in DM1 [62,231]. MBNL1, which is typically sequestered
by toxic RNA, can be used to reduce CUG foci accumulation. This sequestration disrupts
normal splicing and gene expression processes, leading to misregulated splicing of criti-
cal genes involved in muscle function and other cellular processes [65,232]. Specifically,
MBNL1 is responsible for regulating alternative splicing events that are crucial for muscle
fiber composition and function. When sequestered by toxic RNA foci, MBNL1 cannot per-
form its normal regulatory functions, resulting in aberrant splicing patterns that contribute
to muscle degeneration and dysfunction [233] (Figure 4C).

Another promising approach involves targeting the downstream effects of RNA tox-
icity at the protein level. The dysregulation of CUGBP1, a critical RNA-binding protein,
contributes to the disruption of splicing and gene expression in DM1 [234]. Therapeutic
strategies aimed at modulating CUGBP1 activity have shown promise in restoring normal
RNA splicing patterns. For instance, the inhibition of GSK3β, cyclin D3, and CDK4 to
restore the function of CUGBP1, helps to maintain the effective function of RNA splicing
and degradation of mutant DMPK mRNA [70,235] (Figure 4D).

Another strategy involves therapeutics that correct downstream targets of both MBNL1
and CUGBP1 and could be used for DM1 therapy (Figure 4E). Insulin receptor (IR) is
among the first identified splicing targets of CUGBP1 and MBNL1 that is misregulated
in DM1 [236,237]. IR seems to be involved in DM1 pathogenesis as this disorder exhibits
insulin resistance and predisposition to type 2 diabetes (T2D) [238,239]. It was shown
that the diabetes drug, metformin, corrects abnormal IR splicing in DM1 mesodermal
precursor cells (MPCs) and in DM1 myoblasts [197,240], suggesting possible therapeutic
benefits (Figure 4E).
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Figure 4. The main therapeutic interventions proposed for DM1. This figure illustrates the five poten-
tial therapeutic approaches already described, which target the molecular mechanisms underlying
DM1. (A) CTG repeat excision, targets the root cause of DM1 by using gene-editing technologies to
eliminate the repeat expansions in the DMPK gene. (B) RNaseH1-mediated degradation of mutant
DMPK mRNA transcripts to prevent toxic RNA foci formation. (C) Mutant RNA degradation, uses
antisense oligonucleotides (ASOs) or small interfering RNAs (siRNAs) to degrade toxic RNA species,
alleviating downstream effects associated with the disease. (D) Restoration of normal CUGBP1
activity by targeting upstream regulators like GSK3β (E) Modulation of the downstream targets of
MBNL1 and CUGBP1 to correct disease-related splicing changes [229,241,242]. Figure created with
BioRender (BioRender.com), and adapted with permission from [243], licensed under CC BY 4.0
(https://creativecommons.org/licenses/by/4.0/) Abbreviations: DMPK, myotonic dystrophy pro-
tein kinase; (CTG)n, expansion of (cytosine-thymine-guanine) n; mRNA, messenger ribonucleic acid;
CELF, CUGBP Elav-like family; MBNL1, muscleblind-like splicing regulator 1; GSK-3β, glycogen
synthase kinase-3 beta.

As research continues to advance the understanding of DM1’s complex molecular
mechanisms, innovative therapeutic approaches provide a multifaceted strategy that holds
promise for more effective treatments. These advancements, summarized in Table 1,
highlight important investigational therapies designed to address pathological features of
DM1. Furthermore, many of these compounds are currently undergoing clinical trials, each
contributing uniquely to the growing arsenal of therapeutic options.

5.1. Small Molecules

The exploration of small molecules as potential therapies for DM1 is being investi-
gated to address the genetic and molecular defects in DM1. The theoretical advantages of
these small molecule compounds include broad biodistribution as well pharmacokinetics
and pharmacodynamics in humans, lower manufacturing costs and the ease of oral ad-
ministration, a feature required for treating the multisystem nature of the disease [244].

https://creativecommons.org/licenses/by/4.0/
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Hence, nearly all identified molecules are repurposed compounds targeting various disease
mechanisms, which represent the leading strategies for clinical approval (Table 1).

One of the most promising small molecules is Tideglusib (AMO-02), a GSK3β in-
hibitor [245]. Increased activity of the protein kinase GSK3β has been found in experimen-
tal animal models and muscle samples from DM1 patients, particularly in the congeni-
tal and adult forms of DM1 [235,246]. By targeting GSK3β, Tideglusib impacts skeletal
muscle and brain defects through several pathways [225,247,248]. Developed by AMO-
Pharma, Tideglusib completed a Phase II clinical trial (NCT02858908) in both congenital
and childhood-onset DM1, with most participants experiencing improved CNS and clinical
neuromuscular symptoms [249]. Due to its favorable pharmacokinetic and safety profile
and significantly reduced myotonia in half of the subjects, a subsequent open-label Phase
II/III was announced in 2021 to investigate its long-term safety and efficacy (NCT03692312,
and NCT05004129, Table 1).

Erythromycin, a commonly prescribed antibiotic for chronic obstructive pulmonary
disease (COPD), has also shown therapeutic potential in DM1. Preclinical research showed
that erythromycin can suppress RNA toxicity and correct splicing abnormalities in DM1
cells and mouse models [250,251]. At COPD-equivalent doses, erythromycin displayed ben-
eficial effects on DM1 mice, prompting further investigation in clinical trials [228,252–254].
Building on these findings, a Phase II study clinical trial (JPRN-jRCT2051190069) sponsored
by Osaka University Hospital, was initiated to evaluate the safety and effectiveness of
erythromycin (MYD-0124) in DM1 patients (Table 1). The trial found that erythromycin
was safe and well-tolerated, showing potential as a therapeutic option for DM1 [251].

Metformin, a biguanide antidiabetic drug, has also been proposed as a promising
therapy for DM1 due to its ability to correct metabolic and mitochondrial defects in patient-
derived fibroblasts [68]. The results of a Phase II clinical trial (2013-001732-21) indicated
that while oral metformin improved DM1 patients’ mobility, it did not affect myotonia or
muscle weakness compared to the control group (Table 1). Currently, an ongoing Phase III
replication study (2018-000692-32) sponsored by Vergata University of Rome is evaluating
metformin’s effects in adult DM1 patients with expectations to deliver approvals on this
agent on its use as a potential therapy (Table 1). The announcement of a new Phase III
trial (NCT05532813) by Assistance Publique—Hôpitaux de Paris aims to assess the motor
improvements in non-diabetic DM1 patients (Table 1).

Mexiletine is safe for short-term use and effective in reducing handgrip myotonia in
DM1 [111,255]. The completed Phase II trial (NCT01406873) administered mexiletine (brand
name NaMuscla®) orally to assess its effectiveness in managing myotonia symptoms in
adult DM1 patients (Table 1). While the trial indicated improvements in handgrip myotonia,
it did not demonstrate significant benefits in the 6 min walk test (6 MWT). Sponsored by
Lupin, two Phase III trials were launched [228,253,254] in 2021 to further assess mexiletine’s
impact, including a study involving children and adolescents (NCT04624750). The second
trial (MIND Study; NCT04700046), involving DM1 adults, was withdrawn. Other ongoing
study trials (NCT04622553, NCT04616807) are evaluating the long-term effectiveness of
mexiletine, with results expected in 2026 (Table 1).

Furthermore, ERX-963 (Flumazenil), a repurposed GABA_A receptor antagonist
originally used to reverse benzodiazepine overdose, was evaluated in a crossover study
(NCT03959189). While the compound demonstrated safety, it failed to improve measures of
sleepiness or vigilance in the trial [256]. Meanwhile, other compounds, such as Ranolazine
and Pitolisant are being explored to address DM1 symptoms like myotonia, chronic pain
and daytime sleepiness (Table 1). A clinical trial (NCT04634682) evaluated the impact of a
nutritional approach combining theobromine and caffeine (marketed as MYODMTM by
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Myogem Health Company) for its potential to improve quality of life, reduce fatigue and
alleviate hypersomnia in adults with DM1 (Table 1).

Finally, a preclinical study used senolytics, in particular the BCL-XL inhibitor
(A1155463; small molecule), and demonstrated that it can specifically remove senescent
DM1 myoblasts by inducing their apoptosis and rescuing their proliferation and differenti-
ation capacity. These findings identify the pathogenic mechanism associated with muscle
stem cell defects in DM1 and open a therapeutic possibility that targets these defective cells
to restore myogenesis [257].

Table 1. Novel therapeutic approaches for DM1 targeting specific disease symptoms. Overview
of specific molecules, their targets, clinical development status, modes of action, the physiological
systems and symptomatic domains (e.g., neuromuscular, respiratory, cognitive) targeted or improved
by these therapies. This table categorizes therapeutic agents based on their intervention in disease
mechanisms to alleviate DM1 symptoms.

Class Drug Candidate
(Compound)

Clinical Trials
Registry
Identifier;
Clinical Trial
Phase

Mode of Action
(MoA) Study Design Body Systems/Outcomes

Improved References

Repurposed
small
molecule

Tideglusib
(AMO-02)

NCT02858908;
Phase II

Inhibition of
GSK3β activity

- Randomized,
single-blind study with
16 participants aged
13–34 with congenital
and childhood-onset
DM1

- Participants received a
fixed oral dose of either
400 mg or 1000 mg of
AMO-02.

- Improvements in CNS
function and clinical
neuromuscular
symptoms in most
patients

- Favorable PK profile

[249,258]

NCT03692312;
Phase II/III

Inhibition of
GSK3β activity

- Randomized,
placebo-controlled study
(REACH CDM) in
children and adolescents
(56 participants) with
congenital DM1 (aged
6–16 years)

- Participants received
1000 mg/day of
Tideglusib compared to a
placebo.

- Tideglusib
demonstrated
promising secondary
outcomes

- Improvements in
motor function (10 m
walk/run), cognitive
performance (Peabody
Picture Vocabulary
Test), and muscle
integrity, indicated by
reduced creatine
phosphokinase (CPK)
levels

- Tideglusib was well
tolerated, with a
favorable safety profile
and no
treatment-related
serious adverse events.

[259]

NCT05004129;
Phase II/III

Inhibition of
GSK3β activity

- Open-label, 52-week
extension study (REACH
CDM X) in children and
adolescents with
congenital or
childhood-onset DM1

- The planned enrolment
was increased from 56 to
76 participants

- Participants received
1000 mg/day of
Tideglusib

- Included both
treatment-naïve
individuals and those
from the
AMO-02-MD-2-003 study
for continuity, long-term
follow up

- An option for extended
access was offered

- Improved motor
function, myotonia,
and respiratory
function

[260,261]
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Table 1. Cont.

Class Drug Candidate
(Compound)

Clinical Trials
Registry
Identifier;
Clinical Trial
Phase

Mode of Action
(MoA) Study Design Body Systems/Outcomes

Improved References

Repurposed
small
molecule

Erythromycin
(MYD-0124)

JPRN-
jRCT2051190069;
Phase II

Reduction of RNA
toxicity

- Randomized,
double-blind,
placebo-controlled study
(MYD-0124)

- A total of 30 adult
patients with DM1 were
enrolled and randomly
assigned

- Patients received 500
mg/day or 800 mg/day

- Demonstrated
favorable safety and
tolerability profiles

[251]

Metformin

2013-001732-21;
Phase II AMPK activation

- Randomized,
double-blind,
placebo-controlled study
with 40 DM1 patients
(aged 18 and 60 years)

- To evaluate the efficacy of
metformin on
ambulation in DM1
patients

- Statistically significant
improvement in
mobility and total
mechanical power

[262]

2018-000692-32;
Phase III AMPK Activation

- Randomized,
double-blind,
placebo-controlled study

- For the 23/40 adult DM1
patients who fully
completed the 1-year
study to assess the
impact of metformin on
motility and strength

- Improved the 6 min
walk test (6 MWT) [262]

NCT05532813;
Phase III AMPK Activation

- Multicenter, randomized,
double-blind,
placebo-controlled trial
(METFORMYO) to
evaluate the efficacy and
safety of metformin in
treating DM1

- Specifics on results not
provided [263]

Mexiletine NCT01406873;
Phase II

Na+ channel
blocker

- Randomized,
double-blind,
placebo-controlled study
to assess the efficacy of
mexiletine on ambulatory
function and its
long-term safety in (aged
18–80 years) DM1 adults

- Received 150 mg/kg
mexiletine in capsules
taken orally, three times
daily for 6 months or 150
mg/kg placebo capsules
taken orally, three times
daily for 6 months

- Improved handgrip
myotonia force
relaxation time at 6
months

- No significant effect on
the 6 MWT was
recorded

[110]

NCT04624750;
Phase III

Na+ channel
blocker

- Open-label, multicenter,
single-arm study in
pediatric DM1 patients
(aged 6–18 years)

- Evaluated the
pharmacokinetics, safety,
and efficacy of mexiletine

- Evidence of long-term
drug efficacy and
cardiac safety

[264,265]

NCT04622553;
Not Applicable

Na+ channel
blocker

- Open-label extension
study assessing the
long-term safety and
efficacy of mexiletine in
pediatric patients with
myotonic disorders

- Mexiletine was well
tolerated in the study

- Specifics on results not
provided

[266]
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Table 1. Cont.

Class Drug Candidate
(Compound)

Clinical Trials
Registry
Identifier;
Clinical Trial
Phase

Mode of Action
(MoA) Study Design Body Systems/Outcomes

Improved References

Repurposed
small
molecule

NCT04616807;
Not Applicable

Na+ channel
blocker

- Observational study
evaluating the long-term
safety and effectiveness
of mexiletine (NaMuscla)
in managing myotonia in
adult patients with
non-dystrophic myotonic
disorders

- Improved myotonia [267]

NCT04700046;
Phase III
(Withdrawn)

Na+ channel
blocker

- Randomized,
double-blind,
placebo-controlled,
multicenter trial (MIND)
assessing the efficacy and
safety of mexiletine over
26 weeks in DM1/DM2
patients

- Demonstrated efficacy
of mexiletine in
patients with
adult-onset DM1

- Improved hand-grip
force relaxation time at
6 months,

- No significant effect on
the 6 MWT was
recorded

[110,268]

Flumazenil
(ERX-963)

NCT03959189;
Phase I

GABA receptor
antagonist

- Double-blind,
placebo-controlled,
dose-ranging crossover
study assessing the safety
and tolerability of a
single-day
administration of
ERX-963 to reduce
daytime sleepiness and
enhance cognition (18 to
65 years) in DM1.

- ERX-963 at 1 mg and 2
mg doses was safe and
well tolerated

- No evidence of efficacy
in measures of
sleepiness or vigilance
at the tested doses and
administration
regimen

[269]

Ranolazine NCT02251457;
Phase I

Inhibition of late
sodium current

- Open-label study
evaluating the
tolerability and effects of
ranolazine in DM1
patients

- Participants assessed at
baseline, after 2 weeks of
500 mg ranolazine twice
daily, and after 4 weeks
on 1000 mg twice daily

- Prior mexiletine users
were evaluated before
discontinuation

- Significant
improvement in
clinical myotonia

[270,271]

Pitolisant NCT04886518;
Phase II

H3 receptor
antagonist

- Randomized,
double-blind,
placebo-controlled study
to evaluate the efficacy of
Pitolisant in treating
excessive daytime
sleepiness and other
non-muscular symptoms
in (aged 18 to 65 years)
DM1 patients

- Improved excessive
daytime sleepiness
(EDS) and fatigue

[272]

Repurposed
small
molecule
(Natural
compounds)

Theobromine and
caffeine
(MYODM™)

NCT04634682;
Not Applicable

Reduction of toxic
DMPK RNA

- Evaluation of MYODM™
(caffeine/theobromine
supplement) as a food
supplement in 30 adults
with DM1.

- Improved quality of
life in adult males with
DM1

- Statistically significant
decrease in the
Epworth sleepiness
scale and increase in 6
MWT results

[273]
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Table 1. Cont.

Class Drug Candidate
(Compound)

Clinical Trials
Registry
Identifier;
Clinical Trial
Phase

Mode of Action
(MoA) Study Design Body Systems/Outcomes

Improved References

Antibody
fragment
conjugated
antisense
oligonu-
cleotide
(ASO)

DYNE-101
(TfR1-targeted
antibody (Fab)
linked to ASO)

NCT05481879;
Phase II/III

Reduction of toxic
DMPK RNA

- Randomized,
placebo-controlled trial
(ACHIEVE) evaluating
the safety, tolerability,
pharmacodynamics (PD),
efficacy and
pharmacokinetics (PK) of
multiple ascending doses
of DYNE-101 in adults
with DM1

- Improved myotonia
and muscle strength

- Favorable safety
profiles

[274,275]

IONIS-DMPKRx
(Baliforsen; ISIS
598769)

NCT02312011;
Phase I/IIa

Reduction of toxic
DMPK RNA

- Blinded,
placebo-controlled,
dose-finding trial
evaluating the safety,
tolerability, and dose
range of multiple
ascending subcutaneous
doses of Baliforsen in
adult DM1 patients.

- Baliforsen was
generally well
tolerated

- Skeletal muscle drug
concentrations were
below levels
anticipated to achieve
substantial target
reduction

[276]

Anti-
microRNA
oligonu-
cleotide

ARTHEx’s
ATX-01

NCT06300307;
Phase I/IIa

Anti-microRNA,
MBNL
upregulation

- Double-blind,
placebo-controlled trial
in adults with classic
DM1 (aged 18–64)
evaluating the safety,
tolerability, PK, PD and
efficacy of single and
multiple intravenous
doses of ATX-01

- Effectively targets
many affected tissues,
enhancing therapeutic
efficacy and safety

[277]

Antibody
oligonu-
cleotide
conjugated

MARINA
AOC 1001

NCT05027269;
Phase I/II

TfR1-targeted
antibody (mAb)
conjugated to
siRNA targeting
DMPK

- Randomized,
double-blind,
placebo-controlled
clinical trial (MARINA®)
that enrolled 38 adults
with DM1

- Evaluating the safety and
tolerability of single and
multiple ascending doses
of del-desiran
administered
intravenously

- Improved myotonia
- DMPK reduction

observed
[278,279]

AOC 1001 NCT05479981;
Phase II

TfR1-targeted
antibody (mAb)
conjugated to
siRNA targeting
DMPK

- Open-label, multicenter
trial (MARINA-OLE™)
designed to evaluate the
long-term safety and
tolerability of del-desiran
in participants with DM1
who were previously
enrolled in the
MARINA® Phase 1/2
trial

- This trial will monitor the
long-term safety,
tolerability, efficacy, PK,
and PD of del-desiran in
adults with DM1

- Ongoing assessment of
myotonia, hand
function, strength and
mobility

[280]
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Table 1. Cont.

Class Drug Candidate
(Compound)

Clinical Trials
Registry
Identifier;
Clinical Trial
Phase

Mode of Action
(MoA) Study Design Body Systems/Outcomes

Improved References

Del-desiran
(Delpacibart
Etedesiran),
previously AOC
1001

NCT06411288;
Phase III

TfR1-targeted
antibody (mAb)
conjugated to
siRNA targeting
DMPK

- Randomized,
placebo-controlled,
double-blind pivotal
study (HARBOR™)
designed to evaluate
del-desiran in
approximately 150
people (aged 16 and
older) living with DM1

- Patients will be
administered either
del-desiran or placebo
(1:1) every eight weeks

- The trial is designed to
assess del-desiran’s
impact on multiple key
aspects of DM1 including
myotonia, muscle
strength and activities of
daily living.

- Specifics on results not
provided [281,282]

Peptide
conjugated
antisense
oligonu-
cleotide
(ASO)

PGN-EDODM1 NCT06204809;
Phase I

RNase
H-mediated
degradation of
target RNA

- Randomized,
placebo-controlled
(FREEDOM-DM1) trial
exploring the safety,
tolerability, PK and PD of
single ascending doses of
PGN-EDODM1 in adults
with DM1

- Nonclinical
pharmacology studies
with PGN-EDODM1
showed considerable
therapeutic potential
for splicing correction
and myotonia
improvement

[283,284]

Small
interfering
RNAs
(siRNA)
conjugates

ARO-DM1 NCT06138743;
Phase I/IIa

RNA interference
(RNAi)
technology targets
specific mRNA
molecules

- Randomized,
double-blind,
placebo-controlled study
in adults with DM1 (aged
18–65) evaluating the
safety, tolerability, PK
and PD of ARO-DM1

- Preclinical data show
ARO-DM1 reduces
muscular DMPK
expression and
corrects spliceopathy,
potentially improving
muscle strength,
function, and mobility

[285]

Peptide
conjugated
oligonu-
cleotide

VX-670 NCT06185764;
Phase I/II

Degrades the toxic
DMPK

- Randomized,
double-blind,
placebo-controlled
design evaluating the
safety, tolerability, PK,
and PD of single and
multiple intravenous
doses of VX-670 in adults
with DM1

- Specifics on results not
provided [286]

CNS, central nervous system; PD, pharmacodynamics; PK, pharmacokinetics.

5.2. Nucleic Acid-Based Therapies

Nucleic acid-based therapies, recognized as the third major drug class alongside small
molecules and antibodies, use DNA or RNA as active components to treat various diseases,
including DM1 [287]. These innovative therapies encompass a range of technologies such
as antisense oligonucleotides (ASOs), small interfering RNA (siRNA) and CRISPR-Cas9,
providing powerful tools for disease intervention. Among these, oligonucleotides—small
synthetic nucleic acid polymers (~20-m), either single- or double-stranded—modulate gene
expression through diverse mechanisms, including inducing RNA degradation, altering
splicing events, or inhibiting protein translation by targeting pre-mRNA, mRNA, or non-
coding RNA [288].
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5.3. Antisense Oligonucleotides (ASOs)

ASOs, are known to bind specifically to mRNA transcripts, leading to their degra-
dation or the modification of their function [289]. Upon binding, they can induce mRNA
degradation or alter splicing patterns to produce functional proteins. The ACHIEVE study,
sponsored by Dyne Therapeutics, proposes a strategy that enhances targeted tissue drug
delivery by using a fragment of monoclonal antibodies conjugated (mAb) to a transferrin
receptor 1 (TfR1) with ASOs; the study is assessing DYNE-101 (FORCE-DMPK) in an
ongoing Phase II/III clinical trial (NCT05481879). DYNE-101 has demonstrated 40–50%
splice-correction efficacy in preclinical studies by significantly reducing toxic DMPK RNA
in skeletal and cardiac muscle tissues with no adverse effects after 13 weeks in cynomolgus
monkeys [290]. The objective of the trial is to investigate the safety, tolerability, pharma-
codynamics (PD), efficacy and pharmacokinetics (PK) of escalating doses of DYNE-101
in DM1 patients (Table 1). Similarly, IONIS Pharmaceuticals designed IONIS-DMPKRx
(baliforsen; ISIS 598769), which underwent a Phase I/IIa study (NCT02312011). While
baliforsen was found to be safe and tolerable, it did not achieve therapeutic ASO levels in
skeletal muscle at the maximum tested dose (600 µg).

ARTHEx’s ATX-01 is an oleic acid-conjugated antimiR oligonucleotide with preferen-
tial delivery to target tissues (muscle and brain) designed to inhibit microRNA 23b (miR-
23b), which is a natural repressor of MBNL protein expression [291–293]. The first human
trials (NCT06300307) of ATX-01 in participants with classic DM1 are ongoing, with initial
safety and efficacy data anticipated soon (Table 1). PepGen Inc is currently investigating
PGN-EDODM1 through a randomized, placebo-controlled, phase 1 FREEDOM-DM1 trial
(NCT06204809). This ASO is conjugated to a cell-penetrating peptide for enhanced delivery,
targeting and neutralizing toxic CUG repeats in DMPK transcripts [242,294,295]. Likewise,
a Phase II study (FREEDOM2) is planned to evaluate the safety and therapeutic effects of
multiple ascending doses in adult DM1 patients, subject to regulatory clearance [296].

5.4. SiRNA-Based Therapies

Avidity Biosciences launched the MARINA™ Phase I/II trial (NCT05027269), which
was completed in 2023. The primary objective of this trial was to assess the safety, toler-
ability, PK and PD of the intravenously injected AOC 1001, which combines siRNA and
fragment antigen-binding region (Fab region) to target transferrin-receptor 1 (TfR1). A
subsequent Phase III extension study (NCT05479981) is evaluating its long-term efficacy in
improving hand myotonia, muscle strength and daily function. The HARBOR™ Phase 3
trial (NCT06411288) is an international, randomized, placebo-controlled study focused on
del-desiran’s safety and efficacy in approximately 150 DM1 individuals (aged 16 and older)
with DM1 (Table 1).

5.5. RNAI and Phosphorodiamidate Morpholino Oligomers (PMO) Therapeutics

Arrowhead Pharmaceuticals’ ARO-DM1, an RNAi therapeutic targeting the DMPK
gene, has shown preclinical efficacy, with an 80% reduction in DMPK mRNA in non-human
primate muscles (NCT06138743; Phase I/IIa). Preclinical evidence demonstrated an 80%
reduction in DMPK mRNA levels in non-human primate skeletal muscles, with effects
lasting over 85 days. This approach aims to improve muscle strength and function by
addressing the expanded CUG repeats in the DMPK transcript’s 3’-UTR. In DM1 mice
model, the species-specific S-ARO-DM1 variant reduced DMPK-CUG expression and
fixed abnormal splicing [285]. VX-670 (NCT06185764; Phase I/II), a phosphorodiamidate
morpholino oligonucleotide (PMO) developed by Entrada Therapeutics and licensed to
Vertex, combines a cyclic peptide for efficient delivery to muscle nuclei. VX-670 interacts
with the CUG repeat RNA to release MBNL1, aiming to correct mis-splicing defects central
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to DM1 pathology. Its innovative design may overcome the several delivery challenges
faced by oligonucleotides in muscle tissue [297]. To be effective, these treatments often
require high and frequent dosing, and must be injected repeatedly unless injected directly
into the target tissue, due to the restricted biodistribution [286,298] (Table 1).

5.6. Genome/Transcriptome Engineering Approaches

Gene therapy strategies, particularly those utilizing adeno-associated virus (AAV)
vectors, aim to deliver functional copies of genes or modify gene expression directly within
target tissues.

To overcome limitations and challenges associated with ASOs, AAV-based gene ther-
apy strategies are being evaluated for DM1 [299], as the success of Zolgensma gene re-
placement approach in spinal muscular atrophy (SMA) has paved the way for related
approaches [300]. Astellas Gene Therapies is developing AT466, an AAV vector designed to
deliver a functional MBNL1 gene to restore normal protein expression and to prevent toxic
RNA aggregate accumulation [301]. CRISPR-Cas9 technology offers promising possibilities
for DM1 treatment by removing the pathogenic CTG expansion from the DMPK mutant
allele or using a nuclease-free derivative to slow DMPK transcription by targeting the CTG
repeats. RNA-targeting Cas9 could directly degrade the toxic CUGexp-DMPK transcript by
targeting the CUG repeats, exhibiting an assuring avenue for managing the disease [302].
Two promising approaches that involve AAV vectors expressing CRISPR-Cas9 (SaCas9)
and AAV-vectors encoding PIN-dCas9 (a nuclease dead Cas9 (dCas9)) are proceeding to
preclinical stages [303]. In DM1, AAV-SaCas9 can be utilized to precisely target and excise
the CTG repeat expansions in the DMPK gene [304]. Meanwhile, AAV-vectors encoding
PIN-dCas9, developed by LocanaBio, specifically bind and degrade toxic CUG-repeat
RNA molecules implicated in diseases such as DM1. By avoiding DNA cleavage, this
minimizes off-target effects and preserves genomic integrity [305]. AAV9 vectors with the
selected leads (A01215, A01344, A01686) are being tested in non-human primates, using
muscle-specific promoters to evaluate tolerability and transgene expression in skeletal,
smooth and cardiac muscles [306].

Another innovative gene therapy involves bio-engineering RNA-binding decoy pro-
teins with high affinity for pathogenic repeats in mutated RNA, liberating MBNL1 proteins
to resume their normal regulatory roles [307]. While further preclinical development is
necessary, including studies on dosage, toxicity, sponsor selection and AAV vectors, chal-
lenges persist. These include immunogenicity (innate, cellular and humoral), off-target
gene editing, limited cargo capacity, tissue-specific transduction delivery techniques and
ethical concerns, all of which must be tackled before clinical trials can advance [308,309].
Researchers at the Institute of Myology, in collaboration with teams from the University of
Liège, developed a gene therapy using CRISPR interference (CRISPRi) to silence the Dmpk
gene in DM1 mice, achieving over 80% of gene silencing and the correction of disease-
related abnormalities [310,311]. This method’s specificity suggests that CRISPRi could be a
promising therapeutic approach for DM1, minimizing off-target side effects [312].

6. Challenges and Future Directions
The complex and heterogeneous nature of DM1 presents several challenges for ther-

apeutic interventions, primarily due to its impact on several body systems [36]. The
disorder’s phenotypic variability, ranging from myotonia and mild muscle weakness to
severe multisystem complications involving the endocrine, cardiac and neurological sys-
tems, make the development and standardization of effective treatments difficult [12,313].
This disease heterogeneity requires therapies that address not only the primary molecular
pathology but also the diverse downstream effects of the disease.
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Several potential treatments, such as small molecules, ASOs and CRISPR/Cas9 tech-
nology, are emerging with promising results. However, these approaches face hurdles with
delivery efficiency and tissue specificity, with overcoming the blood–brain barrier and also
the diversity of tissues affected by DM1 [314,315]. Nanoparticle-based approaches and
advanced viral vectors are under active investigation to enhance delivery to specific tissues
while minimizing off-target effects [316–318].

Although research into cell therapy is still in its nascent stages, promising avenues are
being explored [228,254]. For instance, investigations into donor-derived engrafted cells
reveal that they may develop toxic RNA foci through MBNL1 sequestration and abnormal
splicing. This phenomenon suggests that harmful CUG repeat RNA could migrate from the
original nucleus to other nuclei within the myofiber, further exacerbating pathology [226].

Conducting clinical trials for rare diseases like DM1 are far more complex than for
common conditions due to the unmet need for effective treatments and limited research re-
sults [319]. A major hurdle specific to DM1 is the limited number of eligible trial participants
and the geographical dispersion of patients. This dispersion reduces patient access to cen-
tralized trial sites and reduces the statistical power needed to identify differences between
treatment and control groups. Phenotypic variability and genetic anticipation—where
disease severity increases and onset age decreases in successive generations—necessitate
longitudinal studies with extended follow-up periods to assess treatment efficacy and dis-
ease progression [43,320]. This variability in clinical appearances can result in inconsistent
responses to treatments, complicating both the assessment of treatment efficacy and the
discovery of effective biomarkers. A thorough understanding of the RNA toxicity, splicing
dysregulation and protein sequestration is important for advancing research in DM1, but
these areas remain under active investigation [321].

Standardizing outcome measures, including biomarkers and patient-reported out-
comes, is critical to overcoming inconsistencies in clinical responses and ensuring robust
evaluations of therapeutic efficacy [322,323]. Engaging a multidisciplinary team, including
endocrinologists, neurologists, cardiologists and other specialists experienced in DM1
management, is vital for enhancing both patient outcomes and improving quality of life.
Furthermore, fostering international cooperation and data sharing could expedite the de-
velopment of effective therapies while providing valuable insights into the global impact
and incidence of DM1.

7. Conclusions
In conclusion, while a definitive cure for DM1 remains elusive, the management of its

complex and multisystemic symptoms through supportive care has provided significant
patient well-being. Further research is required to better understand the symptom burden
and its effect on patients’ lives, as well as to develop approaches to alleviate them. A deeper
understanding of the disease’s symptom burden and its impression on patients’ daily lives
is central for refining care strategies. Implementing precise standards of care for symptom
management and the early detection of comorbidities is fundamental, as evidence suggests
that these measures can significantly improve patients’ quality of life. The active clinical
trials and research initiatives underscore a promising array of potential treatments, offering
optimism for an effective therapy for DM1 in the near future.
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