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Phosphatase activity tunes two-component system
sensor detection threshold
Brian P. Landry 1, Rohan Palanki1, Nikola Dyulgyarov1, Lucas A. Hartsough1 & Jeffrey J. Tabor 1,2

Two-component systems (TCSs) are the largest family of multi-step signal transduction

pathways in biology, and a major source of sensors for biotechnology. However, the input

concentrations to which biosensors respond are often mismatched with application

requirements. Here, we utilize a mathematical model to show that TCS detection thresholds

increase with the phosphatase activity of the sensor histidine kinase. We experimentally

validate this result in engineered Bacillus subtilis nitrate and E. coli aspartate TCS sensors by

tuning their detection threshold up to two orders of magnitude. We go on to apply our TCS

tuning method to recently described tetrathionate and thiosulfate sensors by mutating a

widely conserved residue previously shown to impact phosphatase activity. Finally, we apply

TCS tuning to engineer B. subtilis to sense and report a wide range of fertilizer concentrations

in soil. This work will enable the engineering of tailor-made biosensors for diverse synthetic

biology applications.
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A central goal of synthetic biology is to program cells to
sense and respond to chemical or physical inputs in
desired ways1. To this end, researchers develop genetically

encoded sensors, often based upon multi-step signal transduction
pathways or one-component transcription factors2 that convert
inputs of interest into biological signals such as gene expression.
However, all biosensors respond to their cognate inputs over
finite concentration ranges that are often mismatched with
application demands3.

Despite this challenge, there has been little focus on developing
technologies for tuning biosensor detection windows. In two
recent studies, the input concentrations required to activate
Escherichia coli nitrate and hydrogen peroxide sensors by 50%
(i.e., the detection thresholds, quantified by the parameter K1/2)
were decreased 412- and 15-fold by linking the respective sensors
to the expression of a phage recombinase that inverts a segment
of DNA into an orientation appropriate for transcription of an
output gene4,5. Though this approach is simple and modular, the
recombination step is irreversible and delays sensor response by
up to 15 h, making it incompatible with applications requiring
dynamic or rapid responses. In a separate pair of yeast studies,
RNA secondary structure design was used to lower the detection
threshold of an engineered theophylline-responsive antiswitch
from 10mM to 1 mM6, and protein expression level optimization
was used to reduce the estradiol detection threshold of the
mitogen-activated protein kinase (MAPK)/extracellular signal-
regulated kinase pathway from 32 µM to 6.6 µM7. However,
antiswitches currently sense a limited number of inputs, and both
of these approaches yield modest changes in detection threshold,
limiting the utility of these strategies. Finally, computational
design8 and directed evolution9 of ligand-binding transcription
factors show promise for tuning sensor detection thresholds.
However, these methods are time and labor intensive and require
extensive domain-specific expertise, limiting their widespread use.

Two-component systems (TCSs) are an important source of
sensors for synthetic biology. Tens of thousands of TCSs have
been identified in bacterial genome sequences. Individual mem-
bers of this family sense inputs as diverse as metal ions of par-
ticular oxidation states10, respiratory electron acceptors11,
gases12, inorganic phosphate13, heme14, quorum sensing auto-
inducers15, antimicrobial peptides16, simple sugars17, gut poly-
saccharides derived from the diet18 or host19, human20 and
plant21 hormones, oxidative stress22, physical contact23, and

specific wavelengths of light24. Synthetic biologists have begun to
repurpose light-sensing TCSs to function as sensors for optoge-
netics25–28 and chemical-sensing TCSs to engineer diagnostic gut
bacteria29–31, among other applications.

The prototypical TCS comprises two proteins: a sensor histi-
dine kinase (SK) and a response regulator (RR) (Fig. 1a). The SK
contains a (typically extracellular) N-terminal sensor domain that
switches from an inactive to active conformation in the presence
of the input32. This conformational change is transmitted to a C-
terminal cytoplasmic signaling region comprised of catalytic and
adenosine triphosphate (ATP) binding (CA) and dimerization
and histidine phosphotransfer (DHp) domains. The CA domain
catalyzes the transfer of the gamma phosphoryl group from ATP
to a conserved histidine residue within the DHp domain. The
phosphorylated SK (SK~P) binds the RR via a DHp interaction
interface, and transfers the phosphoryl group to a conserved RR
aspartate. Phosphorylation activates the RR, driving it to mod-
ulate transcription from one or more output promoters. Many
SKs are also bi-functional and dephosphorylate the phosphory-
lated RR (RR~P) (Fig. 1a)33. The presence of input increases the
rate at which the RR is phosphorylated, decreases the rate at
which the RR~P is dephosphorylated, or both33. Many SK
mutations, in both the DHp and CA domains, have been iden-
tified that decrease this phosphatase activity, resulting in
increased RR~P levels34–39. When this increase is substantial, it
results in leaky transcriptional output, i.e., output in the absence
of input35,36,39. However, the impact of these phosphatase-
altering mutations on TCS detection thresholds has not been
considered.

Here, we combine mathematical modeling with an experi-
mental synthetic biology approach to show that mutations that
alter SK phosphatase or kinase activity can be used to rationally
tune TCS detection thresholds. We demonstrate that our method
functions in Gram-negative and Gram-positive bacteria and in
diverse chemical-sensing TCSs. We go on to demonstrate that a
widely conserved residue can be mutated to tune the detection
thresholds of two recently described TCSs for which signaling
mutations have not yet been identified. Finally, we utilize Bacillus
subtilis expressing wild-type and sensitivity-enhanced nitrate
sensors to quantify a wide range of fertilizer levels in soil. These
sensors could be used to control the expression of engineered
nitrogen fixation pathways in order to achieve synthetic nitrate
homeostasis in soil.
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Fig. 1 Mathematical model reveals that SK phosphatase activity tunes TCS detection threshold. a Diagram of a canonical TCS. b Model simulations of the
relationship between TCS input concentration and transcriptional output rate (i.e., transfer function) wherein SK phosphatase activity is varied between 1%
and 10,000% of wild-type (Supplementary Note 1). Detection threshold (K1/2), or the input concentration where transcriptional output is half-maximal,
increases with phosphatase activity. There is no trade-off between detection threshold and dynamic range for intermediate changes in phosphatase
activity; however, a trade-off emerges for strong changes in phosphatase activity (Supplementary Fig. 1)
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Results
Mathematical model of TCS detection threshold. We hypo-
thesized that TCS detection thresholds could be tuned by intro-
ducing mutations that alter SK kinase or phosphatase activity
without compromising the overall response (i.e., dynamic range,
or ratio of output in saturating versus zero input) of the system.
Specifically, we considered that the detection threshold of a TCS
occurs at the particular RR~P concentration that elicits a half-
maximal output promoter response (i.e., RR~P1/2). For any input
concentration, the corresponding RR~P concentration is set by
the ratio of SK kinase to phosphatase activity40. Thus, we rea-
soned that mutations that enhance kinase or reduce phosphatase
activity should result in RR~P1/2 being reached at a lower input
concentration, thereby reducing TCS detection threshold. The
opposite should also be true: TCS detection thresholds should
increase with kinase-reducing or phosphatase-enhancing muta-
tions. Furthermore, if a mutation is sufficiently weak that the
window of altered RR~P concentrations still traverses the range
to which the output promoter is sensitive, there should be little
effect on TCS dynamic range.

To examine this hypothesis, we first utilized a previous
mathematical model of TCS signaling41. We parameterized the
model with the best available in vivo experimental values of TCS
reaction rates as determined for the well-studied inorganic
phosphate-sensing TCS PhoRB42. Then, we set the phosphatase
activity parameter to different values between 1% and 10,000%
that of wild type. Finally, we evaluated the resulting detection
thresholds by simulating the relationship between input con-
centration and gene expression output (i.e., the transfer function)
in each case (Supplementary Note 1)43. In agreement with our
hypothesis, the model predicts that TCS detection threshold can
be tuned by altering SK phosphatase activity (Fig. 1b). Moreover,
intermediate changes in phosphatase activity alter detection
threshold without impacting dynamic range (Supplementary
Fig. 1). As expected, large decreases or increases in phosphatase
activity result in high basal or low maximal expression,
respectively, and thereby reduce dynamic range.

We also found that modulating kinase activity had the
reciprocal effect to that of modulating phosphatase activity, with
increasing kinase activity decreasing the detection threshold and
decreasing kinase activity increasing the detection threshold

(Supplementary Fig. 1). However, our primary goal is to decrease
TCS detection thresholds, and it is easier to identify mutations
that decrease rather than increase enzymatic activity. Thus, we
chose to focus on decreasing phosphatase activity as opposed to
increasing kinase activity. This decision is supported by
mutational screens of SK activity that have found that decreases
in phosphatase activity are much more common than increases in
kinase activity38.

Tuning the detection threshold of a nitrate sensor. To examine
our modeling results experimentally, we selected two point
mutations, C415R and D558V, that decrease the phosphatase
activity of the E. coli nitrate-activated SK NarX via different
mechanisms and to different extents. C415R targets the DHp
interaction interface, weakens the interaction between NarX and
its cognate RR NarL, and causes a moderate reduction in phos-
phatase activity39. On the other hand, D558V targets the CA
domain and is thought to decrease phosphatase activity more
strongly than C415R. However, because its impact has been
measured only with gene expression assays, it is also possible that
D558V may increase kinase activity39. We measured the nitrate
detection thresholds of a wild-type NarXL that we engineered to
function in Bacillus subtilis, and its corresponding C415R and
D558V variants (Fig. 2a; Supplementary Fig. 2). The wild-type
system exhibits a relatively high K1/2 of 762 μM (95% confidence
interval (CI) 629–963 μM) (Fig. 2b). On the other hand, the
medium strength C415R mutation decreases the value sub-
stantially (K1/2= 22 μM, 95% CI 16–33 μM), and the strong
D558V mutation reduces it even further (K1/2= 6 μM, 95% CI
0–23 μM) (Fig. 2b).

Dynamic range is commonly reported as the primary
performance metric for biosensors. The C415R and D558V
versions of our nitrate sensor exhibit decreased dynamic range
due to increased minimum output levels (Fig. 2b). Thus, we
individually optimized SK and RR expression levels in these
mutated sensors in an effort to maximize the dynamic range for
each (Supplementary Fig. 3). Consistent with our modeling
results, maximal dynamic range decreases from 1909-fold (wild
type), to 78-fold (C415R) and 2-fold (D558V) (Supplementary
Figs. 1, 3). On the other hand, the amplitude range, or difference
between maximum and minimum output, may be a more useful
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Fig. 2 Phosphatase-reducing mutations decrease detection threshold in a B. subtilis nitrate sensor. a An engineered B. subtilis nitrate-sensing TCS. The E. coli
SK NarX signals to a chimeric RR composed of the N-terminal Receiver (REC) domain of E. coli NarL fused to the C-terminal DNA binding domain (DBD) of
B. subtilis YdfI (Supplementary Fig. 2). Phosphorylated NarL-YdfI activates transcription from the B. subtilis PydfJ115 output promoter. b Transfer functions of
variants from (a) containing wild-type NarX, NarX(C415R), and NarX(D558V). Points represent the mean and error bars the standard error of the mean
(SEM) of experiments on three separate days
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performance metric for many applications. While the amplitude
range of our wild-type nitrate sensor is 24,652 molecules of
equivalent fluorescein (MEFL) (21 MEFL to 24,664 MEFL), it
increases to 65,402 MEFL (2,508 MEFL to 67,910 MEFL) for
C415R and 31,294 MEFL (34,758 MEFL to 66,052 MEFL) for
D558V (Fig. 2b). These results provide compelling initial support
for our approach.

To more rigorously validate TCS tuning, we next developed a
strategy to continuously vary phosphatase activity in live cells
(Fig. 3a). Specifically, we expressed wild-type NarX and NarX

(C415R) under two different chemically inducible promoters and
utilized green fluorescent protein (GFP) fusions and quantitative
flow cytometry to map the relationship between inducer and SK
levels (Fig. 3b; Supplementary Figs. 4-6). Then, we used different
inducer combinations to achieve NarX/NarX (C415R) expression
ratios between 0% and 100% at a constant total SK expression
level (NarX+NarX (C415R)) (Fig. 3b). Assuming NarX and NarX
(C415R) function identically outside of their different phospha-
tase activities, tuning their expression ratio in this way enables us
to continuously vary phosphatase activity between mutant and
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wild-type levels. In strong agreement with our modeling results
(Fig. 1b), the nitrate detection threshold decreases continuously
from K1/2= 1138 μM to K1/2= 12 μM as the percentage of wild-
type NarX decreases from 100 to 0% (Fig. 3c, d). The amplitude
range increases from 46,372 MEFL (20 MEFL to 46392) to 87,324
(1,205 MEFL to 88,529 MEFL) as the percentage of mutant SK
increases from 0 to 90%. Upon continued increase to 100% NarX
(C415R), the amplitude range decreases slightly to 79,628 MEFL
(11,118 MEFL to 90,746 MEFL) (Fig. 3c). We also observe that an
eightfold decrease in detection threshold can be achieved with
only a twofold decrease in the dynamic range, and this follows
model predictions that moderate changes to the detection
threshold have minor effects on dynamic range (Supplementary
Note 1; Supplementary Figs. 1, 5). However, the large 100-fold
decrease in detection threshold between 100% and 0% wild-type
expression also decreases the dynamic range from 2,334-fold to 8-
fold. This experiment clearly shows that TCS detection threshold
can be tuned by tuning SK phosphatase activity. Furthermore,
this iso-SK technique provides a synthetic biology method for
tuning the detection threshold of a TCS to intermediate values
not achievable using a mutation alone.

Detection threshold tuning of an E. coli aspartate sensor. To
evaluate the extensibility of our technology to other sensors and
organisms, we next examined the engineered E. coli aspartate-
activated TCS Taz-OmpR (Fig. 4a). Here, the SK Taz phos-
phorylates and dephosphorylates the transcription-regulating RR
OmpR. Taz phosphatase activity is high in the absence of
aspartate, and low in its presence44. A previous study identified
numerous phosphatase-altering mutations of different strengths
at Taz T436. In particular, substituting S, V, E, D, and K at this
site decreases phosphatase activity by 10, 60, 91, 91, and 98%, and
introducing A increases phosphatase activity by 25%36. Con-
sistent with our NarX results (Fig. 2), T436S and V reduce the
Taz-OmpR aspartate detection threshold in proportion to their
strength (wild type: 19 μM (95% CI 15–25 μM); T436S: 12 μM
(95% CI 8–20 μM); T436V: 4 μM (95% CI 0–13 μM) (Fig. 4b;
Supplementary Fig. 7). Furthermore, T436A increases the detec-
tion threshold to 67 μM (95% CI 45–120 μM) (Fig. 4b; Supple-
mentary Fig. 7). This T436A result indicates that the SK
phosphatase activity alone, as opposed to an alternate effect of
phosphatase-reducing mutations, is responsible for tuning TCS
detection threshold. Furthermore, these data agree with previous

results that show drastic decreases in phosphatase activity result
in lowered dynamic ranges, while smaller changes, such as with
T436A, have little effect on dynamic range (Supplementary
Note 1; Supplementary Fig. 7). We conclude that TCS tuning can
be used to both reduce and increase detection threshold, and can
be applied to diverse TCS sensors and host bacteria.

Interestingly, the strong T436E, D, and K mutations abolish the
Taz-OmpR aspartate response altogether (Supplementary Fig. 7).
Simultaneous introduction of C415R and D558V into NarX
destroys signaling to NarL as well (Supplementary Fig. 8). These
results demonstrate that if phosphatase mutations are too strong,
the SK will fail to signal to the RR, thereby imposing limits on the
magnitude of sensitivity enhancement.

Bioinformatic identification of a TCS hot spot residue. Unlike
the initial model systems that we examined, most TCSs lack
known phosphatase mutations. Therefore, we next aimed to
develop a general method to apply TCS tuning to a wide range of
systems. Taz T436 resides in the second (variable) position of the
well-studied CA domain GXGXG motif, which is involved in
binding an adenosine diphosphate co-factor that regulates SK
phosphatase activity, as well as binding the phosphodonor ATP32.
We performed a bioinformatic analysis that revealed that
GXGXG is present in 64% of all bacterial SKs (Fig. 5a; Supple-
mentary Fig. 9). Therefore, we hypothesized that the second
GXGXG position might serve as a general hot spot residue that
can be mutated to alter the detection thresholds of many TCSs.

To validate this strategy, we examined the tetrathionate sensor
TtrSR and the thiosulfate sensor ThsSR (Fig. 5b, c; Supplementary
Figs. 10, 11), two TCSs that we recently discovered in the
genomes of marine Shewanella and ported into E. coli30. Like
most SKs, the corresponding SKs TtrS and ThsS both contain the
GXGXG motif and lack known phosphatase mutations. There-
fore, we performed saturation mutagenesis on the second
GXGXG residue in each (TtrS L627, ThsS L547) (Fig. 5a), and
measured the response of both the wild-type and all 38 mutant
TCSs to their cognate ligands (Supplementary Figs. 10, 11).
Remarkably, we observed that 14 and 9 amino acids result in
functional TtrSR and ThsSR sensors, respectively (Supplementary
Figs. 10, 11). Most of the functional residues have high
hydropathy scores, suggesting this site best tolerates hydrophobic
amino acids (Supplementary Figs. 10, 11). Then, we characterized
the transfer functions of the ten TtrSR and ThsSR variants
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exhibiting the largest fold activation (Supplementary Figs. 10, 11).
All of the mutations that we tested lower the detection threshold
(Fig. 5d–g). In the case of TtrSR, K1/2 varies between 35.6 μM
(95% CI 27–48 μM) for wild-type and 1.5 μM (95% CI 1.3–1.9
μM) for the strongest mutant (Fig. 5d). For ThsSR, K1/2 varies
between 192 μM (95% CI 138–305 μM) and 35 μM (95% CI
24–60 μM) (Fig. 5e). Because the CA domain is involved in the
kinase and phosphatase reactions, further characterization is
needed to determine which enzymatic activity, or activities, have
been changed by these GXGXG mutations. Interestingly, we
found that the TtrS(L627A) mutant not only decreased the
detection threshold from 35.6 μM to 2.4 μM, but it also increased
the dynamic range from 15- to 21-fold and the amplitude range
from 1377 MEFL (100 MEFL to 1477 MEFL) to 2095 MEFL (105
MEFL to 2200 MEFL) (Fig. 5f). Conversely, decreasing the
detection threshold of the thiosulfate sensor twofold with L547T
resulted in a decrease in dynamic range from 34- to 13-fold and
an increase in amplitude range from 19,390 MEFL (596 MEFL to

19,986 MEFL) to 23,482 MEFL (1905 MEFL to 25,387 MEFL)
(Fig. 5g). We conclude that mutating the second GXGXG residue
is a simple strategy for tuning the detection thresholds of diverse
TCSs.

Application of TCS tuning to fertilizer biosensing. Finally, we
set out to demonstrate a proof-of-principle application for TCS
tuning. Nitrate is the primary source of nitrogen used by crops,
and a major component of fertilizer. However, over-application of
fertilizer causes billions of dollars in damage per year to human
health and the environment45. Recently, synthetic biologists have
expressed bacterial nitrogen fixation pathways, which ultimately
convert atmospheric N2 into nitrate, in non-native host bac-
teria46. However, heterologous production of nitrogen fixation
pathways in soil bacteria could also lead to nitrate over-
production. To prevent this outcome, genetic feedback control
systems wherein bacteria sense a wide range of soil nitrate levels
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and induce nitrogen fixation pathways only to the extent that they
are needed are highly desirable.

To demonstrate such a sensing capability, we incubated B.
subtilis engineered to express our wild-type and C415R NarXL
systems in soil spiked with various amounts of a nitrate standard,
and measured the resulting superfolder GFP (sfGFP) fluorescence
values via flow cytometry (Methods; Fig. 6a; Supplementary
Fig. 12). Then, we used the resulting data to generate a standard
curve relating sfGFP fluorescence to soil nitrate concentration
(Supplementary Fig. 12; Supplementary Note 2). Then, we added
different amounts of commercial fertilizer, rather than nitrate, to
the soil (Methods; Supplementary Fig. 12). Using the standard
curves, we compared the amount of nitrate reported by each of
our sensor systems to the amount specified by the manufacturer
(Supplementary Note 2). Indeed, the wild-type NarXL system
enables estimation of fertilizer levels within twofold of the
manufacturer value between the tested values of 31.6 μM and 562
μM nitrate, while the C415R system allows accurate detection
between 5.62 μM and 562 μM (Fig. 6b). This experiment
demonstrates that we can use TCS tuning to engineer bacteria
to sense a large range of nitrate concentrations in a complex soil
environment. Such broad-range sensing could be coupled with
nitrogen fixation pathways to maintain soil nitrate at ideal levels
in different agricultural contexts.

Discussion
This work extends a growing suite of techniques for engineering
TCSs to function as sensors for synthetic biology. First, literature
searches27,47,48 or bioinformatics30 can be used to identify TCSs
that sense inputs of interest. If a candidate TCS has a known
output promoter, and functions in the desired host and envir-
onmental conditions, it can be used as an off-the-shelf sensor
without further modifications47,49. Otherwise, the sensor domain
can potentially be swapped onto the SK of a second TCS that
contains a reliable output promoter, resulting in the design of a
chimeric sensor25,50,51. Like all gene regulatory systems, TCSs can
exhibit substantial ‘leakiness’ in the off state, or modest dynamic
range. These performance features can be improved by rede-
signing the sequence of the output promoter and optimizing the
expression levels of the SK and RR27,30,48,52.

However, this workflow may produce sensors that do not
respond appropriately to application-relevant input concentra-
tions. For example, tetrathionate was previously shown to be
elevated in the mouse colon during Salmonella typhimurium-
induced inflammation53. Following this report, Silver and col-
leagues31 used S. typhimurium TtrSR to activate a transcriptional
memory circuit in order to engineer a gut bacterium that senses
and remembers tetrathionate exposure in order to diagnose colon
inflammation. However, despite 100% tetrathionate activation
in vitro, most bacteria expressing this sensor device are not
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Fig. 6 TCS tuning expands the detection range of an engineered soil fertilizer biosensor. a Experimental protocol for the incubation of bacteria with
fertilized soil, subsequent purification via filtration, selection by mCherry fluorescence, and measurement of sfGFP levels (Methods). b Soil was fertilized
with different amounts of nitrate as specified by the manufacturer. The level of fertilization was then measured with a B. subtilis strain expressing the
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activated by inflammatory conditions in vivo31. One possible
reason for this discrepancy is that in vivo tetrathionate con-
centrations do not reach the S. typhimurium TtrSR detection
threshold. Thus, by using TCS tuning to lower the detection
threshold of TtrSR (Fig. 5f), it is possible that the performance of
this diagnostic gut bacterium could be improved.

It is possible that nature uses phosphatase activity as a knob to
tune TCS detection threshold as well. First, there are a wide range
of SK residues that can be mutated to specifically alter phos-
phatase activity39. This fact suggests that evolution can tune TCS
detection thresholds, which could enable organisms to adapt to
new niches with different input concentrations. Interestingly, few
mutations have been discovered that increase phosphatase
activity, or decrease kinase activity. As of currently, this fact
restricts our TCS tuning method to applications where lower
detection thresholds (i.e., increases in sensitivity) are needed.
However, sensitivity decreases are also desirable in many syn-
thetic biology applications, which motivates future work to
identify appropriate mutations.

Additionally, some SKs interact with phosphatase-modulating
auxiliary proteins54. It is possible that these auxiliary proteins can
tune the detection thresholds of the corresponding TCSs. Unlike
SK mutations, they could also be dynamically induced or
repressed in response to changing environmental or physiological
conditions to temporarily adjust detection thresholds. This phe-
nomenon is analogous to our use of chemically inducible pro-
moters to adjust the NarXL nitrate detection threshold in our iso-
SK experiment (Fig. 3). These intriguing possibilities remain to be
explored.

Finally, our approach may be extensible to other kinase path-
ways. For example, eukaryotes use MAPK cascades to sense and
respond to important extracellular signals such as growth factors
and immunomodulators55. Threonine and tyrosine phosphatases
modulate signaling through these pathways by dephosphorylating
MAP kinases56. Researchers have expressed variants of these
phosphatases under synthetic feedback control to re-program
pathway response dynamics57,58. Alternatively, by constitutively
expressing such phosphatases to different extents, or expressing
phosphatases of different strengths, the detection thresholds of
MAPK cascades could potentially be tuned.

In conclusion, we have demonstrated a simple, general strategy
for tuning the detection threshold of TCSs—one of the largest
and most diverse families of sensors in biology. Due to its
effectiveness and ease of use, our method should have widespread
applications in synthetic biology.

Methods
DNA and bacterial strain construction. Details of synthetic DNAs used in this
work are given in Supplementary Data 1-4. All E. coli systems are expressed on
extrachromosomal plasmids. All plasmids were assembled via Golden Gate clon-
ing59. Assembled plasmids were transformed into E. coli NEB 10-β (New England
Biolabs, cat no. C3019H). Ribosome binding site (RBS) strengths were calculated
using the RBS calculator60.

All B. subtilis systems are constructed as linear double-stranded DNA
Integration Modules (IMs) and integrated into the chromosome. All IMs were
assembled with Golden Gate cloning59. Assembled DNA was amplified with PCR,
transformed into B. subtilis 168 (BGSCID 1A1) and recombined into the
chromosome using the two-step transformation protocol61. B. subtilis genomic
DNA was then purified (Promega, A1120) and used for subsequent
transformations.

E. coli NEB 10-β and B. subtilis 168 were grown in LB Miller broth shaking at
250 rpm at 37 °C. Then, 50 μg mL−1 ampicillin, 35 μg mL−1 chloramphenicol, and
100 μg mL−1 spectinomycin for E. coli and 100 μg mL−1 spectinomycin, 0.5 μg mL
−1 erythromycin, 5 μg mL−1 chloramphenicol, and 5 μg mL−1 kanamycin for B.
subtilis were added where appropriate. Transformed strains were stored in 15%
glycerol stocks at −80 °C.

E. coli plasmids are available from Addgene using accession numbers listed in
Supplementary Data 3. B. subtilis constructs are available from the Bacillus Genetic
Stock Center using BGSC numbers listed in Supplementary Data 4.

In vitro nitrate experiments. In vitro nitrate induction experiments were con-
ducted with B. subtilis 168 ΔydfHI::camR (iND46; Supplementary Fig. 2). C
minimal media with sodium succinate and potassium glutamate (CSE media)
containing 30 mM KH2PO4 (Fisher BioReagents, BP362-1), 70 mM K2HPO4

(Fisher BioReagents, BP363-1), 25 mM (NH4)2SO4 (Sigma, A4418-100G), 10 mM
MnSO4 (Sigma-Aldrich, M7634-100G), 500 µM MgSO4 (VWR, BDH9246-500G),
12.5 µM ZnCl2 (Sigma, Z0152-50G), 245 µM L-typtophan (Sigma-Aldrich, T0254-
25G), 22 mg L−1 ammonium iron(III) citrate (Sigma-Aldrich, F5879-100G), 43.2
mM Potassium Glutamate (Alfa Aesar, A17232), 22.2 mM Sodium Succinate (Alfa
Aesar, 33386), and 43.4 mM Glycerol (Fisher BioReagents, BP229-1) were used
without antibiotics. Induction conditions were 25 mM NaNO3 (Sigma-Aldrich,
S5506), 10 µM isopropyl β-D-1-thiogalactopyranoside (IPTG) (IBI Scientific,
IB02125), and 1% xylose (Alfa Aesar, A10643) unless otherwise noted. IPTG and
xylose levels were chosen for optimal fold change of the NarX(D558V) TCS
(Supplementary Fig. 3). An overnight culture was inoculated from a 15% glycerol
freezer stock and grown in 3 mL of media for 13–15 h. Cells were diluted to
OD600= 3 × 10-4 with relevant inducers in a 500 µL volume in 24-well plates
sealed with a tin foil adhesive (VWR, F96VWR100). Cells were grown to an
OD600= 0.3 (approximately 6 h) and placed on ice prior to measuring via flow
cytometry with a FL1 gain of 600. All growth was conducted shaking at 250 rpm at
37 °C.

Aspartate experiments. Aspartate induction experiments were conducted in E.
coli BW29655 (BW28357 Δ(envZ-ompR)520(::FRT); CGSC #7934; Yale Uni-
versity). M9 media containing 1× M9 salts (42 mM Na2HPO4, 24 mM KH2PO4,

8.9 mM NaCL, 19 mM NH4Cl; Teknova, M1902), 2 mM MgSO4 (VWR, BDH9246-
500G), and 0.1 mM CaCl2 (Alfa Aesar, L13191) were used with 22.2 mM glucose
(Avantor, 4908-06) as a carbon source, and 2 g L−1 casamino acids, 50 μg mL−1

ampicillin, 35 μg mL−1 chloramphenicol, 100 μg mL−1 spectinomycin, 10 μM
IPTG and 50 ng mL−1 anhydrotetracycline (aTc; Takara Bio USA, 631310) were
used. Then, 3 mL of this medium in a 14 mL culture tube was inoculated to OD600
= 5 × 10-3 from a single use 15% glycerol stock stored at −80 °C containing cells
frozen during exponential phase. Bacteria were grown for 2 h shaking at 250 rpm at
37 °C. Amino acids were then removed by centrifuging at 3220 × g for 5 min,
resuspending in 5 mL of media without casamino acids, centrifuging at 3220 × g for
5 min, and resuspending in 5 mL of media without casamino acids. Aspartate was
added to the culture and bacteria were grown for 2 h shaking at 250 rpm at 37 °C,
placed on ice, and then measured via flow cytometry with an FL1 gain of 750.

Computational analysis of the phosphatase hot spot residue. To estimate the
fraction of known SKs that contain the phosphatase hot spot residue, we first
assembled a library of non-redundant SK sequences from 4861 NCBI (National
Center for Biotechnology Information) RefSeq bacterial genomes using
HMMER362. We used hmmsearch to identify all proteins that had a C-terminal
kinase core composed of a single kinase domain (Pfam: HisKA, HisKA_2,
HisKA_3, His_kinase, H-kinase_dim) followed by an HATPase_c domain
(reporting threshold set to 12.0 for each). We eliminated SKs with non-canonical
signaling architectures by requiring that each had at least a minimal sensing region
(>10 a.a. N terminal of the kinase core) and contained neither a Receiver domain
(Response_reg) nor a histidine phosphotransfer domain (Hpt). This constraint
resulted in 105,144 SK proteins. To eliminate redundant sequences from this pool,
we used usearch63 to cluster the sequences according to a 60% sequence similarity
threshold (using ‘-cluster_fast’ and ‘-sort length’ parameters). The centroids of each
cluster were then used as representatives of non-redundant SKs, resulting in 56,855
proteins. We next created a hidden Markov model (HMM) representing the G2
box motif (Supplementary Fig. 9) by aligning 12 representative G2 box sequences64

and using hmmbuild to create a model. This model was then used with hmmsearch
(default parameters) to identify SKs in the non-redundant set that match, yielding
38,966 SKs with putative G2 box motifs. Two additional criteria were used to
eliminate false positives: (1) the putative G2 box must align to the correct region of
the protein (C terminal to the HisKA domain), and (2) the G2 box must have G3
and G5 present when aligned to the HMM. Applying these constraints left 36,508
SKs remaining, constituting 64.21% of the full non-redundant SK data set. Finally,
the distribution of residues in the second position of the GXGXG motif were
tabulated from these SKs.

Tetrathionate and thiosulfate experiments. Tetrathionate and thiosulfate
induction experiments were conducted with E. coli BW28357 (CGSC#: 7991, Yale
University). M9 media were used with 1 ×M9 salts, with 43.4 mM glycerol (Fisher
BioReagents, BP229-1) as a carbon source, 2 g L−1 casamino acids (EMD Millipore,
2240-500GM), 35 μg mL−1 chloramphenicol, and 100 μg mL−1 spectinomycin. For
thiosulfate experiments, 200 μM IPTG and 20 ng mL−1 aTc were used, and leaky
expression of the TtrSR TCS without inducers was found to be sufficient. Ligand
induction was achieved with K2S4O6 (Sigma-Aldrich, P2926-25G) or Na2S2O3

(Sigma-Aldrich, 217247-25G). The experiment was started by inoculating 3 mL of
media in a 14 mL culture tube to OD600= 1 × 10−4 from a single-use 15% glycerol
stock frozen during exponential phase and stored at −80 °C. Bacteria were grown
at 37 °C shaking at 250 rpm for 4 h, placed on ice, and then measured via flow
cytometry with a FL1 gain of 600.
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Soil nitrate experiments. Soil experiments were conducted with B. subtilis 168
ΔydfHI::camR,mCherry (iND77; Supplementary Fig. 12). CSE media with 0.3%
xylose and 3 µM IPTG were used without antibiotics in all experiments. IPTG and
xylose levels were selected to achieve a large fold change of both wild-type and
C415R NarXL TCSs (Supplementary Fig. 12). Soil (Miracle Gro, All-Purpose
Garden Soil) was prepared by removing large particles with a 1.75 mm strainer,
transferring 0.1 g to a 14 mL culture tube, and adding NaNO3 or fertilizer (Vigoro,
All-Purpose Plant Food) which contains 1.03 M NO3

-. The experiment was started
with an overnight culture inoculated from a 15% glycerol freezer stock and grown
in 3 mL of media for 18 to 22 h of shaking at 250 rpm. Cells were diluted to OD600
= 3 × 10-4 and grown to OD600= 0.075–0.125 shaking at 250 rpm. Then, 250 µL
of cells were added to the soil, vortexed for 5 s to mix, and centrifuged for 20 s to
settle, resulting in 1 mL of damp soil. Cells were incubated in soil with no shaking
for 2 h and then placed on ice. Next, 5 mL of cold phosphate-buffered saline was
added and the samples were vortexed for 10 s to resuspend the cells. Particulates
were allowed to settle for 2 min and then the supernatant was passed through
Whatman #1 filter paper (Sigma, WHA10016508) to further remove particulates.
Samples were then measured on the flow cytometer with a FL1 gain of 700 and FL3
gain of 850 thresholded at 45% FL3. All experiments were conducted at 37 °C.

Flow cytometry and sfGFP fluorescence calculation. Flow cytometry was con-
ducted with a BD FACScan flow cytometer. The instrument employed blue (488
nm, 30 mW) and yellow (561 nm, 50 mW) solid-state lasers (Cytex) and a 510/21
nm filter (FL1) to measure GFP and a 650 nm long pass filter (FL3) to measure
mCherry. For each sample,10,000–20,000 events were collected at 500–2000 events
per second within a forward scatter (FSC), side scatter (SSC) gate. Rainbow cali-
bration beads from Spherotech, Inc. (cat. no. RCP-30-20A) were also collected each
day at identical detector gain settings. Flow cytometry data were processed with
FlowCal65. Events were selected by discarding the first 250 and last 100 time
ordered events, a density gate was then applied to select the densest 10% of events
(~1000–2000 events) in FSC/SSC space to specifically select bacterial cells (Sup-
plementary Fig. 13). FL1 fluorescence was transformed into MEFL units using a
standard curve created from the calibration beads measured on that day. The
geometric mean of the population was used to calculate the fluorescence of each
sample.

To calculate sfGFP fluorescence, measured bacterial autofluorescence (119
MEFL for E. coli and 150 MEFL for B. subtilis) was subtracted from total cellular
fluorescence. Some samples were not significantly different from cellular
autofluorescence, resulting in exaggerated fold change calculations
( induced sample�autofluorescence
uninduced sample�autofluorescence). Therefore, when calculating the fold change, if the

sfGFP expression fell below the limit of detection (LOD ¼ 3 � σautofluorescence; 16.6
MEFL for E. coli and 36.4 MEFL for B. subtilis) the LOD was used in place of the
measured sfGFP value to calculate a lower bound of the fold change.

Transfer function modeling and parameter estimation. All transfer function

data were fit to an activating Hill equation y ¼ low þ high� lowð Þ xn
Kn
1
2
þxn

� �
using

the LmFit python package66. Here, y is the sfGFP fluorescence (MEFL), x is the
concentration of inducer (µM), low is the sfGFP fluorescence at 0 µM inducer
(MEFL), high is the maximum sfGFP fluorescence (MEFL), K1/2 is the con-
centration of inducer that gives rise to half-maximal sensor activation (µM), and n
is the Hill coefficient. All transfer functions were experimentally measured on three
separate days. Replicate data points were combined into a single data set. This set
was fit by the Hill equation. To fit both low and high sfGFP values well, the fit
residuals at each data point were weighted by multiplying the residual by the
inverse of the mean at that data point. The 95% confidence intervals of fit para-
meter values were calculated using the conf_interval function in LmFit, which
executes the F-test. Fit parameters for all experiments in this study are shown in
Supplementary Data 5.

Code availability. The code used to generate a model of a TCS is included as a
supplementary file to this article.

Data availability. The datasets generated during and/or analyzed during the
current study are available from the corresponding author on reasonable request.
DNA sequences are available from GenBank and accession numbers can be found
in Supplementary Data 3, 4.
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