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Abstract

The present paper addresses the study of non-arbitrariness in language within a deep learning
framework. We present a set of experiments aimed at assessing the pervasiveness of different forms of
non-arbitrary phonological patterns across a set of typologically distant languages. Different sequence-
processing neural networks are trained in a set of languages to associate the phonetic vectorization of a
set of words to their sensory (Experiment 1), semantic (Experiment 2), and word-class representations
(Experiment 3). The models are then tested, without further training, in a set of novel instances in a
language belonging to a different language family, and their performance is compared with a random-
ized baseline. We show that the three cross-domain mappings can be successfully transferred across
languages and language families, suggesting that the phonological structure of the lexicon is pervaded
with language-invariant cues about the words’ meaning and their syntactic classes.

Keywords: Non-arbitrariness; Phonosymbolism; Iconicity; Cross-lingualism; Language and vision;
Deep learning

1. Introduction

A pivotal property of human languages is their ability to refer to entities and events that
populate the physical world by means of signs. In oral languages, these signs consist of
ordered sequences of sounds; the links between these phonological patterns and the world
are determined by both the phonemes that are uttered and their relative position within a
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word. The nature of the relationships that tie the speech sounds composing a word and that
word’s meaning has kindled the interest of philosophers since ancient times (see Magnus,
2013, for a historical overview); nonetheless, the deep-rooted fascination for this puzzling
question was waned by the empiricist criticism put forward by Locke (1847) and defini-
tively annihilated by the structuralist axiom of the arbitrariness of the sign (Saussure, 1964).
According to the Saussurean perspective on meaning, words should be conceived as arbitrary
labels, forced onto the semantic concept they refer to as a result of social processes of cultural
transmission. This framework quickly conquered the theoretical panorama (see, for instance,
Bloomfield, 1984; Hockett & Hockett, 1960; Levelt, Roelofs, & Meyer, 1999), rejecting a
priori the possibility of any natural correspondence between the linguistic sounds and their
denotation. However, as noted by Allott (2001), this perspective has restrained the study of
the phonological properties of the lexicon beyond the reach of scientific explanation.

The concept of iconic referentiality dismisses the assumption of an arbitrary link between
the words and their denotatum; it entails that linguistic sounds can bear meaningful associa-
tions with their referents, with these associations being mediated not only by the phonological
regularities of a given language but also by the sounds’ inherent qualities (i.e. their acoustic
and articulatory features). Approaches that incorporate iconic principles into lexical seman-
tics are gaining increasing popularity in cognitive research, but they are still conceived as an
alternative to the standard view on vocabulary structure. Notably, motivated mappings with
the phonological form seem to be rejected a priori only in the lexical domain. However, it is
commonly recognized that non-arbitrary cross-domain connections account for a variety of
linguistic phenomena at different levels of analysis beyond the study of the lexicon. From a
syntactic standpoint, it is widely acknowledged that linguistic structures mirror various facets
of the structure of experience (Croft, 2002; Haiman, 1985; Levinson, Stephen, & Levinson,
2000). The parallelism between linguistic and temporal sequences has been proposed as an
example of this correspondence (Bybee, 1985; Perniss, Thompson, & Vigliocco, 2010): in the
sentence “I will eat, shower, and read a book™ the hearer will typically infer that the speaker
intends to perform the three actions in the order in which they were uttered. Nonetheless,
there is no external cue besides the sequential arranging of the verb phrases that support this
assumption. Proposals that incorporate iconic principles in linguistic analysis have also been
outlined in the domain of morphology, with the observation that for degree adjectives (e.g.,
big, bigger, biggest) the highest degree of quality is iconically represented by the word with
the greatest number of phonemes in its inflection (Wescott, 1971). The claim that a given
domain can be structured without any accountable principle is inherently sterile. For this rea-
son, the first research efforts that challenged this view were welcomed with a high resonance
in the scientific community.

1.1. Phonovisual iconicity

In the late 1920s, the cognitive sciences drew attention to some anecdotal cases that chal-
lenged the structuralist principle of the arbitrariness of the sign. Two prominent studies dis-
closed a non-trivial link between the participants’ guesses about a figure’s name and some of
its visual properties, namely its shape (Kohler, 1929) or its size (Sapir, 1929). In Sapir’s study
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(1929), participants engaged in a name matching task; they were presented with the images
of two tables of different sizes and instructed to pair them with the pseudowords “mil” and
“mal.” Intriguingly, the latter phonetic sequence was coupled four times more often with
the larger object, showing that the participants’ intuitions were biased by the nature of the
vocalic phone. In the same year, Kohler showed that the phonological profiles of two non-
words affected their association with two novel shapes: participants tended to label “maluma”
a rounded shape and “takete” a spiky one. This latter experiment on shape phonosymbolism
had a wide impact on experimental psychology and linguistics: Several studies managed to
replicate Kohler’s results, corroborating the psychological reality of the so-called “maluma-—
takete” effect (Kohler, 1947; Werner, 1948, 2011) or “bouba-kiki” effect, referring to the pseu-
dowords employed by Ramachandran & Hubbard (2001). These research efforts set the stage
for a number of experiments that repeatedly reported the same phonovisual correspondences
at different developmental stages (Maurer, Pathman, & Mondloch, 2006; Ozturk, Krehm, &
Vouloumanos, 2013; Pejovic & Molnar, 2017) and in various linguistic, geographical, and
cultural contexts (Bremner et al., 2013; Ramachandran and Hubbard, 2001; Chen, Huang,
Woods, & Spence, 2016; Shinohara & Kawahara, 2010; Cwiek et al., 2021). The results of
the studies on shape and magnitude symbolism were complemented by other findings that
related to different properties of the visual modality, such as color (Johanssohn, Anikin, &
Aseyeyv, 2020) and lightness (Hirata, Ukita, & Kita, 2011), to their respective phonetic signs.

Vision is not the only sense by which we experience the world, and several studies have
searched for a phonosensory bias in different perceptual modalities. Iconic sensory analo-
gies were then documented in various senses, such as touch (Fryer et al., 2014; Graven &
Desebrock, 2018), smell (Atkinson, Speed, Wnuk, & Majid, 2021), kinesthesis (Fontana,
2013), and taste (Gallace, Boschin, & Spence, 2011). Iconic words that make reference to
the auditory modality are particularly relevant in linguistic and cognitive research, since their
phonosymbolic mapping takes place within a modality, relating verbal and non-verbal sounds.
They receive the highest explicit iconicity ratings (Winter et al., 2017), and participants are
able to associate them with their meaning with the highest accuracy among all the other sen-
sory modalities (Dingemanse, Reinisch, Schuerman, Tufvesson, & Mitterer, 2016). In the
ideophonic lexicon — i.e the portion of the vocabulary that includes marked words depicting
sensory imagery (Dingemanse, 2012) — auditory terms are the most prominent class. They
occupy the highest rank in the cross-linguistic implicational hierarchies developed by Blasi,
Dingemanse, Lupyan, Christiansen, and Monaghan (2015) and revised by McLean (2021),
meaning that if a language does not develop auditory ideophones, it will not produce ideo-
phones related to the other senses. Nonetheless, we chose to focus on vision since we were
interested in an analogical iconic mapping that involved a cross-modal link. With the excep-
tion of the auditory modality, the phonovisual biases hold a privileged role among the other
senses, both in terms of the research interest they elicited and the consistency of the findings.
Indeed, the cross-modal correspondences in the olfactory-gustative modality do not seem to
be coherent across cultures (Bremner et al., 2013), and the iconic biases in the haptic domain
might be mediated by visual imagery (Fryer et al., 2014) and auditory experiences (Win-
ter et al., 2017). In the light of this asymmetry, we approached the multifaceted subject of
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perceptual iconicity by analyzing the link between phonological profiles and visual features
(Experiment 1).

1.2. Phonosemantic iconicity

Visual representations do not exhaust the whole semantic spectrum. Several words are
grounded in other perceptual modalities, and abstract concepts lack a precise relationship with
sensorimotor features in general (Borghi et al., 2017; Crutch & Warrington, 2005; Lupyan
& Winter, 2018; Paivio, 2010). Not only are sounds associated with other sensory proper-
ties, but they are also more generally associated with lexical meanings. For example, studies
have shown that participants are able to couple with an above-chance accuracy visually pre-
sented characters (Koriat & Levy, 1977) and auditorily presented words (Berlin, 1995) of a
foreign language with their meaning. Furthermore, it has been shown that participants per-
form above chance when pairing up words with opposite meanings in languages to which
they have not been exposed (Nuckolls, 1999), and when estimating the concreteness of words
from languages unknown to them (Reilly, Hung, & Westbury, 2017). Taken together, these
findings suggest that the semantic information encoded in a word’s phonological profile may
include other features that are not exclusively visual. Aiming to extend the scope of our study
beyond the domain of perception, we devised a second experiment where we inspected the
link between sound and language-based meaning representations (Experiment 2).

1.3. Systematicity

Dingemanse et al. (2015) drew an important distinction between two patterns of non-
arbitrariness in vocabulary structure, namely iconicity and systematicity. The former term
reflects the idea that phonemes can convey meaning per se, that is, not only through con-
trastive relations with other sounds but also through their intrinsic sound qualities; in iconic
words, aspects of form and meaning are related by means of perceptuomotor analogies. The
latter constitutes a different form of non-arbitrariness prompted by statistical regularities
between sound and usage patterns of word classes. Despite its pervasiveness, systematicity
has received relatively little attention in linguistics and cognitive science. Systematicity
does not concern a direct relationship between phonetic patterns and referential semantic
properties; instead, it regards the phonetic regularities that are instantiated within a word
class. Class-level phonetic cues have been found in a broad range of languages, with evidence
coming from both typological (Smith, 2011) and corpus studies (Monaghan, Christiansen,
& Chater, 2007). Dingemanse et al. (2015) suggested that the phonetic cues that help in
discerning between word classes might be language-specific, featuring ample cross-linguistic
differences. The results from our study (Experiment 3) challenge this assumption, providing
empirical evidence that the relationship between phonological profiles and word classes
is characterized by significant cross-linguistic consistency and can be transferred across
different language families. Within the computational framework, the analysis of lexical non-
arbitrariness has largely focused on iconicity (Abramova & Ferndndez, 2016; Abramova,
Fernandez, & Sangati, 2013; Blasi, Hammarstrom, Wichmann, Stadler, & Christiansen, 2016;
Johanssohn, Anikin, & Aseyev, 2020; Shillcock, Kirby, & McDonald, 2001; Wichmann,
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Holman, & Brown, 2010; although see Gutiérrez, Levy, & Bergen, 2016; Monaghan et al.,
2007; Tamariz, 2008). We believe that the eventual cross-linguistic consistency of the sys-
tematic cues that help in distinguishing between word classes deserves to be addressed at a
large scale, and our third experiment aims to fill this research gap.

1.4. Relevance

In recent years, non-arbitrariness has gone from being merely peripheral to the interests
of the cognitive science community to being integrated into broader theories of language
evolution (Cabrera, 2012; Dingemanse et al., 2013; Ramachandran and Hubbard, 2001), pro-
cessing (Lockwood & Tuomainen, 2015) and acquisition (Asano et al., 2015; Imai, Kita,
Nagumo, & Okada, 2008; Murgiano, Motamedi, & Vigliocco, 2021). A naturally biased rela-
tionship between phonetics and semantics restrains the problem space of the evolution of
language, positing constraints on the emergence of the vocabulary. Furthermore, a systematic
link between a linguistic sound and its referent might strengthen the mnemonic traces in the
process of language acquisition (Sathian & Ramachandran, 2019). The effects of phonose-
mantic correspondences are not encased within language but have been shown to spread to
different cognitive faculties, such as categorization (Lupyan & Casasanto, 2015), memory
(Ramachandran and Hubbard, 2001), and emotion recognition (Slavova, 2019); moreover,
they exert an influence on actional processes such as phonatory behavior (Parise & Pavani,
2011), spatial navigation (Krehm, Maglio, Rabaglia, Seok, & Trope, 2016), and hand grip
(Schulman, Vainio, Tiippana, & Vainio, 2013). In the light of their effects within the human
cognitive system, the phonosemantic biases are not likely to be limited to a few circumscribed
phonetic or semantic clusters, but may instead pervade the lexicon beyond the often reported
anecdotal instances.

1.5. Aims

In the present study, we tackle the following questions:

e Is there a relationship between the phonological realization of a word and the visual
representation of its referent?

e I[s this sound-to-meaning link extended beyond visual semantics?

e Are word classes organized into consistent phonological clusters?

In trying to answer these inquiries, we adhered to three core methodological choices. First,
we relied on large-scale data-driven procedures, with the intention of assessing the perva-
siveness of non-arbitrariness in a representative linguistic sample, without including human
biases in the item selection. Second, we implemented our experiments in a cross-linguistic
setting. We deem that cross-linguistic diversity is a pivotal testbed for testing the hypothesis
of a universal sound-symbolic substrate underlying all languages, as opposed to language-
specific idiosyncratic systematicity. Third, we configured our experiments as zero-shot cross-
lingual transfer learning tests, where we trained different long short-term memory (LSTM)-
based recurrent neural networks in associating phonetic vector sequences with visual (Experi-
ment 1), semantic (Experiment 2), and word-class (Experiment 3) representations (see Fig. 1).
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Fig. 1. Graphical summary of the experimental pipeline. The sequence in @ represents the stages of the

graphemic-to-phonetic conversion, which is common to our three experiments. The flowchart in @ depicts the
pre-processing stages of the images (Experiment 1, upper part of the diagram), the semantic vectorization of
the words through Word2Vec (Experiment 2, middle part of the diagram), and the encoding of the word classes
(Experiment 3, lower part of the diagram). For typographical reasons, only five layers of the VGG16 network are

graphically depicted. The schema in ® represents the cross-domain mappings from the phonetic input derived
in @ to the output representations obtained in Q. Again, the representations of Experiment 1 occupy the higher

position in the diagram, the ones of Experiment 2 are in the middle, and the ones of Experiment 3 are depicted at
the bottom (see the legend on the right).
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We followed the rationale that if the semantic and syntactic traces contained in the phonetic
realization of the lexicon are consistent across languages — hence being a language univer-
sal in a broad sense —, then it should be possible to learn a cross-domain mapping in a set
of unrelated languages and transfer it to a novel, typologically distant language without fur-
ther training.

2. Experiment 1

In our first experiment, we explored the idea that vocabulary might be entangled with sen-
sory experience. More precisely, we tested the hypothesis that the phonological properties of
the lexicon might be related to the visual world by means of cross-modal correspondences,
and that these correspondences might be consistent across languages. In order to uncover
hidden links between these two domains — a task that arguably requires the use of complex
transformations —, we trained an LSTM network to associate phonetic vector sequences with
visual vectors denoting their referents. The latter were obtained through a forward pass of an
image through a pre-trained hierarchical convolutional neural network (henceforth HCNN;
see Section 2.4). The experimental pipeline is summarized in Fig. 1 (dashed line).

2.1. Dataset

We performed our first experiment on the THINGS dataset (Hebart et al., 2019), a resource
that comprises 26,107 high-quality naturalistic images depicting a set of 1,854 diverse object
concepts. Each item of the dataset was composed of an image paired with a label; these two
components were pre-processed independently, as described in Subsections 2.3 and 2.4. In
order to restrict the effects of the morphological noise in the labels, we removed from the
dataset all the compound words (305 concrete words, corresponding to 3,839 images).

2.2. Translation

Each image label in the resulting dataset was translated into five languages belonging to
five language families (see Table 1). We are aware that the choice of translating the labels
is not free of concerns: the translation process does not always return the exact same con-
cept in a different language, but rather the concept that overlaps to the highest degree with
the original one. However, translating the labels licenses meaningful comparisons across lan-
guages — at least, more than employing different language-specific datasets —, and allows us
to align the lexical items across languages, a crucial aspect to take into account when devis-
ing disjoint experimental conditions (see Section 2.6). In order to maximize the cross-lingual
coverage of our dataset, while at the same time maintaining a high-quality translation, we first
searched for lexical matches through word2word (Choe, Park, & Kim, 2020), a collection of
bilingual lexicons constructed from the publicly available OpenSubtitles2018 dataset (Lison,
Tiedemann, & Kouylekov, 2018); then, for the missing items, we employed the ground-truth
bilingual dictionaries based on fastText, released by Facebook Research (Conneau, Lam-
ple, Ranzato, Denoyer, & Jégou, 2017). We removed from the analyses the words for which
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a translation was missing in one or more languages — in other words, we considered only
the set intersection of the translated items. The resulting dataset consisted of 16,820 images,
depicting a set of 1,161 concrete words. The percentage of translations obtained with each
translation tool for all the languages considered in the study is reported in Table 1, along with
the percentage of missing items.

2.3. Phonetic representations

We derived the phonetic vector sequences corresponding to each image’s label through
the Epitran-PanPhon pipeline. In the first step of the procedure, the orthographic text of
the label was transliterated into the International Phonetic Alphabet (IPA) with Epitran, a
Python package for phonemic transcription. Then, the output was traduced into a sequence
of feature vectors with PanPhon, a library that converts IPA segments into subsegmental
articulatory features (Mortensen et al., 2016). In line with Jakobson and Waugh (2011), who
state that “most objections to the search for the inner significance of speech sounds arose
because the latter were not dissected into their ultimate constituents” (p. 182), we chose not
to directly hot-encode the IPA strings. In our opinion, the information-rich representational
format offered by a phonetic feature decomposition is desirable since it uncovers the internal
asymmetries that make different phones more or less related to each other (see Blasi et al.,
2016; Joo, 2020, for similar considerations). With a hot-encoding over the IPA vocabulary all
the phones would correspond to discrete categories, while two phones might differ by a single
feature (e.g., [p] and [b], which are only distinguished by the feature [+/— voiced]), or more
than 10 (e.g., [t] and [u], which exhibit 13 different subsegmental features).

The words in the input could be composed of a variable number of phones, which would
result in vector sequences of different lengths. To make the tensor shapes comparable, all
the input sequences were zero-padded, with a maximum length of 15. Thus, vector sequences
derived from words with less than 15 phones were extended with zeroes, which would be sub-
sequently hidden in the masking layer of the LSTM network (see Section 2.5). On the other
hand, vector sequences corresponding to words with more than 15 phones were truncated,
and the phonetic vectors corresponding to the following phones were discarded. Note that the
items with 15 phones or more were less than 0.03% of the total, so the number of truncated
words was negligible.

2.4. Visual representations

To transform the raw RGB images in the input into cognitively inspired visual representa-
tions, we relied on VGG16, an HCNN for large-scale image recognition (Simonyan & Zis-
serman, 2015). HCNNs exploit the hierarchical nature of the visual data to assemble rep-
resentations of increasing complexity using small and simple patterns repeated across the
images in input. They are biologically inspired models (LeCun & Bengio, 1995; LeCun et al.,
2015) that have been developed in the field of computer vision with the purpose of classifying
images, predicting a label from the pixel-wise RGB codes in input (Krizhevsky, Sutskever,
& Hinton, 2012). HCNNS are usually composed of stacked convolutional and pooling layers,
followed by standard fully connected (FC) layers (Simonyan & Zisserman, 2015). Convolu-
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tional layers create feature maps that represent in a distributed tensor format the presence of
features of various levels of abstraction in the input; these features are extracted through the
application of learned filters to input images. Pooling layers then serve the purpose of lower-
ing the resolution of the feature maps. Since the absolute position of a certain feature forming
a motif might vary, coarse-graining each feature’s position can create invariance to small
shifts and distortions (LeCun et al., 2015). In deep models, shallow layers usually learn low-
level visual features (e.g., lines, edges, color blobs) while layers that are deeply embedded in
the network can extract high-level attributes (e.g., object parts, textures). The final layers then
encode images as complex representations (e.g., object shapes) which are employed for the
ultimate purpose of the network, that is, classification (Mahendran & Vedaldi, 2015).

The visual vectors included in this study consisted of the outputs of the fifth max-pooling
layer of the pre-trained network, in response to a forward pass of each image in the dataset.
After freezing all the model’s weights by setting it in evaluation mode, we fed each image
x in our stimulus set through the VGG16, in order to extract the resulting feature maps
@(x) of block5_pool; the resulting vectors were in turn flattened before being processed
by the LSTM model. The weights of VGG16 were configured according to its pre-training
on ImageNet (Deng et al., 2009). We employed the output of the VGG16 network as an
approximation of a representational format proper to the human perceptual system. Indeed,
HCNN-based representations can be successfully mapped onto neural responses to visual
stimuli at different levels of processing within the ventral stream, even if the networks are
not explicitly optimized to fit neural data (Yamins & DiCarlo, 2016). From a psychological
perspective, these representations have been proposed to be cognitively plausible at least at
the computational level of description (Marr, 1982), being able to predict human behavior and
performance in several tasks (Gtinther, Petilli, Vergallito, & Marelli, 2020; Giinther, Marelli,
Tureski, & Petilli, 2021; Giinther, Petilli, Vergallito, Ciapparelli, & Marelli, 2021).

2.5. Neural architecture

An LSTM was trained to associate the sequences of phonetic feature vectors in input into
the visual vectors in output, with a many-to-one topological structure. The choice of the archi-
tecture was motivated by the nature of the input that LSTMs can process: while standard feed-
forward neural networks can only treat single data points, LSTMs are endowed with feedback
connections, that enable them to process inherently sequential data — in our case, the chains
of phonetic vectors. The model was configured with Keras, a deep learning framework for
Python (Chollet & others, 2015); it comprised a masking layer, followed by a single LSTM
layer with 500 neural units, a dropout of 0.2, and a recurrent dropout of 0.2. The LSTM layer
was connected to a dense layer with the number of units (25,088) matching the dimensional-
ity of the target visual vector and equipped with rectification non-linearity (Rectified Linear
Unit, ReLU). Cosine similarity was employed as both the objective function and metric, and
the Adam optimization method was employed for training (Kingma & Ba, 2014), with the
learning rate set to 0.01. All the hyperparameters described above were set without tuning.
Random seeds were set for replicability purposes.
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Fig. 2. Schematic summary of the train-test combinations in our experimental conditions. For typographical rea-
sons, only four out of six conditions are reported. The rectangular shapes represent the totality of the word-image
pairs available in each language. The training sets are marked with north-east lines, whereas the test sets are repre-
sented with the dotted patterns. As depicted in the figure, the training and test sets are completely disjointed. In the
first block on the left, the training set is composed of a subset of the Arabic, Hungarian, Indonesian, Vietnamese,
and Turkish data, whereas the test set is a different subset of English data.

2.6. Experimental conditions

We structured the experimental conditions following two main principles aimed at limiting
the effects of the etymological relatedness of the items in the training and the test sets as much
as possible. First, we prevented an image and a concept to occur in both sets, by randomly
splitting the labels into two subsets, with a train-test split ratio of 0.8. Following this partition,
the training set consisted of 929 concepts depicted by 13,397 images, whereas the test set was
composed of 232 concepts represented by 3,423 images. Then, we devised our conditions so
that the language on which the network was tested did not overlap with the set of languages
on which the training was performed. In other words, in each condition the model was trained
in the concatenation of the training sets of five languages {L;};—;_s and tested in the test set
of a sixth language Ls which was excluded from the training set, following a non-random
sixfold cross-validation procedure (see Fig. 2). Each model was trained for one epoch in
the five languages in the training set to map the phonetic vectorization of a word denoting
an image to the convolution-based transformation of that image; then, it was tested on the
same task in a novel language, belonging to a different language family. The experimental
conditions were thus constructed so that the training and test sets were disjoint with respect
to the concepts, the images representing them, and the languages to which the labels were
translated. The experimental models’ performances were assessed by comparing their results
with the ones obtained by a parallel random model, which defined a baseline for quantifying
the increase in performance due to the relevant multilingual signal. Concretely, the parallel
model was trained on a dataset where the correspondence between input and output vectors
was randomized by shuffling the visual vectors in output. All models were trained on 66,985
samples (13,397 x 5 languages) and tested on 3,423 items.

2.7. Results

The results of the six cross-lingual models and their random counterparts are reported in
Table 2. The descriptive statistics in the first columns reveal that across all the experimen-
tal conditions, the cross-lingual models always outperformed their randomized baselines.
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Table 2
Results by experimental condition (Experiment 1)

Cross-lingual Model Randomized Baseline Contrast
Language Cosine  SD 95% CI Cosine  SD 95% CI t P d
Arabic 0.2343 0.0411 [0.2329,0.2357] 0.2243 0.0382 [0.2230, 0.2256] 10.42 <« .0001 0.6600

Hungarian 0.2382 0.0410 [0.2368, 0.2396
Indonesian  0.2391 0.0394 [0.2378, 0.2404
Vietnamese 0.2320 0.0431 [0.2306, 0.2335
Turkish 0.2381 0.0404 [0.2367,0.2394
English 0.2389 0.0418 [0.2375,0.2403

0.2278 0.0386 [0.2266,0.2291] 10.78 <« .0001 0.6321
0.2243 0.0399 [0.2229,0.2256] 15.45 <« .0001 1.4385
0.2224 0.0384 [0.2211,0.2237] 9.77 <« .0001 0.4544
0.2257 0.0387 [0.2244,0.2270] 12.99 <« .0001 1.1956
0.2228 0.0384 [0.2216,0.2241] 16.60 <« .0001 1.3220

— e e e e —

Note. The first column of the table specifies the language of the fold on which the validation was performed,
implying that the training had been carried out on all the languages but the one in the test set. The following six
columns of the table present the mean, the standard deviation (SD), and the 95% confidence intervals (CI) of the
cosine similarity between the target visual vector and the cross-lingual or the random model’s prediction for every
item in the test set. The last three columns indicate the statistics of the contrast between the two models’ results (¢
statistic, p-value, and Cohen’s d).

To test whether this pattern of results was associated with statistical significance, we con-
trasted the results of the random and the cross-lingual models through a set of paired samples
t-tests between the element-wise cosine similarity of the target visual vector in output with
the predictions of the two alternative models, for each experimental condition. The inferential
tests confirmed the soundness of the descriptive results, with all the contrasts being statis-
tically significant. Furthermore, across all the experimental conditions, the 95% confidence
intervals (CI) of the cross-lingual models did not overlap with the corresponding CI of the
parallel random models. This suggests that the sound-to-vision correspondences inherent in
the phonological structure of the lexicon can be learned in any direction and generalized to all
the languages included in our study. All the contrasts were associated with medium-to-large
effect sizes, with the exception of the zero-shot transfer to the Vietnamese language.

2.8. Discussion

Our LSTM imaginative models, trained on multilingual data to induce a mapping between
phonological profiles and sensory representations, showed the ability to learn cross-modal
and cross-linguistic correspondences in the lexicon, suggesting that visual information
is implicitly encoded in the phonological structure of linguistic data. Showing a link
between meaningful speech sounds and visual representations, we complement the behavioral
studies presented in the Introduction, which disclosed a powerful and consistent link between
meaningless speech sounds and magnitude, color, and geometrical shape. Across our exper-
imental conditions, the LSTM networks were able to engage in a generative process where
their visual imagery reproduced real-world concrete representations better than what would
be expected by chance. Our strict manipulation of the linguistic distance between the lan-
guages in the training and the test set allows us to rule out the effect of any etymological
relatedness between the different languages’ vocabularies.
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3. Experiment 2

In our first experiment, we showed that the phonological structure of the concrete lexicon is
entangled with a visual experience. Nonetheless, concrete and vision-related words constitute
only a fraction of the whole vocabulary; additionally, even the words that refer to visually
perceivable objects are not completely summarized by their visual attributes. For instance,
the conceptual representation of the word cloud is not fully specified by a mental picture of
a puffy white shape. We have auxiliary knowledge about their nature — for instance, the fact
that they are mainly composed of water particles suspended in the atmosphere — we have
acquired through language use and that is part and parcel of the word meaning. Aiming to
extend our previous study beyond the perceptual domain, we trained an LSTM model to asso-
ciate the phonetic with the corresponding language-based semantic representation of a word,
encoded as a 100-dimensional word embedding. Word embeddings represent word meanings
as high-dimensional vectors, usually extracted from large corpora of natural language data.
These representations are rooted in the theoretical foundations of the distributional hypothe-
sis, according to which the semantic similarity between words is a function of the similarity
between the contexts in which they occur (Firth, 1957; Harris, 1954). Word embeddings do
not consist of a coarse representation of the context in which the word occurs, but rather in
an abstract structure that accumulates from encounters with lexical items and their context
(Lenci, 2018). Different from visual vectors, they can be computed for every word in a cor-
pus, and thus are suitable for extending our inquiry beyond the scope of visual semantics. The
experimental pipeline of our second experiment is depicted in Fig. 1 (dotted line). The pho-
netic vectorization of the graphemic sequences in the input was identical in every aspect to our
previous experiment. Hence, we redirect the reader to Section 2.3 for a detailed description
of the procedure.

3.1. Semantic representations

The semantic representations employed in this experiment consisted of pre-trained word
embeddings generated with word2vec (Chen, Mikolov, Corrado, & Dean, 2013) from the
British National Corpus, and released by Rei and Briscoe (2014). The representation learning
tool was based on the skip-gram model, which inputs a sequence of words into a log-linear
classifier with a continuous projection layer, trained to predict words within a window size of
five. Semantic vectors were available for 1.93M words.

3.2. Translation

The words for which a semantic vector was available were translated following the same
pipeline as in Experiment 1. In this case, the procedure resulted in a severe data loss (see
Table 1); nonetheless, the original dataset was much larger with respect to the THINGS
database, and although it was not possible to obtain a translation for the vast majority of
the items, the set intersection of the translations comprised 24,612 words.
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Table 3
Results by experimental condition (Experiment 2)

Cross-lingual Model Randomized Baseline Contrast
Language Cosine SD 95% CI Cosine  SD 95% CI t p d

Arabic 0.5263 0.0687 [0.5244,0.5282] 0.5245 0.0654 [0.5227,0.5263] 3.6849  .0002  0.0525
Hungarian 0.5253 0.0683 [0.5234, 0.5272] 0.5241 0.0665 [0.5222,0.5259] 4.1277 <« .0001 0.0588
Indonesian  0.5264 0.0690 [0.5245, 0.5284] 0.5237 0.0675 [0.5218,0.5256] 9.4220 <« .0001 0.1343
Vietnamese 0.5214 0.0742 [0.5193,0.5234] 0.5218 0.0705 [0.5199, 0.5238] —1.2914 .1966 —0.0184
Turkish 0.5256 0.0675 [0.5237,0.5275] 0.5230 0.0693 [0.5210, 0.5249] 7.7257 <« .0001 0.1101
English 0.5281 0.0683 [0.5262, 0.5300] 0.5227 0.0701 [0.5207,0.5246] 15.1285 <« .0001 0.2156

3.3. Neural architecture

In the present experiment, in the light of the reduced dimensionality of the semantic with
respect to the visual vectors, we constructed a model with an LSTM layer comprising 50
hidden units. The LSTM layer was followed by a dense layer with an equivalent shape. All
the other hyperparameters were left unaltered with respect to the previous experiment.

3.4. Experimental conditions

We organized our experimental conditions following the same procedure as in Experiment
1. We divided the 24,612 concepts into a training (19,690 items) and a test set (4,922 items),
with a 0.8 train-test split ratio. Then, we constructed six conditions where we trained the
LSTM networks in the concatenation of the training set data in five languages and tested it in
the test set relative to the language that was excluded from training. Once again, the models
were tested in a data sample where the concepts, the semantic vectors, and the language were
not represented in the training set. The results of the experimental models were compared with
the ones achieved by a randomized baseline, trained on datasets where the correspondence
between the phonetic vectors in input and the semantic vectors in output had been shuffled.
All the models were trained on 98,450 samples and tested on 4,922 items.

3.5. Results

Table 3 reports the results of the models paired with their random counterparts. With the
only exception of the transfer to Vietnamese, all the models outperformed their randomized
baselines, with the contrast between the two models reaching statistical significance (although
with marginal effect sizes). The above-chance performance of the cross-family networks
is consistent with the hypothesis that a certain amount of cross-linguistic correspondence
between form and meaning is stable across languages, and thus can be exploited when pre-
dicting a word’s meaning in a previously unseen language. Moreover, this correspondence is
not limited to visual vocabulary (Experiment 1) nor a subset of culture-independent concepts
(Blasi et al., 2016; Wichmann et al., 2010) but can be captured at a lexicon-wide level. With
respect to our previous experiment, the present results show that phonological patterns also
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reflect a component of meaning that is encoded in language use, as reflected by a distributional
semantic representation.

4. Experiment 3

In our previous experiments, we showed that our LSTM models were able to detect iconic
cues in the input and exploit them when making predictions about the physical-geometrical
properties of a word’s referent and its language-based semantic representation. In our third
experiment, we aimed to investigate whether the sound of a word encoded consistent cues
about its syntactic behavior, expressed as its word class. It is widely accepted that word
classes share relevant phonological properties within languages; nonetheless, the dominant
view on systematicity in vocabulary holds that these properties fluctuate across languages
(Dingemanse et al., 2015). We wanted to test the hypothesis that word classes might instead
be organized according to consistent phonological principles, with some structural limitations
on their cross-lingual variation. To address this issue, we relied on transfer learning in a clas-
sification setting, training an LSTM model to associate phonetic vector sequences with the
hot-encoding of their word classes.

Since we did not modify the procedure for obtaining phonetic vectors from the letter strings
in input, a description of the methodology can be found in Subsection 2.3. The experimental
pipeline is depicted in Fig. 1 (dashed-dotted line).

4.1. Word-class representations

The word-class representations employed in the present experiment consisted of the one-
hot encoding of the part-of-speech (PoS) tags of the vocabulary of the British National
Corpus, released by Kilgarriff (1997). We collapsed the original 54 tags into 11 coarse
supertags, which corresponded to the dimensions of the hot-encoded embedding. From the
original database (208,656 items), we removed all the words with an ambiguous PoS tag
(i.e., that were associated with more than one syntactic label); the resulting list comprised
152,855 items.

4.2. Translation

The words associated with a univocal PoS tag were translated into five languages with the
combination of word2word and fastText, following the same procedure as in our previous
experiments. The number of items for which a translation was available in all five languages
was 24,246. No infinitive marker survived the translation procedure, so we removed the cor-
responding dimension from the vectors. With this procedure, we assumed an alignment of
word classes across languages. This is a rather strong assumption, which is not likely to be
fully supported by our data; however, different language-specific PoS taggers often classify
words according to different tag sets, whereas our experimental procedure called for a shared
classification schema.
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Table 4
Results of the transfer of the neural classifier

Cross-lingual Model Randomized Baseline Contrast
Language Accuracy  Precision F1 Accuracy  Precision F1 x> D
Arabic 0.1001 0.4194 0.1396 0.0155 0.0009 0.0017  794.7239 <« .0001

Hungarian 0.1462 0.4018 0.1828 0.0168 0.0008 0.0014  1278.9005 <« .0001
Indonesian 0.1208 0.4419 0.1717 0.0183 0.2804 0.0049 971.0473 < .0001
Vietnamese 0.0880 0.4060 0.1311 0.0159 0.0009 0.0017 622.6544 < .0001
Turkish 0.1933 0.4481 0.2570 0.0286 0.3316 0.0056  1637.8704 <« .0001
English 0.1127 0.3977 0.1498 0.0360 0.3911 0.0233 503.9111 < .0001

Note. We do not report recall scores since weighted recall is mathematically equivalent to accuracy in multi-
class classification.

4.3. Neural architecture

Given that the experimental setting consists of a multiclass classification problem, categor-
ical cross-entropy was used as the objective function, and for the same reason the softmax
activation function was adopted for the output layer, and accuracy, precision, and F1 score
were employed as metrics. After the removal of the infinitive markers, the vectors in the out-
put were 10-dimensional arrays; thus, the output layer was equipped with 10 neurons. In the
light of the reduced dimensionality of the word-class vectors in the output, we reduced the
size of the LSTM layer to 25 units. All the remaining hyperparameters were left unaltered
with respect to our previous experiments.

4.4. Experimental conditions

In order to construct our experimental conditions, we first split the 24,246 original items
in a training set and a test set, which both included 12,123 instances. We employed a 0.5
split ratio in this experiment in order to have a reasonable number of instances in the test
set for the minority classes: while upsampling is a useful procedure for balancing the classes
in the training set, there is no use in upsampling the items in the test set. Thus, we dealt
with class imbalance by randomly oversampling all the classes but the majority one in the
training set, which reached 64,600 items. The usual six experimental conditions were devised
by concatenating the training data in all the languages but one, and employing as test set
the test data in the language that had been excluded from the training. The results of the
experimental models were assessed by comparing their performances to the ones obtained
by the parallel randomized baselines, where the order of the word-class vectors in output had
been shuffled. All the models were trained on 323,000 instances and tested on 12,123 samples.

5. Results

Table 4 reports the results of the transfer of the LSTM-based classifiers. The first three
columns indicate the accuracy, the weighted precision, and the weighted F1 score obtained
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by the cross-lingual models, whereas the following three columns specify the same perfor-
mance indexes relative to the randomized baseline models. The significance of the contrast
between the accuracy of the parallel models was assessed by means of the McNemar test, a
statistical test employed on paired nominal data. In all cases, the standard x? calculation was
employed, since the number of observations did not require us to resort to the exact binomial
test. In all the experimental conditions, the cross-lingual models outperformed the random-
ized baselines by a wide margin in all the metrics considered, with all the contrasts reaching
statistical significance.

5.1. Discussion

The results presented in the previous section are in line with our predictions and provide
empirical evidence in favor of the existence of a universal phonetic substrate underlying word
class distinctions across languages. To our knowledge, the present study constitutes the first
attempt to refute the idea of a within-language idiosyncrasy in lexical systematicity through
computational methodologies and at a large scale. We showed that the relationship between
phonological profiles and word classes can be effectively transferred across language fam-
ilies, yielding language-independent generalizations in the mapping. Hence, systematicity
should be regarded as a candidate universal feature underlying word formation. The view that
iconic links are shared across languages should then be complemented by the finding that the
phonological profiles of the lexical items are linked not only to their meaning but also to their
organization in grammatical and distributional clusters.

5.2. Follow-up analyses

Once we verified that word classes are characterized by cross-linguistically stable phono-
logical clusters, a natural question that arises is whether phonosyntactic information is uni-
formly distributed across syntactic categories, or whether some grammatical clusters incor-
porate stronger correspondences with their phonetic realization. To do so, we calculated the
average accuracy of the cross-lingual models for each PoS in our tagset. The results are sum-
marized in Fig. 3, which reports the accuracy aggregated by the PoS tag for each of the
languages, as well as a second-order mean across all six languages considered in the study.
Overall, our results are consistent across languages: the average pairwise correlation between
the PoS-aggregated accuracy in all the combinations of two languages is r = .7738. The
word class predicted with the highest accuracy by the cross-lingual models are interjections.
This result is not surprising: Interjections directly express instinctive reactions (Bloomfield,
1984) and can be closely related to their spontaneous manifestation (Wharton, 2003); hence,
it is natural to find a more transparent link between their phonoarticulatory expression and
their class. Furthermore, this result is aligned with various findings documented in the lit-
erature. For instance, interjections are explicitly judged as the most iconic PoS by English
speakers (Winter et al., 2017), and the interjection “Huh?” shows a particularly stable phono-
logical realization, being found in roughly the same form in spoken languages across the
world (Dingemanse et al., 2013). The accuracy in the other PoS does not seem to follow
any clear pattern with respect to the linguistically relevant distinction between content and
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Fig. 3. Transfer accuracy averaged by PoS tags.

function words. For instance, adverbs are predicted with very high accuracy, but they can
behave as both function and content words. Then, verbs, which are mostly content words
with the exception of auxiliaries, occupy the third position in the scale, but are immediately
followed by determiners. This suggests that the phonosyntactic clustering encoded in the
phonological structure of the lexicon is subjected to a more subtle distinction than the coarse
contrast between function and content words. The accuracy averaged by PoS that we obtained
in the classification task is coherent with the cross-linguistic kinship of ideophones to other
syntactic classes (Dingemanse, 2021). Ideophones are often connected to — or realized as —
adverbs (for instance in Gbaya, as reported by Roulon-Doko, 2001), verbs (as in Shona, see
Fortune, 1971), and adjectives (as in Ewe, see Ameka, 2001). These syntactic classes obtained
comparably high-performance scores in our analysis, occupying the second, third, and fifth
positions in our ranking. The high-performance scores obtained for determiners are reminis-
cent of the well-known role of iconicity in deictic demonstratives (Johansson & Zlatev, 2013;
Johansson & Carling, 2015), where the pitch is associated with spatial distance (Ultan, 1978;
Traunmiiller, 1994; Woodworth, 1991). However, an important distinction must be made with
respect to the correspondence between our findings and the ones we just reported. In Experi-
ment 3, we showed that the words’ sounds can be associated with their syntactic class, with
this association varying in strength across word classes. The studies we summarized above
showed instead that word sounds have a different association with their meaning as a func-
tion of their syntactic class. These two kinds of relationships are inherently different: The
instances of a syntactic class can vary a lot in their meaning, and this is particularly clear for
open lexical classes. Nonetheless, we showed that some word classes display a certain level
of cross-linguistic phonetic regularity, and the same classes have been shown to exhibit a high
internal consistency in the mapping between sound and meaning. Taken together, our results
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and the findings presented in previous literature show an interesting convergence of system-
atic and iconic information, where syntactic classes with a more distinctive phonetic profile
are also characterized by higher phonosemantic transparency. Our last study thus comple-
ments the body of findings demonstrating that iconic phonological patterns are not uniformly
distributed in the lexicon, and shows that this asymmetry is mirrored by the way in which
different languages encode grammatical classes through phonology.

6. Conclusion

This research effort constitutes a large-scale deep learning-based analysis of non-
arbitrariness in language. Our key contribution consists in showing that the vocabulary is
structured in partial resemblance to the visual world and contains phonological cues about
the meaning of a word and its syntactic class.

Iconicity implies a meaningful link between form and meaning, such that the relationship
between the two domains can be described as analogical. Unfortunately, our experimental
approach does not ensure that the relationships learned by these models are analogical in
nature. In fact, the general opaqueness of the deep learning methods we employed prevents
us from understanding the kind of correspondences that have been exploited by the networks
in order to make their predictions. For some of the anecdotal studies that we reported in
the Introduction, the authors were able to interpret the link between the sound and meaning
they detected. For instance, in the bouba-kiki experiment, the round vowel /u/ might suggest
the presence of rounded shapes in its referent, in a quasi-synesthetic analogical relationship.
Unfortunately, scaling up to nearly the whole lexica of six different languages makes the
explanation of these correspondences an unrealistic enterprise, and the phonovisual, phonose-
mantic, and phonosyntactic biases that our networks exploited in their predictive behavior
elude a precise explanation. However, it should be noted that the cross-lingual setup of our
experiments mitigates the problem. If our experiments were performed within a single lan-
guage, the finding that similar sounds express similar meanings could not be directly ascribed
to iconicity, as it could be simply driven by the affixation of certain bound morphemes to
the same roots. For instance, the word clearly is both semantically and phonologically close
to the word clear, but this relationship is not dependent on sensorimotor analogies, but sim-
ply on the fact that the two words share the same root. On the other hand, if our experi-
ments were performed on different languages belonging to the same language family, another
possible source of non-arbitrariness that is not iconic in nature could be the etymological
relatedness between words in typologically close languages. However, there are not many
reasons that can account for a large-scale correspondence between sound and meaning that
is detected across language families. First, this correspondence could be iconic in nature, as
we have described it insofar. While the finding that iconic links are shared across different
language families might be surprising at first, their cross-lingual consistency is nonetheless
predicted by their own definition. Iconic biases are related to sound and meaning represen-
tations by means of perceptuomotor analogies (Dingemanse et al., 2015). Being grounded in
the sensory and motor systems, which are relatively culture-invariant components of human
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cognition, there are no reasons to expect them to display an ample degree of variation across
languages. Closely related to the iconic account for the form-meaning association biases is
the indexical explanation. Words can be related to their associated sensory experience by
means of direct resemblance but also on account of their co-occurrence (Dingemanse, 2021).
For instance, when looking at a perceptually pleasing landscape, one may utter the vocaliza-
tion “wow.” This phonetic sequence does not bear any resemblance with the visual features
of the landscape but is a typical response to an enchanting view, which routinely follows it.
Cases of this kind might constitute a portion of the items in our second and third experi-
ments (especially in the case of interjections), but we doubt they could have played a role in
our first study. The image labels in the input were not typical responses to the presentation
of those images, but their names; hence, this semiotic alternative is not likely to have been
a major determinant of our results. Alternatively, the sound-to-meaning link could relate to
some functional constraints in the interactional environments in which speakers of different
languages communicate. Similar communicative environments might lead to the independent
evolution of similar ways of referring to things, as similar physical environments lead to the
development of similar body plans (see Dingemanse et al., 2013). A third possibility holds
that similar words would display similar phonological patterns for being underpinned by a
common genetic infrastructure. This view has been proposed within the literature on inter-
jections (Miiller, 1873; Sapir, 1921; although see Dingemanse et al., 2013) but is difficult
to support at a lexicon-wide level: positing innateness for a wide variety of linguistic items
would hardly be realistic given the timescale involved in language evolution (Dingemanse
et al., 2013; Thompson, Smith, & Kirby, 2012). Hence, we believe that the only reasonable
alternatives that can account for our findings are the interactional and iconic explanations.
The present work is not sufficient to disentangle these hypotheses, and we leave to future
research an empirical test of their predictions.

The difficulty in interpreting the nature of the correspondences learned by our models is
not confined to our first two experiments on phonovisual and phonosemantic iconicity. The
cross-lingual stability of the word-class cues that characterize terms with similar syntactic
behavior challenges the assumption that systematicity should be regarded as an idiosyncratic
linguistic feature; however, the reason for this phonological coherence within word classes
is not unequivocal. Indeed, we can identify in this condition the same theoretical alternatives
that we highlighted above. We speculate that this finding might point to the role of sensori-
motor processing in shallow syntax. For the word-class cues to be relatively invariant across
languages, they must be rooted in (or at least related to) other domains of the human cog-
nitive system that show a certain degree of cross-cultural stability, and the perceptual and
the motor systems are ideal candidates with that respect. Alternatively, a more functional
approach would posit for word classes usually uttered in similar interactional contexts to dis-
play a certain degree of similarity in their phonological realization. For instance, we could
expect word classes employed more often or learned earlier during language acquisition to
display phonemes that are easier to produce and process. Again, a contrast between these two
alternatives falls beyond the scope and the explanatory power of this study, and we leave their
proper assessment to future research.
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Taken together, our findings show that a remarkable amount of information is encoded in
a word’s sound: phonological profiles seem to contain cues concerning not only its meaning
but also its syntactic behavior. A phonetic representation should not be seen as a formal and
symbolic transposition of a word’s meaning, but rather as an iconic pointer to its perceptual,
semantic, and syntactic representation. While the present work highlighted the pervasiveness
of linguistic iconicity, the decoupling of form and meaning must be recognized as a funda-
mental feature of language as well: without a certain degree of arbitrariness, it would not be
possible to denote a potentially infinite set of concepts and their relationships (Lockwood &
Dingemanse, 2015). Arbitrary and iconic principles should be regarded as distinct properties
of language (Sidhu & Pexman, 2018), with the complementary functions of detaching and
grounding it to the sensorimotor experience.
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Notes

1 Following the Omniglot genealogical classification of languages at
https://omniglot.com/writing/langfam.htm

2 Publicly available at https://github.com/facebookresearch/MUSE

3 Hot-encoding is a procedure employed in computer science to represent categorical data
as vectors. The vector is a 1 x N matrix, where N corresponds to the number of classes;
it consists of zeroes in all the cells, with the exception of a one in the cell corresponding
to the class it has to mark.

4 Publicly available at https://www.marekrei.com/projects/vectorsets/

5 Publicly available at http://www.kilgarriff.co.uk/bnc-readme.html#raw

6 Adjective, adverb, conjunction, determiner, infinitive marker, interjection, modal verb,
noun, pronoun, preposition, verb. The conversion table can be found in the code (see
https://github.com/Andrea-de-Varda/iconicity-deep-learning).

7 We thank Reviewer #1 for bringing this matter to our attention.

8 We are grateful to Reviewer #2 for raising this issue.
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