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Abstract17

Traditional neural decoders model the relationship between neural activity and behavior within individual18

trials of a single experimental session, neglecting correlations across trials and sessions. However, animals19

exhibit similar neural activities when performing the same behavioral task, and their behaviors are20

influenced by past experiences from previous trials. To exploit these informative correlations in large21

datasets, we introduce two complementary models: a multi-session reduced-rank model that shares similar22

behaviorally-relevant statistical structure in neural activity across sessions to improve decoding, and a23

multi-session state-space model that shares similar behavioral statistical structure across trials and sessions.24

Applied across 433 sessions spanning 270 brain regions in the International Brain Laboratory public mouse25

Neuropixels dataset, our decoders demonstrate improved decoding accuracy for four distinct behaviors26

compared to traditional approaches. Unlike existing deep learning approaches, our models are interpretable27

and efficient, uncovering latent behavioral dynamics that govern animal decision-making, quantifying28

single-neuron contributions to decoding behaviors, and identifying different activation timescales of neural29

activity across the brain. Code: https://github.com/yzhang511/neural_decoding.30

1 Introduction31

Neural decoding is a critical tool for understanding the relationship between behavior and brain activity.32

Traditional neural decoders operate within a single-trial, single-session context [1, 2], modeling the33

relationship between neural activity and behavior within individual trials of each experimental session.34

However, these decoders overlook informative correlations across trials and sessions in both the neural35

and behavioral data, missing opportunities to leverage information from large datasets collected across36

numerous experiments.37

Similar neural activities emerge across experimental sessions when animals engage in the same38

behavioral task [3, 4, 5]. Incorporating such inter-session neural similarities offers an opportunity to39

improve single-session decoding accuracy. However, directly sharing this information across sessions is40

challenging, since typically different populations of neurons are recorded in each session. An alternative41

approach is to focus on the important neural population variations relevant to the behavior, utilizing their42

correlation structures across sessions. Previous unsupervised studies have adopted this strategy to improve43

neural dynamics estimation by sharing activities across sessions [6, 7, 8]. However, the learned neural44

latents may not be behaviorally relevant, and have to be fine-tuned for supervised decoding tasks. While45

supervised pre-training can learn shared neural representations by training models on multiple sessions46

before fine-tuning them to decode specific behaviors, existing methods [9] require substantial computing47

resources and result in complex black-box models that lack interpretability. For a more lightweight and48
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interpretable solution, a simple yet effective model is needed for sharing behaviorally relevant neural49

variations across many sessions.50

Similarly, animal behavior is shaped not only by the current task, but also by the animal’s experiences51

from previous trials. For example, [10] found that mouse decision-making evince internal states persisting52

across tens to hundreds of trials, effectively modeled by hidden Markov models (HMMs). These latent53

states are reproducible across animals and experiment sessions. Many neuroscience experiments exhibit54

trial-to-trial behavioral correlations arising from such reproducible latent states. Explicitly accounting55

for these behavioral correlations across sequential trials, in addition to modeling inter-session neural56

similarities, can potentially improve neural decoding performance.57

In this work we develop two complementary methods to leverage these neural and behavioral corre-58

lations for improved neural decoding. For neural data, we employ a multi-session reduced-rank model59

that shares similar temporal patterns in the neural activity across sessions while retaining session-specific60

differences to accommodate individual variations. For behavioral data, we use multi-session state-space61

models to learn latent behavioral states from trial-to-trial correlations in animal behaviors across multiple62

sessions. These learned neural and behavioral representations are then used to improve single-trial,63

single-session decoders. Unlike existing deep learning methods that share data across sessions through64

complex black-box models, our models are simple, highly interpretable, and easy to fit. We evaluate our65

neural and behavioral data-sharing models using mouse Neuropixels recordings from the International66

Brain Lab [11, 12], which include 433 sessions and 270 brain regions. The results show improved decoding67

accuracy across different behavioral tasks. Our approach is computationally efficient and enables us to68

create a brain-wide map of behaviorally-relevant timescales and identify key neurons associated with each69

behavioral task.70

2 Formulation of the neural data-sharing model71

All analyses here are based on spike-sorted and temporally-binned spike count data. We split the recording72

into equal-length trials of 2 seconds. We further divide each trial into 20-millisecond time bins, yielding 9073

timesteps per trial. For each trial from a session, the spike counts of N neurons are used to construct the74

input X ∈ RN×T, where T denotes the number of timesteps per trial, to obtain an decoder d ∈ RP of the75

true behavior y ∈ RP. When P = 1, the value of y remains constant throughout a trial (per-trial decoded76

behavior). When P = T, the value of y varies over time within a trial (per-timestep decoded behavior). To77

simplify our notation, we initially present the following model specification assuming y is a scalar (i.e.,78

P = 1). However, when P = T, the decoding problem remains the same across all dimensions of P. In this79

case, we can apply the same solution independently to each element of y.80

Traditional single-session decoders use full-rank models, where a full-rank (unconstrained) N×T weight81

matrix is fit to X; this basic full-rank approach is prone to overfitting when the number of neurons and82

timesteps is large. See Table 1 for notation of model parameters and variables. To reduce overfitting, we83

impose a low-rank constraint on the single-session decoder by factorizing the high-dimensional parameters84

into neural and temporal low-rank basis sets:85

d = f (X⊤(UV) + b), (1)

where U and V are the neural and temporal basis sets used to constrain the dimensionality of the weight86

matrix applied to X, and b ∈ R is the intercept term. The function f can be either linear or nonlinear,87

depending on the specific application. U ∈ RN×R projects N neurons’ activity to a low-dimensional space88

of size R, while V ∈ RR×T weights each timestep differently. For y ∈ R, the full-rank model has N × T89

parameters, while the reduced-rank model (Eq 1) has R × (N + T) parameters, where R < min(N,T).90

The solutions of U,V and b can be obtained through either automatic differentiation or closed-form91

expressions. When f is an identity function, closed-form solutions are attainable. The closed-form solution92

of U reveals that it can be interpreted as a subspace that maximizes the correlation between neural activity93

X and behavior y while capturing the major variations in y. Thus, this reduced-rank model (RRM) can be94

viewed as a latent variable model, where the rank R determines the number of latent variables required to95

capture the behaviorally relevant variations in neural activity. See “Closed-form solution for theoretical96

interpretation” in Methods for details.97
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Instead of manually aligning neurons from different populations based on their firing or physical98

properties [13, 14], we aim to automatically learn a common neural representational space crucial for99

decoding from multiple neural populations. To this end, we introduce a multi-session reduced-rank model100

to learn such common neural representations and improve neural decoding. Since neural populations101

within a given region may exhibit similar activation patterns [3] (Fig 1B), we can share the low-rank102

temporal basis set V across sessions and retain session-specific differences via the neural basis set Ui:103

di = f (Xi⊤(UiV) + bi), (2)

where Xi
∈ RNi

×T and di
∈ R are the neural activity and predicted behavior from a single trial in session i104

with Ni neurons, corresponding to the terms X and d in Eq 1. As V is shared across sessions, a more robust105

estimation can be obtained since fewer parameters need to be learned from the same amount of data. The106

model schematic is summarized in Fig 1C.107
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Figure 1: Schematic illustration of the neural and behavioral data-sharing models. (A) Schematic of the experiment
where mice indicate the location of a visual stimulus by rotating a wheel. (B) Neural activity shows consistent activation
following stimulus onset (dashed line at time t = 0s) across 6 selected sessions. Each spike train raster plot depicts the average
spike count across all trials in a session. Each row in the plot represents the Peri-Stimulus Time Histogram (PSTH) of a single
neuron. (C) Multi-session reduced-rank model with session-specific neural patterns Ui and shared temporal patterns V. (D) For
slowly-changing prior belief yk (dark purple), trial-to-trial correlations exist which single-trial decoders (light purple) neglect.
Behavioral patterns are similar across sessions. (E) The LG-AR1 graphical model features latent behaviors zk and observed
single-trial decoder outputs dk, with colors corresponding to the examples in panel D. (F) For binary choice yk (blue and green),
trial-to-trial correlations exist, which single-trial decoders dk (grey) fail to capture, leading to suboptimal performance. Similar
behavioral patterns also occur across sessions. (G) The BMM-HMM graphical model features latent behavioral states sk, latent
behaviors zk, and observed single-trial decoder outputs dk, with colors corresponding to the examples in panel F.

The multi-session reduced-rank model, by sharing temporal basis across sessions covering diverse brain108

regions, assumes uniform spiking activation patterns across regions. However, different brain regions109

may activate at varying time steps within a trial due to functional differences [15, 16, 17]. For instance,110

sensory-related areas might activate earlier than cognition-related areas. To capture potential differences in111

temporal activation across brain regions while still enjoying the benefits of a low-rank model that combines112

information across multiple sessions, we propose a multi-region reduced rank model, decomposing the113

across-session temporal basis V into two low-rank matrices, allowing flexible temporal bases for different114
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regions indexed by j:115

di j = f (Xi j⊤(UiV j) + bi), V j = A j⊤B, (3)

where Xi j
∈ RNi j

×T represents the neural activity from region j in session i, and di j
∈ R is the behavior116

decoded from Xi j. Intuitively, A j
∈ RL×R captures regional differences, allowing varying timescales across117

brain regions. B ∈ RL×T represents shared similarities across regions, capturing major temporal variations118

associated with the behavior. In this context, L represents the rank of both the region-specific temporal119

basis set A j and the global temporal basis set B. For yi j
∈ R, fitting a multi-session reduced-rank model120

(Eq 2) on J brain regions from I sessions learns R × T parameters for the temporal basis set V. In contrast,121

fitting a multi-region reduced-rank model (Eq 3) on the same data slightly increases the temporal basis122

set parameters to L × (J × R + T). We typically select L,R < 10 based on empirical studies. This approach123

allows for unique temporal basis sets to flexibly accommodate each brain region.124

3 Formulation of the behavioral data-sharing model125

In neuroscience experiments, animal behaviors often display trial-to-trial correlations. We can leverage126

these correlations to improve upon traditional single-trial decoders. For example, when neural signals are127

insufficient to obtain adequate decoding performance in a given trial or session, the decoder can potentially128

improve by incorporating information from adjacent trials or other sessions.129

For traditional decoders, we use neural activity Xk in trial k to make predictions about the true behavior130

yk, and obtain a decoder estimate dk. The index k emphasizes that Xk, yk and dk are single-trial quantities,131

with Xk corresponding to X in Eq 1 and Xi in Eq 2, and dk corresponding to d in Eq 1 and di in Eq 2. (We132

focus on per-trial decoded scalar quantities dk ∈ R in this section, but this can be generalized.) Our goal133

is to improve the quality of dk produced by the baseline decoder, which generates each dk independently134

without information from other trials. We propose an approach to improve dk by exploiting trial-to-trial135

correlations in dk across all trials, and the statistical structure present in multiple sessions. Our method136

assumes that observations dk are generated from latent variables zk representing the unknown behavior,137

which follow a latent dynamic process. For continuous-valued behavior (e.g., an animal’s prior belief138

about stimulus side probability [18]), we model the transitions of zk between trials using a first-order139

autoregressive process. Here, zk in the current trial depends on zk−1 from the previous trial, while the140

continuous-valued dk ∈ R linearly depends on the latent zk in the same trial. This is a linear Gaussian141

autoregressive model of order 1 (LG-AR1). Given the sequence of decoder estimates d⃗ = (d1, d2, . . . , dk),142

we can infer the latent variable zk via standard Kalman smoothing forward-backward inference [19]. This143

inferred zk serves as an improved decoder estimate, potentially closer to the true behavior yk than the144

single-trial estimate dk, by incorporating information from neighboring trials and other sessions. For the145

data generating mechanism, see Fig 1 D-E and “LG-AR1: Model details” in Methods.146

While the LG-AR1 / Kalman smoother can provide improved estimates of continuous-valued yk from147

noisy single-trial decoder estimates dk, this model is not applicable to binary-valued yk ∈ {0, 1}, such as an148

animal’s choice in IBL’s experimental setup [11, 12]. In the IBL experiments, mice indicate the location of149

a visual stimulus by rotating a wheel. The stimulus appears randomly on either side with equal probability150

for the first 90 trials, then predominantly on one side (left or right) over blocks of subsequent trials. This151

setup creates a three-level data generating mechanism: (1) The animal forms an internal belief about152

the stimulus-generating behavioral state (sk); (2) Different choices (zk) are made based on the animal’s153

perceived state; (3) The decoder estimate dk is generated depending on zk. This hierarchical structure154

requires a different modeling approach than LG-AR1.155

For binary yk ∈ {0, 1}, the output from single-trial decoder dk ∈ [0, 1] represents the probability of156

yk = 1. Our method assumes that dk is generated from a mixture of beta distributions, with the mixture157

assignment dependent on the latent variable zk. When the single-trial decoder accurately predicts the158

behavior from neural signals, we expect well-separated beta mixture components. Specifically, dk should159

be distributed close to 1 when zk = 1 correctly predicts the true yk = 1, and close to 0 when zk = 0 correctly160

predicts the true yk = 0. Conversely, if the decoder struggles due to insufficient neural information, the two161

beta distributions in the mixture become less distinguishable. We further assume that the latent variable162

zk depends on latent behavioral states sk, whose transitions are governed by a hidden Markov model163

with H discrete hidden states. For instance, in the binary choice task, at least three hidden states exist:164
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random switching (stimulus appears randomly), left-biased, and right-biased (stimulus predominantly165

appears on one side). The likelihood of zk being 0 or 1 varies with the latent state, defined by emission166

probabilities. We term this model the “beta mixture model hidden Markov model (BMM-HMM)”. Given167

the sequence of decoder estimates d⃗ = (d1, d2, . . . , dk), we infer both sk and zk. The inferred zk serves as an168

improved decoder estimate, potentially closer to the true behavior yk than the original dk, by incorporating169

information from neighboring trials and other sessions. For the data generating mechanism, see Fig 1 F-G170

and “BMM-HMM: Model details” in Methods.171

Single-session LG-AR1 and BMM-HMM models may yield inaccurate parameter estimates when neural172

signals in the target session are insufficient, leading to unreliable single-trial decoder estimates d⃗. To173

address this, we develop multi-session versions of these models that leverage shared statistical structure174

across sessions to improve parameter estimation. Our multi-session approach learns empirical prior175

distributions of model parameters using observable behaviors from training sessions, and applies these176

priors to constrain model parameter updates during inference on the target test session. This method,177

grounded in empirical Bayes techniques, [20, 21, 22], pools data more effectively to constrain model178

parameters and improve characterization of underlying dynamics [23, 24]. For details on prior distribution179

selection and implementation, refer to “BMM-HMM: Model details” and “LG-AR1: Model details” in180

Methods.181

4 Results182

We apply the new decoders described above to 433 sessions in the IBL datasets [11], covering 270 brain183

regions and 5 behavioral signals: choice, prior, wheel speed, motion energy, and pupil diameter, which we184

describe in detail below. While our experiments use IBL data, the proposed approaches should be applicable185

to all settings where neural activity exhibits similar temporal patterns during the same behavioral task,186

and behaviors show trial-to-trial correlations across sessions.187

In the IBL experiments, mice rotate a wheel to indicate the location of a visual stimulus, which is188

considered their choice (Fig 1A). For the first 90 trials, the stimulus appears randomly on either the left or189

right side of the screen with equal probability. In the subsequent trials, the stimulus appears predominantly190

on one side (either left or right) over blocks of trials [11, 12]. The mice are learning and adapting their191

behavior based on the changing probabilities in the experiment. This adaptive behavior allows us to192

estimate each mouse’s “prior belief” (prior) about the probability of where the stimulus appears per trial.193

The prior we consider is not the actual probability of stimulus occurrence. Instead, it represents an estimate194

of this probability for the current trial, based on the mouse’s behavior; see [18] for details. Wheel speed,195

motion energy near the whisker pad, and pupil diameter are also recorded. Motion energy is quantified196

by computing the mean absolute difference between adjacent video frames in the whisker pad area [25],197

defined using a bounding box anchored between the nose tip and the eye, identified using DeepLabCut198

(DLC) [26]. Pupil diameter is extracted from the videos using Lightning Pose [27]. Choice and prior are199

static within a trial, while wheel speed, motion energy, and pupil diameter are time-varying signals sampled200

at 60 Hz. Details about data processing, baseline decoders, and evaluation procedures are described in201

“Data details” and “Hyperparameter selection” in the Methods section.202

4.1 Learning behaviorally relevant neural variations across sessions203

The reduced-rank model improves decoding performance by capturing behaviorally relevant neural204

variations in a low-rank subspace. In binary decoding tasks, it projects neural activity onto this subspace,205

effectively separating variations based on the behavior of interest. Unlike principal component analysis206

(PCA) [30], which may capture both task-relevant and -irrelevant variations [31, 32], the reduced-rank207

model focuses on variations that are most informative for decoding the target behavior [33]. (See the208

Methods section “Differences between RRM, PCA, CCA, and demixed PCA” for a discussion comparing209

PCA and the reduced-rank model.) Fig 2A shows how neural projections related to different behavior210

classes are separated in the low-rank subspace identified by the multi-session reduced-rank model but211

remain intertwined in the PCA subspace. We quantify the distinction between projections in left and212

right trials using K-means clustering. The resulting cluster assignments are then evaluated using the213

adjusted Rand index (ARI) [28, 29]. A higher score on this index indicates greater separation between214
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Figure 2: The reduced-rank model achieves strong decoding performance by learning behaviorally relevant neural
variations through multi-session learning. (A) Projections of neural activity on the PCA subspace and the low-rank subspace
identified by Ui from the multi-session reduced-rank model (RRM) are color-coded based on the binary behavioral variable.
Light curves show single-trial projections from a single session, while dark curves represent trial-averaged projections. K-means
clustering (2 clusters) is applied to the projections to separate left and right trials. Cluster similarity is assessed using the
adjusted Rand index (ARI) [28, 29], where a higher score indicates better separation. Visualizations of the temporal basis
V are depicted in Figure 9A. (B) Neural activity projections onto the low-rank subspace identified by the single-session and
multi-session reduced-rank models, following the same color-coding convention as in panel A. K-means clustering is used to
cluster the projections into left and right trials, and ARI measures cluster separation. (C) All behaviors are well-predicted when
using a low-rank reduced rank model; however, wheel speed shows improvement with higher rank. AUC (Area Under the Curve),
Pearson’s correlation, and R2 are used to evaluate decoding performance for choice, prior, and dynamic behaviors, respectively.
AUC is a metric for binary classifiers with values ranging from 0 to 1, where 1 indicates a perfect classifier and 0.5 represents
random guessing. (D) Decoded prior from the multi-session reduced-rank model (purple) vs. ridge regression decoder (green),
with Pearson’s correlation between the decoded and true prior shown as a numeric value for each example. The true prior
(observed) is shown in grey. (E) Decoded motion energy and wheel speed traces from the reduced-rank model vs. ridge regression,
with R2 values shown in purple (reduced-rank) and green (ridge) for each example. The true behavior traces (observed) are
shown in grey.

the clusters. Moreover, multi-session training allows the model to learn fewer parameters with more data215

and draw upon information from other sessions when the neural signals from a particular session lack216

information about the behaviors, thereby improving decoding performance. This results in less noisy217

parameter estimates and learned neural representations that better capture behavioral variations. Fig 2B218

shows that multi-session reduced-rank model leads to more separated neural representations compared to219

single-session reduced-rank model.220

Fig 2C shows a sensitivity analysis examining the effect of the reduced-rank model’s rank on decoding221

quality. Both static behaviors (choice and prior) and dynamic behaviors (wheel speed and motion energy)222

achieve good performance with a small rank, after which performance plateaus. In addition, Fig 2D and223

E demonstrate that our model’s decoded behavior traces align more closely with the observed behavior224

traces than the baseline ridge regression decoder. We evaluate the reduced-rank model’s performance in225

decoding continuous behaviors using two criteria: (1) predicting behavior averaged across trials under226

various stimulus conditions, and (2) capturing individual trial behavioral differences after subtracting227

the trial-averaged behavior. We also examine residual behavior (the difference between observed and228

predicted behavior) to identify any systematic errors. Fig 3, S2 and S3 illustrate the model’s decoding229

6

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 15, 2024. ; https://doi.org/10.1101/2024.09.14.613047doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.14.613047
http://creativecommons.org/licenses/by-nc-nd/4.0/


performance for motion energy, wheel speed, and pupil diameter respectively. Panels A, B, and C compare230

the model’s predictions to the observed behavior averaged across trials under different stimulus conditions231

(e.g., left vs. right choice). The decoder accurately predicts trial-averaged wheel speed and motion energy232

under different conditions, but is less accurate for pupil diameter. Panels D and E evaluate the decoder’s233

ability to capture individual trial differences after subtracting the trial-average of predicted or observed234

behavior. Again, performance is better for wheel speed and motion energy than for pupil diameter. Panel F235

shows the residual behavior. In an ideal scenario, this should display small, random fluctuations without236

noticeable patterns, indicating accurate prediction of observed behaviors. Our analysis reveals that the237

decoder performs best in predicting motion energy, while systematic residual errors remain for wheel238

speed and pupil diameter.239

A

D

B C

E

F

Figure 3: Evaluating motion energy decoding quality using spiking activity from 1313 neurons in a RE dataset session.
(A) Comparison between the reduced-rank model’s predicted motion energy (dotted curves) and observed ground truth behavior
(solid curves) across different block conditions. For example, blue curves represent average predicted (dotted) and observed
(solid) behavior for trials with a block value of 0.2. The grey vertical line denotes stimulus onset. (B) The predicted and observed
whisker motion energy averaged across trials based on choice conditions (right and left). (C) Similar comparison based on
reward outcomes (reward and no reward). (D-F) illustrate data from individual experimental trials in this session. Panel D
displays observed behavior, panel E shows predicted behavior from the reduced-rank model, and panel F shows residual behavior
(the difference between observed and predicted behavior). In each panel, the raster plot’s rows depict behavior over time for
individual trials, while columns represent timesteps within a trial. To emphasize trial-to-trial variations, we center both observed
and predicted behaviors by subtracting their respective trial averages. For visualization purposes, we standardize the observed
behaviors, predicted behaviors, and residuals. We also apply spectral clustering to the observed behavior, which groups trials
exhibiting similar behavioral patterns, allowing for easier interpretation of the results.
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4.2 Learning latent behavioral dynamics across trials240

Next we turn to the behavioral data-sharing model. This model learns latent behavioral states s⃗ that infer241

the unknown behavior z⃗ (Eq 12) given the neural activity X, leveraging the correlation between trials in242

the same state to improve single-session and single-trial decoder outputs d⃗. Fig 4A shows the latent state243

inference of a multi-session BMM-HMM applied to the IBL binary decision behavior [11]. Recall that the244

stimulus probability switches between three discrete states: 1) a right (R) state (stimulus predominantly on245

the right), 2) a left (L) state (stimulus mostly on the left), and 3) a “middle” (M) state (stimulus randomly246

switching sides). Note that the three stimulus-generating states discussed here are different from the three247

decision-making states (“engaged”, “disengaged” and “biased”) in [10]. The model accurately infers the248

occurrence of the three discrete states using only single-trial decoder outputs, without prior knowledge of249

the true choices or the timing of the stimulus probability block state changes. (Fig 4B). Note that we only250

use neural data from the decoded session to learn the model (the behavior in that session is unobserved).251

However, we do use observed behavior from other sessions to learn the multi-session model.252

Ideally, when the single-trial decoder accurately predicts behavior, the model can more precisely infer253

the states. Conversely, when the single-trial decoder makes errors, the model can compensate by borrowing254

decoder outputs from other trials (trial-to-trial correlation) and behavioral patterns from other sessions255

to refine its state estimation. Fig 4C visually compares the improved decoder outputs (Eq 12), from the256

multi-trial and multi-session BMM-HMM to the baseline single-trial and single-session decoder outputs.257

The single-trial and single-session decoder outputs exhibit considerable noise and frequent errors, while258

the multi-trial and multi-session outputs better follow the smooth “block” structure due to their knowledge259

of the latent states in the data. Quantitatively, the proposed model achieves a higher AUC (area under the260

ROC curve) than the baseline, highlighting the effectiveness of using trial-to-trial correlations and latent261

states to improve decoding. The decoder performance segregated by block type is also shown in Fig 4C.262

The decoding AUC of the baseline single-trial decoder is shown in black, while that of the BMM-HMM is263

shown in purple.264

Next we apply similar ideas to improve the decoding of the continuous-valued prior, using the multi-265

session LG-AR1 model. Recall that this prior signal represents a running estimate of the stimulus side266

probability [18]. Similar to the BMM-HMM model, the LG-AR1 model infers the latent behavior (the true267

yet unobserved prior) by exploiting trial-to-trial correlations in the single-trial decoder outputs, borrowing268

behavioral information from other sessions to correct estimates when decoding errors occur. Fig 4D visually269

compares the improved decoder outputs, d̃k (Eq 42), from the multi-trial and multi-session LG-AR1 to the270

baseline single-trial and single-session decoder outputs, dk. The single-session baseline decoder struggles271

to accurately predict the prior, as it doesn’t incorporate information from previous trials. In contrast, the272

LG-AR1 model, by considering trial-to-trial correlations, produces outputs that more closely align with273

the true prior, resulting in a higher Pearson’s correlation. This improved performance reflects the model’s274

ability to capture the mice’s prior beliefs, which are based on past experiences [18].275

Next we evaluate the impact of incorporating behavioral information from other sessions on the276

performance of the BMM-HMM and LG-AR1 models. We explore three model variants: a single-session277

model, a multi-session model, and an oracle model that uses true behaviors to learn parameters and improve278

decoder estimates (see Methods for details). The oracle models assume that the true values of the latent279

behavioral variable zk are known a priori. In this scenario, rather than inferring the latent behaviors, we280

directly substitute the ground truth observed behaviors yk for zk, effectively treating zk as a known quantity.281

However, the oracle models cannot simply use the observed yk as the final improved decoder output, as282

this would result in a trivial decoding problem. Instead, these models must still generate a distinct output283

given the known zk values and the learned model parameters. Thus the oracle model serves as an upper284

bound to assess the performance of single-session versus multi-session models. Fig 4E and F compare285

the estimated parameters of BMM-HMM and LG-AR1 from the three variants, showing that parameters286

estimated by the multi-session model align more closely with the oracle estimates than those from the287

single-session model. In addition, Fig 4G and H compare the outputs of the model variants, suggesting288

that predictions from the multi-session model are closer to the oracle model predictions than those from289

the single-session model. These findings underscore the importance of multi-session learning in improving290

both parameter estimation and decoding performance.291
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Figure 4: The behavioral data-sharing model improves single-trial decoding by inferring latent behavioral states from
trial-to-trial correlations within individual sesssions, and sharing behavioral information across sessions. (A) A schematic
showing the BMM-HMM’s latent state inference from neural activity. A decoder is fitted to single-session, single-trial activity Xk,
yielding decoder output dk. The BMM-HMM is fitted to dk to infer latent states sk, which alternate between left (L), right (R), and
a random “middle” switching state (M), producing an improved decoder output. (B) The latent states sk estimated from neural
activity exhibit “block” structures, switching between states L, R, and M; these blocks mirror the true block probabilities in the
IBL task but note that these states are learned, not pre-specified, and the state names in the plot are assigned post hoc. Color
bar indicates state probabilities. Observed mouse choices are shown in green (right trials) and blue (left trials). (C) Improved
decoder outputs P(zk = 1 | d⃗) from the multi-trial and multi-session BMM-HMM (purple) overlaid on baseline single-trial and
single-session decoder traces dk (black), exploiting trial-to-trial correlations and achieving higher AUC. “Multi-session” refers
to borrowing behavioral information from multiple training sessions to improve neural state estimates in the test session. dk is
observed and zk is latent. We additionally show the decoder performance for each block type: random switching (M), left-biased
(L), and right-biased (R). The decoding AUC of the baseline single-trial decoder is shown in black, while that of the BMM-HMM is
shown in purple. (D) Improved decoder outputs d̃k from the multi-trial and multi-session LG-AR1 (purple) superimposed on
baseline single-trial and single-session decoder outputs dk, aligning more closely with the true prior (pink) and achieving higher
Pearson’s correlation. (E) Estimated transition and emission probabilities from the oracle (pink), single-session (black), and
multi-session (purple) BMM-HMM models. (F) Parameter estimates from the oracle, single-session, and multi-session LG-AR1
models. (G) Decoded probabilities of choosing the right side from the oracle (pink), single-session (black), and multi-session
(purple) BMM-HMM models. (H) Decoded priors from the oracle (pink), single-session (black), and multi-session (purple)
LG-AR1 models.
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Figure 5: Quantitative improvement in decoding accuracy achieved by the neural and behavioral data-sharing models
compared to the baseline decoder. (A) Cross-validated decoding AUC (Pearson’s correlation) for decoding choice (prior) using
spikes from all brain areas across 10 sessions, focusing on 5 selected regions. Box plots show the min, max, first and third
quartiles, and mean of the metrics. Each point is one session, with colors differentiating decoders. The multi-session reduced-rank
model is defined in Eq 2. The “combined” decoder involves a two-step process: first, initial decoder estimates are derived from
the multi-session reduced-rank model; these estimates are then refined using the multi-session BMM-HMM or LG-AR1 model. (B)
Cross-validated decoding R2 for decoding dynamic behaviors using spikes from all brain areas across 10 sessions. Box plots show
the min, max, first and third quartiles, and mean R2. Each point represents one session, and colors differentiate the decoders. The
“combined” decoder is not implemented in this case, as the multi-session BMM-HMM and LG-AR1 model do not currently apply to
vector-valued dynamic behaviors.

4.3 Increasing information decoded from various brain regions292

To evaluate our proposed multi-session decoders, we compare them to baseline single-session decoders:293

L2-regularized linear decoders, nonlinear neural networks (MLPs), and long short-term memory (LSTM)294

decoders [2, 34]. Hyperparameter selection and model architecture details are in the Methods section. A295

common approach to reduce the number of model parameters is using a temporal convolutional model,296

which fits one temporal filter and slides it against the input neural activity for each of the P timesteps. This297

contrasts with the reduced-rank model (Eq 1), which fits a separate R × T dimensional temporal basis for298

each timestep. We implemented the temporal convolutional model as a baseline in a pilot study. However,299

this model did not outperform ridge regression, and therefore we only used ridge regression as the linear300

baseline for decoding continuous behaviors in our remaining analyses.301

We benchmark all the methods in decoding choice, prior, wheel speed, motion energy and pupil302

diameter using spikes from all brain regions in the brain-wide map (BWM) dataset [12] and also 5 selected303

areas in the reproducible electrophysiology (RE) datasets [11]: the posterior thalamic nucleus (PO), the304

lateral posterior nucleus (LP), the dentate gyrus (DG), the cornu ammonis (CA1), and the anterior visual305

area of the visual cortex (VISa). We focus on RE regions due to their large number of recorded cells and306

use a per-region evaluation scheme to avoid the ceiling effect that may occur when using all regions for307

decoding (e.g., all decoders achieving an AUC near the “ceiling” AUC = 1), which can hinder decoder308

performance comparison. The selected areas, distributed across the brain, likely contain less information309

per area than all regions combined, resulting in lower expected decoding accuracy compared to using all310

regions. The multi-region reduced-rank model (Eq 3) improves region-wise decoding in some areas (Fig 7311

and 9), but requires the input matrix Xi j to contain spiking activity from neurons in region j from session312

i, allowing a region-specific temporal basis V j. When decoding from all brain regions (Xi), V j becomes313

shared across sessions regardless of region, reducing to V in the multi-session reduced-rank model (Eq 2).314

Therefore, we exclude the multi-region model as a baseline here, discussing it only in the subsections “The315

benefit of training with more data” and “Mapping behaviorally-relevant timescales across the brain.”316

For static behaviors, Fig 5A shows that the multi-session reduced-rank model consistently outperforms317

the baseline decoders in decoding choice and prior, while the multi-session state-space model outperforms318

baselines in most cases. The proposed models consistently outperform the single-session linear decoder319

and frequently outperform single-session MLP and LSTM decoders. Despite hyperparameter tuning, the320

MLP and LSTM may not have reached optimal performance, highlighting the advantage of our models321
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which have fewer parameters, making it easier to thoroughly explore the model space. Note that multi-322

session BMM-HMM/LG-AR1 performs worse than multi-session reduced-rank model, because multi-session323

BMM-HMM/LG-AR1 improves the outputs from the single-session and single-trial decoder. Although the324

multi-session reduced-rank and BMM-HMM/LG-AR1 models in Fig 5A are fitted independently, they can be325

combined for decoding. The multi-session reduced-rank model provides initial decoder estimates, which326

are then refined using the multi-session state-space model’s smoothing. The performance of this “combined”327

decoder is shown in Fig 5A. However, combining both models only leads to marginal improvement over328

the best-performing multi-session reduced-rank model.329

For dynamic behaviors, we compare the reduced-rank model to baselines in decoding wheel speed,330

motion energy, and pupil diameter. Fig 5B shows that the single-session reduced-rank decoder outperforms331

the linear decoder, with similar performance to the MLP and LSTM decoders. However, the multi-session332

reduced-rank model outperforms all single-session models. These results highlight the importance of333

prioritizing behaviorally relevant neural variations and training with more data for improving decoding334

performance.335

  A                                                                                                            B                                       C                       D     

  E linear   MLP   LSTM    reduced-rank model (single-session)

Fourier decomp. PCA decomp. explained var. by PC

Figure 6: Evaluating the reduced-rank model against baseline decoders in capturing the primary components of the
target behaviors. (A) Examples of real (“target”) and predicted (“pred”) behaviors from the reduced-rank model in 5 selected
trials. Motion energy has higher frequency than other behaviors, while pupil diameter has lower frequency. (B) Power spectral
density vs. frequency for real behaviors (“target”), predicted behaviors (“pred”) from the reduced-rank model, and decoding
error (“error” = real − predicted). Results are averaged across 10 sessions. (C) Variance of real behaviors (“target”), predicted
behaviors (“pred”), and decoding error (“error”) vs. principal component (PC). The initial PCs, corresponding roughly to
low-frequency Fourier components, capture the majority of the behavioral variations. Results are averaged across 10 sessions.
(D) Explained variance ratio of the real behaviors by the first 10 PCs (again averaged across 10 sessions). Explained variance
ratio is the percentage of the total variance in the original behavior explained by each PC. (E) Decoding quality (R2) of behaviors
reconstructed from each PC of the real behavior for all baseline decoders. Decoders generally perform better at decoding the
initial PCs linked to low-frequency Fourier components. Mean and standard deviation of decoding R2 across 10 sessions are
shown for the first 10 PCs.
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Figure 7: Comparison of the multi-region vs. multi-session reduced-rank models and a scaling curve showing the
improvement in decoding accuracy vs. training data size. (A) A scatter plot comparing the multi-region (Eq 3) and multi-
session reduced-rank models (Eq 2) in decoding choice using neural activity from a specific brain region. Each point shows the
5-fold cross-validated accuracy per region, averaged across sessions. Point size is proportional to the number of training sessions
used in the multi-region model. (B) A scatter plot showing the difference in decoding accuracy between the models vs. the
number of training sessions. Each point shows the accuracy difference per region, averaged across sessions. A linear regression
fitted to the data demonstrates a positive relationship between training data size and model performance improvement. The
correlation coefficient (R value) and its p-value are shown.

4.4 Decoding frequency components of behavior336

Fig 6A illustrates that motion energy has higher frequency components than the smoother wheel speed and337

pupil diameter. Although a decoder may not accurately decode the entire behavior, it could still effectively338

capture slower variations in the behavior. We analyze which frequency bands of each behavior are captured339

by our decoders, and compare the performance of different decoders in capturing different behavioral340

components.341

To quantify the fraction of behavior reconstructed at each frequency, we calculate the power spectral342

density of the real behavior, predicted behavior, and prediction error, following the approach in [35].343

Fig 6B shows that the spectral density for both real and predicted behaviors, as well as the prediction344

error, diminishes sharply at higher frequencies. Beyond 5 Hz, the decoder extracts no information about345

the behavior, suggesting that lower frequency components capture the major variations and the decoder346

primarily extracts information from these frequencies.347

We also perform PCA on the real behavior and project the real behavior, predicted behavior, and348

prediction error onto the obtained principal components (PCs). Fig 6C shows the variance of these349

projections across the first 10 PCs, while Fig 6D shows the variance in the real behavior explained by each350

PC. The results indicate that the first few PCs capture the major variations in the real behavior, with the351

decoder predominantly extracting information from these PCs. These PCs likely represent low-frequency352

components that capture slow behavioral variations.353

To determine if the baseline decoders capture both slow and fast behavioral variations, we extract the354

first 10 PCs of the real behavior, and reconstruct the behavior using each of the 10 PCs. We then train355

each decoder to decode the reconstructed behavior from each PC. Fig 6E shows the decoding R2 per PC356

for all baseline decoders. In decoding low-frequency components, most decoders, except LSTM, show357

comparable performance, and the reduced-rank model slightly outperforms other baselines in decoding358

pupil diameter. Effective decoding is mainly achieved at lower frequencies.359

4.5 The benefit of training with more data360

Are our models sufficiently flexible to demonstrate improved performance as the training set size increases?361

To analyze this question, we compare the multi-region reduced-rank model in Eq 3, which uses 433 sessions362

across 270 brain regions to predict choice per region, with the multi-session reduced-rank model in Eq 2,363

trained for each region with around 20 sessions. Fig 7A shows that the multi-region model outperforms364

the multi-session model in choice decoding across many regions. Although the multi-region model’s global365

temporal basis B (Eq 3) is learned using all 433 sessions, the region-specific basis V( j) (Eq 3) is learned366
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using sessions from the given region. Fig 7B visualizes the relationship between decoding accuracy and367

training data size, comparing the difference in accuracy between models against the number of training368

sessions per region. Additionally, a linear regression fitted to the data illustrates a positive correlation369

between training data size and model performance improvement.370

4.6 Identifying important neurons for decoding371

The reduced-rank model not only improves decoding outcomes but also offers intrinsic interpretability. In372

this section, we show that the neural basis set U quantifies individual neurons’ contribution to behavior373

decoding (see Eq 10 for theoretical justification). We validate this claim through a “neuron pruning”374

experiment, where the magnitude of U’s first rank indicates neuron importance, with larger values375

signifying higher importance. Starting with all neurons, we iteratively remove 5% of neurons from each376

session. After each removal, we fit a L2-regularized logistic regression to the remaining neurons’ activities377

and track the decrease in decoding accuracy measured by AUC. We compare three removal strategies:378

removing the least important neurons first, removing the most important neurons first, and removing379

randomly selected neurons. Fig 8 A-E show that removing the least important neurons first minimally380

impacts decoding performance, while removing the most important ones leads to a faster decline in choice381

decoding accuracy than random removal. Moreover, accurate decoding can be achieved with only a small382

proportion of the important neurons (green curves in Fig 8 A-E). Fig 8 F-J show the choice-conditioned,383

trial-averaged activity of the most and least important neurons identified based on the reduced-rank model’s384

U values from example sessions in each region. The most important neurons exhibit choice-selective firing385

patterns, while the least important neurons show similar activity in left and right trials, indicating limited386

task responsiveness.387
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Figure 8: Reduced-rank models identify important neurons for decoding choice in brain regions including PO, LP, DG,
CA1, and VISa. (A-E) Region-specific performance degradation from the “neuron pruning” experiment using three neuron
removal strategies. Decoding accuracy is quantified by AUC and averaged across 10 sessions from each region. (F-J) Trial-averaged
neural activities conditioned on choice for the most and least important choice-decoding neurons from example sessions in each
brain region. Blue and black solid curves show the mean spiking patterns for left and right trials, respectively, with light-colored
ribbons indicating one standard deviation. Stimulus onset is indicated by a dashed line.

4.7 Mapping behaviorally-relevant timescales across the brain388

Prior studies show that functionally distinct brain regions have different intrinsic timescales [15, 16, 17],389

with motor and sensory areas exhibiting faster timescales than cognitive areas. However, a comprehensive390

investigation of temporal dynamics linked to specific behaviors is lacking. We fit the multi-region reduced-391

rank model on 433 sessions across 270 brain areas to perform choice and prior decoding tasks, using the392

first rank of the region-specific temporal basis V j to represent each brain region’s timescale. Fig 9A reveals393

distinct activation timescales for different brain regions in decoding choice, including the Gigantocellular394

Reticular Nucleus (GRN), motor cortex (MOp), nucleus accumbens (ACB), amygdala complex (CEA), CA1395

region in the hippocampus, basomedial amygdala (BMA), and visual cortex (VISa). The peak activation396

time (“peak”) corresponds to the highest point of a curve. The activation duration (“width”) is defined as397

the interval spanning points on either side of the peak where the curve covers 90% of the peak height.398
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While activation patterns peak around similar times after stimulus onset, ACB and BMA show longer399

durations than other regions.400

We use the peak activation time and duration of each area (Fig 9A) to compare behaviorally relevant401

timescales across brain regions. Figure 9A shows that for the choice decoding task, most brain regions402

exhibit peak activation within 1.5 seconds of stimulus onset. This timing aligns closely with the “reaction403

time”, defined as the interval between stimulus onset and the initial movement (Figure 1c of [12]). For404

the choice decoding task (visual decision-making), Fig 9B (first row) shows most regions have similar405

peak activation times, except the olfactory bulb and cerebellum, which may have delayed activation upon406

receiving the water reward. Fig 9C (first row) shows that activation durations vary, with hindbrain areas407

having shorter durations than forebrain and midbrain regions. For the prior decoding task (learning from408

past experiences), Fig 9B (bottom row) shows the cerebral cortex has earlier activation, while regions in409

the cerebellum have delayed activation. Fig 9C (bottom row) shows the cerebral cortex and thalamus have410

longer activation durations than other areas. White areas denote brain regions not decoded due to the411

absence of corresponding behavioral data (choice or prior) in sessions containing these regions.412

In addition to showing the behaviorally-relevant timescales in each brain region to explain their413

responsiveness to the task, we analyze the amount of decodable behavior information from the neural414

activity in each region. While [12] creates a brain-wide map of decoding accuracy for selected behavior415

tasks, they only use L2-regularized linear decoders. In Fig 9D, we show that the multi-region reduced-rank416

model, a more constrained and interpretable linear decoder trained with more data, improves choice417

and prior decoding across most brain regions compared to the linear decoder baseline used in [12]. This418

suggests that regularized linear decoders may not fully capture all decision-making task information in419

each region, potentially influencing the interpretation of results derived from these decoders.420

Finally, in Section 6.7 “Assessing statistical significance,” we verify that multi-region reduced-rank421

model improves information decoded from each region compared to the baseline linear decoder, while422

controlling for spurious correlations [36] through null distributions generated from “imposter sessions” as423

per [12]. Analysis of representative brain regions (PO, LP, DG, CA1, and VISa) in Figure S1 reveals that424

while absolute decoding improvement varies slightly between original and adjusted scores, the relative425

ranking of regional improvements remains largely consistent.426

5 Discussion427

We propose a reduced-rank and multi-session state-space models to share neural and behavioral data428

across sessions, improving decoding performance. Applied to a large collection of sessions from various429

brain regions, our decoders improve multiple behavioral decoding tasks. Our interpretable approach430

identifies important neurons for decoding, behaviorally relevant timescales per brain area, and infers latent431

behavioral states from neural activity.432

Several existing methods relate to our neural data-sharing model [37, 38, 39, 40, 41]. [3] uses433

canonical correlation analysis (CCA) to align latent dynamics across sessions, while our model substitutes434

the unsupervised CCA with reduced-rank regression using a supervised decoding loss. CCA maximizes435

neural-behavioral correlation, but reduced-rank regression minimizes the normalized mean squared error436

between the real and predicted behavior. Demixed PCA [33] isolates neural activity variations related437

to different conditions, maximizing neural-behavioral correlations and prioritizing neural variability for438

reconstruction. In contrast, our reduced-rank regression emphasizes behavioral variation for accurate439

decoding. The preferential subspace identification (PSID) [32] and targeted neural dynamical modeling440

(TNDM) [42] also extract low-dimensional, behaviorally relevant neural dynamics but rely on more441

complex state-space models. Our reduced-rank model is a latent variable model without constraints on442

neural dynamics. See “Differences between RRM, PCA, CCA, and demixed PCA” in Methods for a detailed443

comparison.444

Previous studies like [43, 44] relate to our behavioral data-sharing model. [10] models mouse decision-445

making using HMM with generalized linear model (GLM) observations, allowing behavioral states to446

persist across trials and depend on the stimulus and other covariates. Unlike these methods that infer447

HMM states only from the behaviors, we also use neural data. While [45, 46, 47, 48, 49] apply HMMs to448

understand how different neural states generate the observed neural activities, we learn HMM states that449

generate the observed decoder estimates, which rely on both neural activity and behavior. Another related450
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Figure 9: Mapping behaviorally relevant timescales and decoding quality improvement across the brain. (A) The first
rank of each brain region’s temporal basis V j in the multi-region reduced-rank model (Eq 3) is shown. Stimulus onset is indicated
by a dashed line, peak activation time (“peak”) by a red cross, and activation duration (“width”) by a yellow segment. “Peak”
corresponds to the highest point of a curve. “Width” is defined as the interval spanning points on either side of the peak where the
curve covers 90% of the peak height. (B) Brain-wide map of relative peak activation time w.r.t. stimulus onset. (C) Brain-wide
map of activation duration (width). Colors distinguish choice (yellow) from prior (purple); intensity represents peak time and
duration magnitude. White regions indicate non-decoded areas. (D) Region-specific improvement in choice decoding accuracy
and the correlation between the real and predicted prior. The multi-region reduced-rank model’s improvement is compared to the
baseline L2-regularized linear decoder. Color intensity represents the magnitude of improvement.

approach is that of [50], which uses a Bayesian decoder to decode continuous and discrete states of the451

behavioral video data, and then combine those with a behavior-based autoregressive HMM to smooth the452

original neural predictions.453

Technological advancements now enable the simultaneous collection of multiple data modalities, like454

local field potentials and calcium imaging, during neuroscience experiments. Moreover, the reduced-rank455

model has applications beyond neural decoding, including neural encoding (predicting neural activity456

from behavior) and inter-region activity prediction (reconstructing activity in one brain region using data457

from another). Therefore, important future directions include incorporating more data modalities into the458

model and adapting the model to perform additional tasks. The interpretability of this approach helps459

understand connections between changes in neural activities, behaviors, and information flow among460

brain regions. For multi-session state-space models, exploring nonlinear time series models and high-order461

dynamical systems [34, 51, 52] can facilitate modeling more complex latent behavioral dynamics. Finally,462

all of our models are compatible with the density-based decoding approach from [53], allowing decoding463

from unsorted spike features rather than spike-sorted data; we expect that combining these approaches464

would lead to further accuracy improvements.465
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Notation Definition

X single-trial neural activity
y single-trial ground truth behavior
d single-trial predicted behavior (decoder estimate)
U reduced-rank model’s neural basis set
V reduced-rank model’s temporal basis set
b reduced-rank model’s intercept term

RRM A multi-region reduced-rank model’s temporal basis set for each brain region
B multi-region reduced-rank model’s temporal basis set shared across all regions
N number of neurons in a session
T number of time bins in each trial
K number of trials in a session
P dimension of the behavior of interest
R rank of the (multi-session) reduced-rank model’s U and V basis sets
L rank of the multi-region reduced-rank model’s A and B basis sets

yk true behavior in trial k
dk single-trial, single-session decoder estimate in trial k
zk latent mixture assignment for trial k in the beta-mixture model
sk hidden Markov model’s latent state in trial k
αk(h) probability of past observations {d1, d2, . . . , dk} at state h in trial k
βk(h) probability of future observations {dk+1, dk+1, . . . , dK} at state h in trial k

BMM-HMM γk(h, y) probability of y at state h in trial k given observations {d1, . . . , dK}

ξk(h,m) transition probability from state h in trial k to state m in trial k + 1 given {d1, . . . , dK}

π HMM’s initial state distribution
η HMM’s transition probability matrix
ϕ HMM’s emission probability matrix
H number of latent states in the HMM

yk true behavior in trial k
dk single-trial, single-session decoder estimate in trial k
zk LG-AR1’s latent state in trial k
d̃k improved decoder estimate in trial k given observations {d1, . . . , dK}

LG-AR1 Λ LG-AR1’s model parameters including θ, ρ, µ, σ2
ϵ, σ

2
τ

θ LG-AR1’s observation model parameter controlling the generation of dk from the latent state
ρ LG-AR1’s dynamic model parameter governing the latent state transition from trial k − 1 to k
µ the intercept term of LG-AR1’s observation model
σ2
ϵ, σ

2
τ LG-AR1 noise term variance

Table 1: Table of notation.

6 Methods625

6.1 Reduced-rank model: Model details626

6.1.1 Closed-form solution for theoretical interpretation627

In practice, the reduced-rank model parameters can be learned using automatic differentiation. However,628

in this section, we derive a closed-form solution for computational efficiency and theoretical interpretation.629

For notational simplicity, we omit the session index i and denote the neural activity and behavior from all630

trials as X and D. We use the centered neural activity and behavior matrices Xc = X − X̄ and Dc = D − D̄631

to avoid dealing with the intercept term b from Eq 1.632

Our proposed reduced-rank model in Eq 1 solves the following optimization problem:633

LRRM = ||Dc
− Xc⊤(UV)||2 + λ||UV||2, (4)

where || · ||2 is the Frobenius norm and λ is the regularization strength. While reduced-rank regression634

has a standard closed-form solution [54], it cannot be directly applied to our problem when decoding635

vector-valued behavior (P = T), as its objective is to solve the following optimization problem:636

Lstandard-RRM = ||Dc
− Xc⊤(FE)||2 + λ||FE||2, (5)
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where F ∈ RNT×R serves as the basis set for the entire neural activity Xc, while E ∈ RR×P serves as the basis637

set for the entire behavior Dc, respectively. In contrast, our decoding model explicitly disentangles the638

parameters into a neural basis set U ∈ RN×R and a temporal basis set V ∈ RR×T for each of the P timesteps,639

separating the effects of neurons and time. A separate temporal basis set V also allows for multi-session640

training by sharing V across sessions.641

The intercept solution is b̃ = D̄ − X̄⊤(UV). Taking the derivative of Eq 4 w.r.t. V, we have642

∂LRRM

∂V
= −2U⊤XcDc + 2U⊤XcXc⊤UV + 2λU⊤UV. (6)

Setting Eq 6 to 0, we have the optimal solution643

Ṽ = G−1H, G = U⊤(XcXc⊤ + λI)U, H = U⊤XcDc. (7)

Substituting Ṽ into Eq 4, the objective becomes minimizing −Tr{G−1HH⊤} according to [55]. Then, U is644

given by the optimal solution of the following problem:645

Ũ = −argmin
U

Tr{G−1HH⊤} = argmax
U

Tr{(U⊤StU)−1U⊤SbU}, (8)

where646

Sb = XcDcDc⊤Xc⊤, St = diag{XcXc⊤ + λI}. (9)

We obtain Ũ from the left singular vectors of XcDc(St)−1/2
∈ RN×T corresponding to the R largest singular647

values. In practice, the regularization strength λ is selected via cross-validation and grid-search.648

Without regularization (λ = 0), Ũ being the left singular vectors of XcDc(St)−1/2 implies that Ũ649

maximizes the correlation between neural activity X and behavior D, and captures major variations in D:650

E[XcDc(St)−1/2] =
E[(X − X̄)(D − D̄)]√
E[(X − X̄)(X − X̄)⊤]

=
Cov(X,D)√

Var(X)
= Corr(X,D)

√
Var(D). (10)

Therefore, Ũ quantifies each neuron’s contribution to behavior decoding, and therefore identifies the most651

relevant neurons for the decoding task. After learning the optimal U and V, we project the neural activity652

X onto the learned low-rank subspace U to obtain the low-dimensional data representation W = (X⊤U)653

capturing behaviorally-relevant neural variations [56, 33, 32].654

The closed-form solution provided is restricted to linear models. For greater flexibility with nonlin-655

ear decoders or more complex data structures than the present case, we recommend using automatic656

differentiation.657

6.1.2 Multi-trial reduced-rank model for prior decoding658

To improve prior decoding, we employ a multi-trial reduced-rank model that exploits trial-to-trial corre-659

lations. The decoding results are shown in Figure 2 and 5. The main idea is to use neural activity from660

neighboring trials, denoted as X⃗k := [Xk − l,Xk,Xk + l] ∈ RN×T×L, to decode scalar-valued behavior in trial661

k, where L = 2l + 1 denotes the trial window length. Due to the large number of parameters that need to662

be learned, a reduced-rank model is a natural choice to prevent overfitting: dk = f (X⃗⊤k (UV) + b), where663

U ∈ RN×R, V ∈ RR×T×L and b ∈ R.664

6.2 BMM-HMM: Model details665

This section presents algorithms and implementation details for various BMM-HMM model variants. The666

BMM-HMM model consists of a dynamic process governing transitions among discrete latent states s⃗667

and an observation process describing the generation of decoder estimates d⃗ given the latent state. The668

dynamic model, P(sk | sk−1), describes the state transition from trial k − 1 to k, parameterized by a state669

transition matrix. The observation model, p(dk | sk) = p(dk | zk)p(zk | sk), is characterized by a beta mixture670

model, where p(zk | sk) is the emission probability at each state, p(dk | zk) is the observation probability, and671

zk controls the assignment of beta distributions in the mixture.672
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Specifically, we assume the single-session, single-trial decoder output dk = P(yk = 1 | Xk) ∈ [0, 1] follows673

a mixture of beta distributions, with mixture assignment zk depending on a latent state sk, governed by an674

H-state HMM. The data generation process for dk is formulated as675

p(dk | sk) =
1∑

zk=0

ϕskzkBeta(dk; azk , bzk), ϕskzk := P(zk = 1 | sk), (11)

where azk and bzk are parameters of a beta distribution. In each trial, the latent state sk generates zk with676

emission probability ϕskzk , and dk is drawn from a beta mixture with observation probability p(dk | zk),677

where dk values cluster around 1 when zk = 1 and around 0 when zk = 0.678

The main idea is to substitute the single-session and single-trial decoder output dk, which only considers679

information from the neural activity Xk, with the inferred zk. The inferred zk contains information about680

the underlying behavioral states deduced from the trial-to-trial correlations in d⃗. Specifically, the improved681

decoder output is682

P(zk = 1 | d⃗) =
H∑

sk=1

P(zk, sk | d⃗) =
H∑

sk=1

P(sk | d⃗)P(zk | sk, dk) (12)

=

H∑
sk=1

p(sk, d⃗)

p(d⃗)

p(dk, zk | sk)
p(dk | sk)

=

H∑
sk=1

αk(sk)βk(sk)∑H
s′k=1 αk(s′k)βk(s′k)

f (dk, zk | sk)
f (dk | sk)

,

where f (dk | sk) =
∑1

zk=0 p(dk, zk | sk), as defined in Eq 11. αk(sk) and βk(sk) are outputs from the forward683

and backward passes in an Expectation-Maximization (EM) algorithm, described in more depth below.684

6.2.1 EM algorithm for BMM-HMM685

The EM (Baum–Welch) algorithm is used for iterative HMM parameter estimation. Each iteration consists686

of the following Expectation and Maximization steps:687

• (E step) Let k index trial, z ∈ {0, 1} index the beta mixture component and h,m ∈ {1, . . . ,H}688

index the state. For all component and state pairs, we recursively compute the forward and689

backward probabilities αk(h, z) and βk(h, z), defined below. We then compute the component and690

state occupation probabilities γk(h, z) and ξk(h,m).691

• (M step) Using the estimated γk(h) and ξk(h), we then update the model parameters, including the692

transition probabilities ηhm and the emission probabilities ϕhz of the HMM, and the parameters of693

the beta mixture az, bz.694

Forward pass. We define the probability of observing the sequence of decoder outputs d⃗ being in state h695

in trial k as696

αk(h) := p(d1, d2, . . . , dk, sk = h). (13)

The pseudo-code for the iterative computation of αk(h) is:697

• Initialization α1(h) = π0(h) f (d1 | h) ∀ 1 ≤ h ≤ H.698

• Recursion αk(h) =
(∑H

m=1 αk−1(m)ηmh

)
f (dk | h) ∀ 1 ≤ h,m ≤ H, 1 ≤ k ≤ K.699

• Termination p(d⃗) =
∑H

h=1 αK(h),700

where π0 is a vector containing the initial probabilities for each of the H hidden states.701
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Backward pass. The probability of future observations given that the HMM is in state h in trial k is702

βk(h) := p(dk+1, . . . , dK | sk = h). (14)

The pseudo-code for the iterative computation of βk(h) is:703

• Initialization βK(h) = 1 ∀ 1 ≤ h ≤ H.704

• Recursion βk(h) =
∑H

m=1 ηhm f (dk+1 | m)βk+1(m) ∀ 1 ≤ h,m ≤ H, 1 ≤ k ≤ K − 1.705

• Termination p(d⃗) =
∑H

h=1 π0(h) f (d1 | h)β1(h).706

Forward-backward. The state occupation probability γk(h) is707

γk(h) := P(sk = h | d⃗) =
p(sk = h, d⃗)

p(d⃗)
=

αk(h)βk(h)∑H
h′=1 αk(h′)βk(h′)

. (15)

The component and state occupation probability γk(h, z) is the probability of component z at state h in trial708

k given the whole observation sequence d⃗:709

γk(h, z) = P(sk = h, zk = z | d⃗) = γk(h)
f (dk, z | h)
f (dk | h)

. (16)

We then estimate ξk(h,m), the probability of transitioning from state h to m given all observations d⃗:710

ξk(h,m) = P(sk = h, sk+1 = m | d⃗) =
p(sk = h, sk+1 = m, d⃗)

p(d⃗)
(17)

=
αk(h)ηhm f (dk+1 | m)βk+1(m)∑H

h′=1
∑H

m′=1 αk(h′)ηh′m′ f (dk+1 | m′)βk+1(m′)
. (18)

For the M step, we update the transition and emission probabilities according to711

η∗hm =
1

K−1
∑K−1

k=1 P(sk = h, sk+1 = m | d⃗)
1

K−1
∑K−1

k=1 P(sk = h | d⃗)
=

∑K−1
k=1 ξk(h,m)∑K−1

k=1 γk(h)
, (19)

ϕ∗hz =
1
K
∑K

k=1 P(zk = z, sk = h | d⃗)
1
K
∑K

k=1 P(sk = h | d⃗)
=

∑K
k=1 γk(h, z)∑K

k=1 γk(h)
. (20)

We then update the parameters of the BMM, (a0, a1, b0, b1), by maximizing the expected log-likelihood.712

First, we write down the likelihood of the BMM as713

L(a0, a1, b0, b1) =
K∏

k=1

H∑
sk=1

p(dk, zk | sk)p(sk) =
K∏

k=1

H∑
sk=1

f (dk, zk | sk)π∞(sk), (21)

where π∞ represents the equilibrium probability for each of H hidden states, which can be computed using714

the estimated transition probabilities. The conditional distribution is subsequently determined by715

rzk := P(zk | dk) =
p(zk, dk | sk)P(sk)

p(dk)
(22)

=

∑H
sk=1 f (dk, zk | sk)π∞(sk)∑1

zk=0
∑H

sk=1 f (dk, zk | sk)π∞(sk)
. (23)
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Finally, the expected log-likelihood of the BMM is716

E[log L(a0, a1, b0, b1)] = E

log

 K∏
k=1

H∑
sk=1

f (dk, zk | sk)π∞(sk)


 (24)

=

K∑
k=1

E

log

 H∑
sk=1

f (dk, zk | sk)π∞(sk)


 (25)

=

K∑
k=1

1∑
zk=0

P(zk | dk) log

 H∑
sk=1

f (dk, zk | sk)π∞(sk)

 (26)

=

K∑
k=1

1∑
zk=0

rzk · log

 H∑
sk=1

f (dk, zk | sk)π∞(sk)

 . (27)

In practice, we find (a∗0, a
∗

1, b
∗

0, b
∗

1) that maximize the quantity in Eq 27 through numerical optimization.717

6.2.2 Oracle BMM-HMM718

In each session, the oracle BMM-HMM substitutes the ground truth observed behaviors y⃗ for z⃗, treating z⃗719

as a known quantity. This allows us to learn the underlying data-generating mechanism that produces the720

decoder outputs d⃗. The process consists of the following steps:721

1. Train a discrete-state HMM on the ground truth observed behaviors y⃗ to estimate the oracle model722

parameters, including transition probabilities ηhm and emission probabilities ϕhz for each session.723

2. Apply a BMM to the decoder outputs d⃗, treating the mixture assignment variable z⃗ as a known724

quantity by substituting z⃗ with the ground truth observed behaviors y⃗. This step provides the correct725

assignment of mixture components. The learned oracle BMM parameters, (a0, a1, b0, b1), capture the726

true probabilistic relationship between d⃗ and z⃗.727

3. Use the learned oracle model parameters to initialize and fit the BMM-HMM using the EM algorithm728

described in the section “EM algorithm for BMM-HMM” for the corresponding session. During model729

fitting, fix the oracle parameters (ηhm, ϕhz, a0, a1, b0, b1).730

This procedure allows us to deduce the latent behavioral states s⃗ and latent behaviors z⃗ as if we know the731

true data generation process.732

6.2.3 Learning empirical priors of state-space model parameters733

To learn empirical priors for the multi-session BMM-HMM, we fit a variational HMM [57] to the ground734

truth observed behavior y⃗ from non-target sessions. This allows us to learn an empirical prior of the735

trial-to-trial correlations inherent in the true behavioral data. We impose Dirichlet priors on the initial736

state distribution π0, rows of the transition probability matrix ηh·, and rows of the emission probability737

matrix ϕh· as follows:738

p(π0) = Dir({π0(1), . . . , π0(H)}; {u(π0)
1 , . . . ,u(π0)

H }), (28)

p(η) =
H∏

h=1

Dir({ηh1, . . . , ηhH}; {u
(η)
h1 , . . . ,u

(η)
hH}), (29)

p(ϕ) =
H∏

h=1

Dir({ϕh0, ϕh1}; {u
(ϕ)
h0 ,u

(ϕ)
h1 }), (30)

where (u(π0),u(η),u(ϕ)) are the Dirichlet distribution concentration parameters, learned by fitting a vari-739

ational HMM on the ground truth observed behaviors y⃗ from the training sessions using the Python740

package hmmlearn. The resulting posterior distributions serve as priors for the multi-session BMM-HMM741

parameters, constraining their updates during the EM algorithm’s M step.742
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To set empirical priors for the BMM parameters, we assume dk follows a mixture of beta distributions743

from the exponential family, expressed as:744

Beta(d; {az, bz}) = h(d)c(az, bz) exp (w(az, bz)⊤t(d)), (31)

h(d) = 1, c(az, bz) = 1/B(az, bz), (32)

where745

B(az, bz) = Γ(az)Γ(bz)/Γ(az + bz), (33)

w(az, bz) = (az − 1, bz − 1)⊤, t(d) = (ln d, ln(1 − d))⊤. (34)

For exponential family members, the conjugate prior is746

p(az, bz | ν1, ν2, ψ) ∝ c(az, bz)ψ exp(w(az, bz)⊤(ν1, ν2)⊤). (35)

Therefore, a suitable conjugate prior distribution for (az, bz) is747

p(az, bz | ν1, ν2, ψ) ∝
1

B(az, bz)ψ exp(−(ν1az + ν2bz))
. (36)

Setting the natural conjugate prior ψ parameter to zero yields independent exponential priors for (az, bz),748

which have proven effective empirically. We apply a hierarchical BMM on the decoder outputs d⃗, using the749

Python package pymc3. We assume that the mixture assignment z⃗ can be empirically determined a priori,750

and substitute z⃗ with the observed behaviors y⃗ from the training sessions. The posterior distributions for751

(ν(z)
1 , ν

(z)
2 ) then serve as priors for the multi-session BMM-HMM parameters, constraining their updates752

during the EM algorithm’s M step.753

6.2.4 Multi-session BMM-HMM754

Following the approach in Eq 28-30, we impose Dirichlet priors on the BMM-HMM dynamic parameters755

(π0, ηh·, ϕh·). We modify the EM algorithm in the section “EM algorithm for BMM-HMM” by using Maximum756

A Posteriori (MAP) estimation [58] to learn the posterior distributions of these parameters. The E step757

remains unchanged, while the M step incorporates the new prior terms when updating the HMM parameters758

with fixed latent sk and zk. The posterior means of the HMM parameters become759

π0(h) =
ũ(π0)

h + γ0(h)∑H
h′=1 ũ(π0)

h′ + γ0(h′)
, ηhm =

ũ(η)
hm +

∑K−1
k=1 ξk(h,m)∑H

m′=1 ũ(η)
hm′ +

∑K−1
k=1 γk(h)

, (37)

ϕhz =
ũ(ϕ)

hz +
∑K

k=1 γk(h, z)∑1
z′=0 ũ(ϕ)

hz′ +
∑K

k=1 γk(h)
, (38)

where (ũ(π0), ũ(η), ũ(ϕ)) are the posterior concentration parameters from fitting the variational HMM on the760

training sessions. When updating BMM parameters, we add the Dirichlet prior term log p(π0, η, ϕ) to the761

complete-data log-likelihood in Eq 24 and solve for (a0, a1, b0, b1) that maximize this new objective function.762

We constrain BMM parameters (a0, a1, b0, b1), using empirical priors, (ν(0)
1 , ν

(0)
2 , ν

(1)
1 , ν

(1)
2 ), learned from763

the training sessions; see details in the section “Learning empirical priors of state-space model parameters”.764

Incorporating the log-prior term (Eq 36) into the complete log-likelihood involves adding the following765

penalty to the right-hand side of Eq 27:766

1∑
z=0

log p(az, bz; ν(z)
1 , ν

(z)
2 , ψ = 0) = −

1∑
z=0

(ν(z)
1 az + ν

(z)
2 bz) + const.. (39)

Numerically solving the penalized objective yields MAP estimates for the BMM parameters instead of the767

standard maximum likelihood estimation (MLE) solutions.768
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6.3 LG-AR1: Model details769

For scalar-valued yk ∈ R, we assume the decoder output dk ∈ R linearly depends on the latent behavior770

zk ∈ R. To incorporate trial-to-trial correlations, the transitions of zk between trials are modeled using a771

first-order autoregressive process. The objective aligns with that of a Kalman smoother [19], which is to772

infer the state of a dynamical system (zk) given a sequence of noisy observations (dk). The formal data773

generating model is described as774

dk = θzk + µ + ϵk, ϵk ∼ N(0, σ2
ϵ), (40)

zk = ρzk−1 + τk, τk ∼ N(0, σ2
τ). (41)

Intuitively, as ρ approaches 1, zk in the current trial is expected to exhibit minimal deviation from zk−1775

in the preceding trial, as per Eq 41. As θ approaches 1, dk is expected to closely track the pattern of zk776

according to Eq 40. In practice, the values of θ and ρ are determined by fitting the LG-AR1 model to the777

observed d⃗.778

Similar to BMM-HMM, the main idea is to replace the original decoder estimate dk, based solely on779

neural activity Xk, with a smoothed estimate d̃k derived from the inferred latent state zk. d̃k incorporates780

trial-to-trial correlations from d⃗ = {d1, d2, . . . , dk}, as d⃗ is used to infer the latent states z⃗ = {z1, z2, . . . , zk}.781

This process potentially improves d̃k’s accuracy over the original dk in estimating the true behavior. While d⃗782

is used for model fitting and latent state inference, d̃k is the improved (smoothed) decoder estimate for the783

held-out trial k given the entire d⃗. To obtain d̃k, we sample from its posterior predictive distribution784

p(d̃k | d⃗) =
∫

p(d̃k | Λ)p(Λ | d⃗)dΛ, (42)

after placing prior distributions on the model parameters Λ = (θ, µ, ρ, σ2
ϵ, σ

2
τ), which can be estimated using785

Markov chain Monte Carlo (MCMC) sampling [59].786

To fit LG-AR1 on single-session data, we use a Bayesian approach, treating model parameters Λ =787

(θ, µ, ρ, σ2
ϵ, σ

2
τ) as random variables with joint prior p(Λ):788

θ, µ, ρ ∼ N(0, 1), σ2
ϵ, σ

2
τ ∼ Half-N(0, 1). (43)

In practice, we use the Python package pymc3 to fit the hierarchical LG-AR1 and learn the posterior789

distribution of session-specific parameters Λ via MCMC sampling.790

To implement the multi-session LG-AR1, we begin by learning the dynamic model parameters (ρ, σ2
τ).791

This estimation is performed using the observed behaviors y⃗ from the training sessions, under the792

assumption that these dynamic model parameters can be empirically determined a priori. Next, we793

estimate observation model parameters (θ, µ, σ2
ϵ) using decoder outputs d⃗ and corresponding observed y⃗794

from training sessions. After estimating model parameters from the training data, we use the posterior795

means of these multi-session LG-AR1 parameters Λ = (θ, µ, ρ, σ2
ϵ, σ

2
τ) to initialize the hierarchical LG-AR1796

model (Eq 40-41) for the held-out session, with Λ fixed during model fitting. For this held-out session,797

where true behaviors are unknown, we infer the latent behaviors zk and obtain improved decoder outputs798

d̃k via MCMC sampling.799

We also implement an oracle LG-AR1 model to emulate the ground-truth data-generating process for d⃗.800

This oracle model is constructed by estimating model parameters using the ground truth observed y⃗ from801

the target session, under the assumption that the true values of the variable z⃗ are known. For the oracle802

model, we learn dynamic AR1 parameters (ρ, σ2
τ) and observation model parameters (θ, µ, σ2

ϵ) using true803

y⃗ and observed d⃗ from the test session. We initialize the hierarchical LG-AR1 model using these oracle804

solutions and hold them fixed while inferring the latent zk and improved decoder outputs d̃k, as if we know805

the true data-generating mechanism.806

6.4 Data details807

For choice, we align trials to the stimulus onset, considering neural activity from 0.5 seconds before to 1.5808

seconds post-onset. For prior, we also align trials to the stimulus onset, including neural activity from 0.6809

seconds to 0.1 seconds pre-onset. The prior represents the mice’s estimate of the stimulus side probability.810
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We use the same decoding window as in the previous study [18], focusing on the period with minimal811

wheel movements. Within each trial, we segment neural activity into 50-millisecond non-overlapping time812

bins. For each time bin, we bin spike counts using all neurons, sorted by Kilosort 2.5 [60], from each813

session. For continuous behaviors, we select an alignment event – first movement onset for wheel speed,814

motion energy and pupil diameter – and decode the target starting at the alignment event and ending at 1815

second after the alignment event. The neural activity within each trial is binned into non-overlapping 20816

ms bins. For each time bin, we similarly bin spike counts using all neurons from each session. For static817

behaviors (choice and prior), we use a 50 ms time bin size following [11], and for continuous behaviors,818

we use a 20 ms time bin size as in [27].819

6.5 Hyperparameter selection820

For choice and prior, baseline decoders (linear, MLP, LSTM) decode both behaviors in a single-trial, single-821

session context, where each trial’s target behavior is decoded using the corresponding neural activity822

within that trial and session. For continuous behaviors, the target value for a time bin ending at time t823

is decoded using spikes from all time bins within a trial. To share neural data, we use a multi-session824

reduced-rank model for choice and continuous behaviors, and a multi-trial, multi-session reduced-rank825

model for prior (see the section “Multi-trial reduced-rank model for prior decoding”). To share behavioral826

data, we employ a multi-session BMM-HMM for choice and a multi-session LG-AR1 for prior. Decoder827

performance is evaluated using AUC for choice, Pearson’s correlation for prior, and R2 for continuous828

behaviors.829

Baseline linear decoders use L2-penalized logistic regression for choice and ridge regression for prior830

and continuous behaviors, implemented with scikit-learn in Python. Regularization coefficients are cross-831

validated over {10−4, 10−3, 10−2, 10−1, 100, 101
}. Reduced-rank, MLP, and LSTM decoders are trained using832

gradient descent in PyTorch with Adam optimizer and cosine annealing learning rate scheduler. Learning833

rate, weight decay, and batch size are selected via grid search over {10−2, 10−3
}, {10−1, 10−3

}, and {8, 16, 32},834

respectively, based on validation set performance. Models are trained until convergence, and the best-835

performing model with the lowest validation loss is used for test set decoding. Hyper-parameter search is836

conducted using Ray Tune in Python.837

For reduced-rank models, the optimal rank for each behavior is determined via grid search over R ∈838

{2, 5, 10, 15, 20, 25, 30} based on validation performance. Fig 2C summarizes the sensitivity of choice decod-839

ing performance to the rank. For the MLP decoder, we explore architectures: {(256, 128, 64), (512, 256, 128, 64)},840

where each number represents the hidden size of a layer, and the tuple length indicates the number of841

hidden layers. For the LSTM decoder, we investigate hidden sizes {32, 64} and depths {1, 3, 5}. The LSTM is842

followed by MLP layers for predicting the target behavior, with architectures: {(64, 32), (64), (32)}. MLP and843

LSTM architectures are selected based on decoding performance, avoiding overly complex architectures844

due to limited training data, which could lead to overfitting and convergence issues.845

For the multi-region reduced-rank model, we fix hyperparameters based on pilot studies due to the846

extensive training time required for fitting over 400 sessions. The rank of the region-specific temporal847

basis V j is set to 2, and the rank of the global temporal basis B is set to 5. We use gradient descent with848

Adam optimizer, a learning rate and weight decay of 10−3, and a batch size of 8. The model is trained for849

500 epochs or until the loss does not decrease for 50 consecutive epochs to ensure convergence.850

6.6 Differences between RRM, PCA, CCA and demixed PCA851

The reduced rank model (RRM) is similar to dimensionality reduction techniques like PCA and CCA,852

but with different objectives. As shown in Eq 10, RRM maximizes the correlation between the centered853

predictor X and the centered response D, as well as the variance of D:854

RRM : Corr(X,D)2Var(D). (44)

According to [61], PCA and CCA aim to maximize:855

PCA : Var(X), CCA : Corr(X,D)2. (45)

PCA captures the major variations in neural activity X but ignores the variations in behavior D, while856

CCA considers the correlation between X and D but doesn’t prioritize modeling the variations in D. RRM857
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balances both the correlation between X and D and the variance of D, making it more suitable for decoding858

tasks where capturing behavioral variations is crucial for prediction.859

RRM is closely related to demixed-PCA [33], which minimizes the loss860

Ldemixed-PCA = ||Xs − FEX||2, (46)

where X is the centered data matrix, with each row representing the neural activity of each neuron across861

all trials and task conditions. The reconstruction target, Xs, is a matrix of stimulus averages, with each data862

point replaced by the average neural activity for the corresponding stimulus. The solutions for F and E can863

be analytically obtained using reduced-rank regression through singular value decompositions. The main864

difference is the reconstruction target: the behavior D in our model (Eq. 4) vs. the task-condition averaged865

neural activity Xs in demixed PCA. Intuitively, demixed-PCA maximizes the correlation between the neural866

activity X and the task-condition averaged neural activity Xs, while also maximizing the variance of Xs.867

6.7 Assessing statistical significance868

In Section 4.7 “Mapping behaviorally-relevant timescales across the brain,” we measure the increased869

information decoded from each region using the multi-region reduced-rank model compared to the baseline870

linear decoder. To control for potential spurious correlations, we conduct an additional experiment,871

following the approach in [12]. We generate null distributions to test the significance of our decoding872

results according to the procedure described in the caption of Figure S1.873

To assess the significance of our decoding results, we analyze brain regions PO, LP, DG, CA1, and874

VISa as representative examples. Figure S1 displays the adjusted scores, with the original scores for875

choice and prior decoding corresponding to those in Figure 9D. While the percentage increase in decoding876

metrics varies slightly between original and adjusted scores, the relative ranking of brain regions, based877

on decoding improvement, remains largely consistent. For instance, DG shows the highest improvement878

in decodable information for choice, both before and after null distribution adjustment. This analysis879

demonstrates the reliability of the decoding improvement offered by our proposed model.880

Figure S1: Assessing the significance of decoding improvement achieved by multi-region reduced-rank model relative to
null distributions generated from imposter sessions. For each session with probe insertions in PO, LP, DG, CA1, and VISa,
we create 10 “imposter sessions” from behaviors (choice and prior) of other mice in different sessions, as in [12]. These are
generated by concatenating trials across all analyzed sessions, excluding the session under consideration, then randomly selecting
a chunk of N consecutive trials (where N matches the original session length) from the concatenated sessions. We obtain the
original score from the real session, while the adjusted score is calculated by subtracting the decoding accuracy (or correlation)
of the imposter sessions from the original score. Each bar shows the mean score from 10 imposter sessions, with error bars
indicating one standard deviation of these scores.

6.8 Supplemental figures881

28

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 15, 2024. ; https://doi.org/10.1101/2024.09.14.613047doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.14.613047
http://creativecommons.org/licenses/by-nc-nd/4.0/


A

D

B C

E

F

Figure S2: Evaluating wheel speed decoding quality using spiking activity from 1313 neurons in a RE dataset session.
(A-C) Comparison between the reduced-rank model’s predicted wheel speed (dotted curves) and observed ground truth behavior
(solid curves) across different block (A), choice (B) and reward (C) conditions. Refer to Fig 3 (A-C) for conventions. (D-F)
illustrate observed behavior, predicted behavior (D) from the reduced-rank model (E), and residual behavior (F) from individual
experimental trials in this session. Refer to Fig 3 (D-F) for conventions.

29

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 15, 2024. ; https://doi.org/10.1101/2024.09.14.613047doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.14.613047
http://creativecommons.org/licenses/by-nc-nd/4.0/


A

D

B C

E

F

Figure S3: Evaluating pupil diameter decoding quality using spiking activity from 1313 neurons in a RE dataset session.
(A-C) Comparison between the reduced-rank model’s predicted pupil diameter (dotted curves) and observed ground truth
behavior (solid curves) across different block (A), choice (B) and reward (C) conditions. Refer to Fig 3 (A-C) for conventions.
(D-F) illustrate observed behavior, predicted behavior (D) from the reduced-rank model (E), and residual behavior (F) from
individual experimental trials in this session. Refer to Fig 3 (D-F) for conventions.
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