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New reconstruction techniques are generating connectomes of unprecedented size.

These must be analyzed to generate human comprehensible results. The analyses

being used fall into three general categories. The first is interactive tools used during

reconstruction, to help guide the effort, look for possible errors, identify potential cell

classes, and answer other preliminary questions. The second type of analysis is support

for formal documents such as papers and theses. Scientific norms here require that

the data be archived and accessible, and the analysis reproducible. In contrast to

some other “omic” fields such as genomics, where a few specific analyses dominate

usage, connectomics is rapidly evolving and the analyses used are often specific to

the connectome being analyzed. These analyses are typically performed in a variety of

conventional programming language, such as Matlab, R, Python, or C++, and read the

connectomic data either from a file or through database queries, neither of which are

standardized. In the short term we see no alternative to the use of specific analyses,

so the best that can be done is to publish the analysis code, and the interface by

which it reads connectomic data. A similar situation exists for archiving connectome

data. Each group independently makes their data available, but there is no standardized

format and long-term accessibility is neither enforced nor funded. In the long term, as

connectomics becomes more common, a natural evolution would be a central facility

for storing and querying connectomic data, playing a role similar to the National Center

for Biotechnology Information for genomes. The final form of analysis is the import of

connectome data into downstream tools such as neural simulation or machine learning.

In this process, there are two main problems that need to be addressed. First, the

reconstructed circuits contain huge amounts of detail, whichmust be intelligently reduced

to a form the downstream tools can use. Second, much of the data needed for these

downstream operations must be obtained by other methods (such as genetic or optical)

and must be merged with the extracted connectome.

Keywords: analysis of connectomes, EM reconstruction, neural circuits, neural simulation, reproducibility

1. INTRODUCTION

A connectome is a detailed description of a neural circuit, including the neurons and the
synaptic connections between them. New and improved reconstruction techniques, using electron
microscopy(EM) (Chklovskii et al., 2010), optical labeling (Lichtman et al., 2008), or sequencing
(Zador et al., 2012), are generating connectomes of unprecedented size. These must be analyzed to
generate human comprehensible results and provide input to downstream tools. There are at least
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three very different use cases. The first is interactive analysis, used
during the reconstruction itself. Next, there is formal analysis,
for reports, papers, and proceedings. Finally, connectomes are
used as input to further stages of analysis, such as simulation and
machine learning algorithms.

Each of these use cases is rapidly evolving. The increased scale
of reconstructions requires new interactive analysis methods for
efficiency and quality control. The more formal analyses used
so far are often specific to the connectome being analyzed. For
example, the analyses used for extremely stereotyped circuits,
such as the fly’s optic lobe, are very different than the analyses
used for the apparently random wiring of portions of olfactory
systems. Finally, the usage of connectomes as input to further
tools, such as simulation, is just beginning. It is not yet clear what
the requirements are.

Analysis of connectomes is likely to follow the path of analysis
of genomes. Initially, genomes were difficult to acquire, and
the same group that did the acquisition did the analysis. But
as the technology for sequencing improved, analysis became
the limiting step. Groups that acquired genomes could no
longer analyze all the data they collected, and conversely,
many of the scientists who analyze genomes had no hand in
the data collection. This same transition will likely happen in
connectomics. One difference, however, is that connectomics has
a much larger variety in the form, function, and usage of its
analyses. This differs from genomics, where a few specific forms
of analysis dominate the usage, as exemplified by the Basic Local
Sequence Alignment Tool, or BLAST (Altschul et al., 1990).

2. PREVIOUS WORK

There is another usage of “Connectome,” that refers to the
connections between regions of the brain, and not detailed
connections between neurons. These apply to much larger
animals where detailed neural reconstruction is not yet possible.
This paper does not cover analysis of such connectomes, which
has its own literature (Sporns, 2003; He et al., 2011; Kaiser, 2011;
Leergaard et al., 2012; Xia et al., 2013).

At its heart, a connectome is a directed graph. Since graphs
are useful representations in many science and engineering tasks,
there has been considerable research into specific tasks on graphs,
such as partitioning (Kernighan and Lin, 1970; Pothen et al.,
1990; Karypis and Kumar, 1998), clustering (Hartuv and Shamir,
2000; Brandes et al., 2003; White and Smyth, 2005), finding
cliques (Everett and Borgatti, 1998), finding patterns (Kuramochi
and Karypis, 2005), finding small motifs (Itzkovitz and Alon,
2005) and so on. Only some of these techniques have been applied
to connectomes, and it is not clear which, if any, can provide
useful answers to practical biology problems.

One challenge with connectomes is that the connectomes
are “fuzzy,” meaning every instance of a common sub-graph
is slightly different. This means that some well-known graph
and subgraph matching algorithms (such as Ullmann, 1976),
particularly those based on graph invariants (Corneil and
Kirkpatrick, 1980), may not work well when applied to
connectomes. Conversely, algorithms designed to cope with

errors, such as (Messmer and Bunke, 1998), are more likely to
be applicable.

“ConnectomeExplorer” (Beyer et al., 2013) is an integrated
tool, intended to solve many of the problems indicated in
this article. It includes its own visualization tools and analysis
language. However, it does not appear to have been used in any of
the major connectome analysis efforts, likely because familiarity
with conventional tools such as Matlab has outweighed the
advantages of a new tool with its corresponding learning curve.

3. DISCOVERY

Currently, there are three main use cases for connectomes, here
called “discovery,” “formal,” and “input.”

“Discovery” involves inspecting the connectome for
interesting features. These tools are typically fast and graphical
in nature, and must work with the approximate connectomes
that exist as reconstruction progresses. They are often built into
the reconstruction tools, and are used to look at reconstruction
concerns and ordering, as well as generate science results as early
in the reconstruction process as practical. Examples include
connectivity tables of various kinds, plot of connections as a
function of graph connectivity or distance from the root of
the neuron, and comparisons of seemingly similar neurons. In
this paper, we look at tools used during past reconstructions,
those being used currently in the still larger reconstructions
in process, and those we think will be needed in the
future.

Tables of connections are one of the most obvious outputs.
Typically, these show the upstream and downstream neurons,
sorted by strength, as shown in Figure 1. Color coding makes
connection patterns more obvious. Comparing rows shows the
differences between neurons with similar names or types.

Dendrograms are another natural representation. Nervous
systems often contain many similar cells, often referred to a
“cell type.” Cell types are traditionally defined by morphology
(Fischbach and Dittrich, 1989) but with connectomes it makes
sense to define them by connectivity as well. One natural way
to group cells is to represent their connections by a vector of
connection strengths to various other types. These vectors can be
grouped by distance to create a dendrogram, grouping together
cells with similar connectivities and separating cells with very
different connection patterns. An example is shown in Figure 2.

Another natural representation of a connectome is as an
instance of a directed graph. Circuits are easier to visualize
connections as a graph rather than a collection of tables, even
if the information is the same. In the circuits reconstructed
so far, nervous systems are seemingly constructed of several
motifs small enough to be easily visualized, including reciprocal
connections and small loops. These graphs may be annotated
with connections weights (expressed in number of synapses).

A connectome expressed as a graph also facilitates queries
defined by connectivity, such as “Find all cells of type A that
connect to any instances of type B by a path of 2 hops or less.”
A connectome can be loaded into a graph database such as
Neo4j (Miller, 2013), and then a variety of graph query languages
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FIGURE 1 | Example of connection table. Each row shows the connections to a single neuron, sorted by synapse count. Each box shows the identity of the

connected neuron, the synapse count in both directions (separated by a “:”), and the internal identifier of the connected neuron. Colors are arbitrary, but all cells of the

same type share the same color. Data from Takemura et al. (2015).

(Wood, 2012), such as cipher or Gremlin, can be used query the
data.

One often requested graphical form is the connections to
just one cell type, as shown in Figure 3. In general only the
stronger connections are of interest. Also, for some purposes the
connections to one instance of a cell are wanted, but in other cases
it might be the average connectivity to all cells of the same type.

One of the main reasons to draw a graph, rather than a table
or list, is to enable human understanding of circuit operation. It
is therefore important that the display diagram be designed not
only to be technically correct, but to show the information flow
in a way that is easy for humans to understand. Programs that
do this for arbitrary electronic circuits (Jehng et al., 1991) and
directed graphs (Gansner et al., 1993) have long existed. These
could perhaps be mined for ideas helpful for drawing biological
networks.

An example of what is desired is shown in Figure 4. This
diagram was created (manually) to highlight the role of two
cell types, Mi4 and Mi9 from the medulla, in the pathways to
the motion detecting cell T4. Mi4 and Mi9 have strong cross-
connections, and between them receive inputs from many cells
from the lamina. In particular, Mi1 is a strong contributor
to both paths. The diagram is organized with inputs at the
top and the T4 cell at the bottom. Only strong connections
are shown, and other inputs to the T4 are ignored in this
diagram.

4. FORMAL

We define “Formal” analysis as the analysis used in formal
scientific documents such as papers, theses, and proceedings.
Such analysis should at least be archival and reproducible,
and ideally easily extendable. A scientist who seeks to
reproduce the results might wish to do so at several
levels:

• Take the orginal raw data, re-reconstruct and re-analyse it.
• Take the connectome as input and write their own analysis

code.
• Reconstruct another organism, then run the first papers

analysis.

These options require physical access to the data,
an understanding by programs and humans of
how the data are structured, and ability to run
the analysis. We consider each of these issues in
turn.

Due to the recent introduction and rapidly evolving nature
of connectome analysis, no standards are yet available, and
publication of data sets and analysis code is largely handled
on an ad-hoc basis. Another problem is that the data sets are
large (often many terabytes). Thus the data are too big to
publish as supplemental data to a paper, and must be archived
elsewhere.
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FIGURE 2 | Example of dendrogram describing clustering of neurons by their connectivity, based on their proximity in N dimensional connectivity space, where N is

the number of cell types to which this neuron is connected. Coordinates in this space are determined by synapse counts (Top) or percentage of input (Bottom).

Counts and percentages shown for the five most strongly connected types. Data from Takemura et al. (2015).

4.1. Formal Analysis
Analyses of connectomes are varied and often complex (up to
tens of thousands of lines of code). For such procedures, as data
scientists are well aware, the “Methods” section of a paper is
just a summary of the actual analysis performed. Details such
as the resolution of ties in sorting procedures, the numerical
precision of intermediate results, differences in library routines,
and so on, make it almost impossible to precisely reproduce
results from the methods section alone. In general (one hopes)
this does not affect the main points made in the paper, nor
affect the conclusions when comparing substantially different
organisms. However, when connectomics advances to comparing
closely related species then it will be critical to use the exact
same software for both, to ensure that any differences found
are the result of biology and not an artifact of slightly different
computation.

There are two main approaches to this problem. One is to
centralize the analysis, so all researchers are using the same
program. The other is to publish the code and the accessmethods.
Then each researcher should be able to run the analysis at their
own facility, and ideally get the exact same result.

The field of genomics had similar problems. The adopted
solution (at least in the USA) was a funded center, the National

Center for Biotechnology Information, that both stored the
data and hosted the primary analysis tools. The initial version
(Wheeler et al., 2000) stored mostly genetic data but it has
since expanded to hold other related items (NCBI Resource
Coordinators, 2018). This helps in several ways. Two different
papers, using (for example) BLAST, can be compared directly
since they use the same analysis tools. Next, since the data sets
and analysis tools are hosted on the same site, the network
bandwidth requirements are much reduced.

Could such a centralized analysis work for connectomics?
Probably not yet, since tools have not yet converged on a
commonly used set. To show this, we look at a (small) subset
of analyses that have been attempted, and what tools were used,
based on published analysis of large connectomes, both our own
and others. This is shown in Table 1. Even this subset shows that
analysis tools span a wide range of methods and techniques, and
most analyses so far have typically been computed in an external
tool such as Matlab, R, or Python.

One common analysis matches receptive fields to the circuits
that compute them, such as in Briggman et al. (2011), Bock et al.
(2011), Takemura et al. (2013), and Takemura et al. (2017b).
These analyses can’t be done with connectomes alone—they
need the physical location of the input, such as the location of
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FIGURE 3 | Connectivity to and from each T4 cell in Drosophila, as shown by a

reconstruction of 7 columns of the optic lobe (Takemura et al., 2015). The

incoming strengths are indicated as A/B C%, where A is the total number of

synapses to all cells of that type, B is the number of cells connected, and C is

the percentage of total input (output). The outgoing strengths are the number

of synapses. The area of each circle is roughly proportional to the connection

strength.

FIGURE 4 | Circuits leading to Mi4 and Mi9, and hence to the motion

detecting cell T4. To facilitate human understanding, the signal flow is largely

uni-directional (top to bottom in this case), there are relatively few line

crossings, and the edges are annotated with weights. This diagram was drawn

manually, but automated and semi-automated tools to create such diagrams

would be helpful. Data from Takemura et al. (2015).

photoreceptors in the retina or the hexagonal grid of the flys
eye. They then require a weighted sum through the network, and
perhaps network signs and delays as well. Receptive fields for
other modalities such as olfaction, gustation, or auditory, will be
very different and require specialized analyses of their own.

Another sample analysis is that of stereotypy. To examine
the limits of neural wiring accuracy, Lu et al. (2009) compared
the wiring of the same neurons on the left and right sides of a
mouse. Similarly, Takemura et al. (2015) examined a particularly
stereotyped system, the medulla of Drosophila, comparing each
of 7 nearly identical columns against each other, using a detailed
statistical model to try to separate the different potential causes
of differences—differences in biology of pre- and post-synaptic
counts, and reconstruction errors. In both studies, one of the
main goals was to measure the rate of biological differences
and errors, by manually re-examining all differences between
the sides and/or columns. This is unlikely to be a common
operation while reconstruction is limited to a single specimen,
since such a crystal-like repetition of circuits is not expected in
most parts of the brain. It will become more common, however,
as comparisons of connectomes across multiple animals are tried,
once increased throughput makes this practical.

Another very specific analysis is that of randomness of a
specific set of connections. This was examined in the visual cortex
of the mouse (Bock et al., 2011), and the olfactory system of
Drosophila larva (Eichler et al., 2017) and adult (Takemura et al.,
2017a), respectively. In each case, preliminary analysis showed
no obvious pattern of connectivity between certain classes of
input cells and the output neurons. However, to back up this
apparent randomness, a detailed statistical model was required,
and then the circuit compared to this model, generating p
values, statistical powers, and so on. While the basic problem
of modeling seemingly random connections is likely to re-occur,
the details of each computation make it unlikely that the exact
computations can be re-used.

These examples of the various and sundry analyses used show
that it is unlikely that any reconstruction tool could perform
all, or even most, of the analyses needed after reconstruction.
Therefore, we find no practical alternative to the use of external
tools, so the challenge is to make the use of such tools convenient,
transparent, and reproducible. Transparency is the easiest to
address, with the analysis code posted on a publically available
site such as GitHub (Blischak et al., 2016) or included as
supplementary data.

4.2. Formal Data Storage
More difficult, perhaps, is storing the connectome data itself in a
reproducible and archivable way.

Formal analysis is based on, and analyzes, many different
products of the reconstruction process. In all reconstruction
techniques to date, EM, optical, or genetic, the raw data is large,
and requires significant processing to generate a connectome.
While here the discussion concentrates on EM, the same
principles will apply if other modes of analysis are used.

In order of decreasing size, the data used in EM connectivity
analysis is:

• The source EM images.
• The aligned, stitched, and normalized image stack.
• The segmentation of the volume into neurons.
• Skeletons, which are a list of 3-D points and line segments

that approximate the full and typically complex shape of the
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TABLE 1 | Analysis tools as used in a selection of connectome analyses.

Paper Analysis Tools used

Wiring optimization can relate neuronal structure and

function (Chen et al., 2006)

Wire length optimization MatLab

Exploring the retinal connectome (Anderson et al., 2011) Various Python, Excel, Tulip (Auber, 2004), Graphvis (Ellson

et al., 2001)

Wiring specificity in the direction-selectivity circuit of the

retina (Briggman et al., 2011)

2 photon correlation, specificity of synapses MatLab, ITK-SNAP, custom software

Network anatomy and in vivo physiology of visual cortical

neurons (Bock et al., 2011)

2 photon imaging of same sample, statistics of

connections

MatLab, Linux tools, custom software

A visual motion detection circuit suggested by Drosophila

connectomics (Takemura et al., 2013)

Receptive fields C++, Matlab, Gephi (Bastian et al., 2009)

Connectomic reconstruction of the inner plexiform layer

in the mouse retina (Helmstaedter et al., 2013)

Various Matlab, Mathematica, Amira

Synaptic circuits and their variations within different

columns in the visual system of Drosophila (Takemura

et al., 2015)

Stereotypy C++, Matlab, Linux tools

Saturated reconstruction of a volume of neocortex

(Kasthuri et al., 2015)

Additional structures (mitochondria, spines,

and so on)

MatLab, AutoDesk, custom tools

A connectome of a learning and memory center in the

adult Drosophila brain (Takemura et al., 2017a)

Poisson statistics of connections C++, Boost, Linux tools

The complete connectome of a learning and memory

centre in an insect brain (Eichler et al., 2017)

Single vs. Multi-claw Matlab, R, and Python

The are only examples from a much larger field of studies, and intended only to show the wide variety of tools and languages employed.

neuron. These are typically formatted as SWC1 files (Carnevale
and Hines, 2006) with an additional list of synapse locations.

• A graph, with neurons as nodes and synapse counts as weights.

Reproducing or extending an analysis will require using
one or more of these representations. The raw source EM
images are probably not of general interest, and “Contact the
authors” probably suffices. The aligned, stitched, and normalized
images form the source for machine segmentation and human
proofreading. These could be made available as a stack of images,
with the main problem not the technical storage but instead who
will maintain (and pay for) such storage over archival lifetimes.
As of mid-2018, the cheapest cloud storage costs about $4 (US)
per terabyte per month. Thus a 100 TB data set costs about
$400/month to store. For an active project this is reasonable,
but for a 50 year archive, the cost would be $250,000 US, or the
cost of several researcher-years. Most universities and research
institutions would not feel such archiving is their responsibility.
Even if they did, research institutions, and their focus areas, come
and go over decade-long time scales. Universities and scientific
journals have longer histories, but not the budgets to pay for
archival storage.

Technically, reading a stack of stored images, no matter how
large, should not be problem. Smaller examples can be read by
publically available software such as ImageJ (Schneider et al.,
2012), or its distribution FIJI (Schindelin et al., 2012), already
commonly used in neuroscience. Larger examples can be read by
existing software such as BigDataViewer (Pietzsch et al., 2015),

1SWC is not an abbreviation, but the initials of the developers (Stockley et al.,

1993).

a public extension of Fiji. There are higher performance and
cloud compatible solutions, such as the internal format “n5”
(Saalfeld, 2017) of BigDataViewer, but the longevity of these
formats has not been established, whereas a stack of images
should be readable for the forseeable future.

Segmentation can be stored similarly, with more bits per pixel
but much better compression, due to long runs of the same value.

Skeleton data is smaller and is commonly stored as text
files. There is an existing public and funded database for this,
“Neuromorpho.org” (Ascoli et al., 2007). However this does not
include the synapse locations or any volumetric description, and
so can only store part of the results of connectomics.

4.3. Making Sense of the Data
Acquiring the physical bits that describe a connectome is only
part of the problem—the next problem is making sense of it.
There are two main technical methods by which external tools
can get connectome data for analysis. In the oldest method,
the reconstruction software writes out the relevant data as files,
normally in text formats such as JavaScript Object Notation
(JSON) (ECMA International, 2017) or Extensible Markup
language (XML) (Bray et al., 1997) for the connectome, and SWC
for the skeletons. Then an external program can read and parse
these files, then do the requested analysis. In a more modern
approach, a program wishing to do analysis requests the data
it needs from a reconstruction server. This has been done for
CATMAID (Saalfeld et al., 2009), VAST (Berger, 2015), and
DVID(Katz, this issue), three recent reconstruction tools. This
method has several advantages - no export step is necessary, only
the needed data is transferred, and the external analysis gets the
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most recent version of the data (or the requested version, if the
reconstruction tool supports versioning).

Multi-decade archiving requirements are most easily met by
using simple text files, combined with programs in standard
languages such as C++ or Python. Such files and programs will
likely be readable and usable decades from now—for example,
many FORTRAN programs from 50 years ago, such as LINPACK
(Dongarra et al., 1979) are still used today. Furthermore, files
from multiple sources can be easily combined, and files have a
much lower barrier to entry. Students anywhere in the world,
by themselves, could easily download the relevant files and start
analysis. A one-time file format conversion is typically a one
day job for an undergraduate, whereas modifying a server to
support a different set of queries can take months of an expert’s
time. Furthermore, if running the analysis requires connection
to a server, the process has considerably more human overhead,
either requiring someone to run and maintain a local instance
of a server, or considerable cooperation from already busy
researchers.

The approach of querying a server for connectome data, while
undoubtedly convenient, has downsides for reproducibility, with
exactly the same risks as references to web sites. In a decade
or two, the servers may be unavailable, the queries that are
supported may have changed, or the owners may have moved
on and no longer remember (or care) how to run the needed
servers. A number of technical fixes to this problem have been
proposed, such as scientific workflows (SWFs) (Altintas et al.,
2004), virtualization (Dudley and Butte, 2010), and automated
build systems such as Docker (Boettiger, 2015). However, each
of these has their own disadvantages and overheads, particularly
when combining two or more analyses that were archived using
different methods. Furthermore, the author is skeptical that these
methods will remain effective over the multi-decade timescales
desired for scientific reproducibility.

However, despite these drawbacks, the use of servers with
queries instead of text files is technically inevitable. Text forms
are not efficient enough for the bigger data sets, and with a
large data set a way to get desired subsets will be needed in
any event. Larger and more powerful computers will not solve
this problem, as their capacity will surely be used to attack
correspondingly larger problems. Therefore it is incumbent on
the researchers in the field of connectomics, in the interest
of scientific reproducibility, to make sure their interfaces are
efficient, stable, and well-documented.

4.4. Formal Analysis Conclusions
Public and archival storage of connectomic data and algorithms
remains an area for development. For now, the field is dependent
on the good will of practitioners to preserve and provide access
to the data they collect, and the algorithms that operate on
that data. We urge that they continue to use best practices, and
perhaps a concensus solution will emerge. A funded center, with
storage and the most common analysis tools, seems like the long
term answer. TheNational Center for Biotechnology Information
already stores and analyzes many forms of biological data, in
addition to its original charter of genetic information. It would
make sense for this center, or its equivalent in other countries, to

pick up the task of storing and providing access to connectomic
data.

5. INPUT

The final use case is “Input,” where the connectome is used as
input to another process. In general the goal of connectome
reconstruction is not the connectome itself, but a mechanistic
understanding of the operation of the nervous system. This
involves integrating other data, obtained from other sources by
other methods. This is because the EM images typically used for
circuit reconstruction show the detailed shapes of cells, and the
existance, location, and partners of synapses, but many details
critical to the circuit and synapse operation are not visible in these
images. Gap junctions and synapse models including transmitter
and receptor types are the most obvious examples, but locations
of ion channels, receptors and sources for neuromodulators
and hormones, biochemical cascades affecting synapses, and
sensor/actuator links to the sensory andmotor system are needed
as well.

This additional data must be generated by methods other
than electron microscopy. The neurotransmitter(s) of each cell
can often be determined by techniques such as RNA sequencing
(Croset et al., 2018), or Fluorescent in-situ Hybridization (FISH)
(Spencer et al., 2000). Receptors expressed by a cell can also be
found by RNA sequencing, but this does not tell where each
receptor is expressed. This is a particular problem in insects,
where many of the main transmitters, such as acetylcholine
and glutamate, have multiple different receptors, sometimes of
differing sign (Osborne, 1996), and all expressed in the same
cell. In the case of a single receptor and a single cell type, this
problem has been approached via FISH, but techniques with
higher throughput are clearly needed. A combination of multi-
color labeling (Bayani and Squire, 2004), genetically identified
cell lines, and expansion microscopy seems the most likely
approach to resolving this. An entirely different approach (Jonas
and Turaga, 2016; Tschopp and Turaga, 2018) is to reverse fit
the known operation to try to find the sign, strengths, and time
constants of the synapses.

Integrating this additional data with connectomes is both an
opportunity and a requirement in the quest to understand the
operation of the nervous system.

5.1. Input for Simulation
One typical use for connectomes includes neural simulators
such as Neuron (Carnevale and Hines, 2006), Genesis (Bower
and Beeman, 2012), or Nest (Gewaltig and Diesmann, 2007),
or a theoretical model of circuit operation. This seems
straightforward in principal, but there are several concerns. First,
there can be problems with the accuracy of extracted values.
Second, the data (particularly from EM) can be too detailed, and
overwhelm downstream tools. Conversely, some of the required
data will still be missing, and must be supplied from other
sources.

One problem is the accuracy of extracted parameters, such
as the cytoplasmic resistance and the membrane capacitance.
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FIGURE 5 | An illustration of the central problem of circuit simulation from EM reconstruction. (A) shows the run time for a simulation of the ON-pathway motion

detection circuit from Drosophila, when exposed to patterns moving in the four cardinal directions, using the simulation program Neuron. When the full “compartment”

model (one compartment per extracted segment) from the EM reconstruction was used, run times exceeded 105 s, or more than one day. The “compressed” form,

which keeps only the branch points of the neuron and merges all other segments, ran in minutes. The “node” model, where each neuron is represented as a single

compartment, ran in seconds. For this circuit, the difference in accuracy between the representations is small (Gornet and Scheffer, 2017). (B) however, shows the

neuron CT1, where reduction to a single node leads to incorrect results. The large size (scale bar is 10µm) and small connecting neurites create a many-millisecond

delay between the clusters defined by the dotted ellipses. If the neuron model is compressed to a single node, as is optimal for (A), this delay will not be simulated

correctly.

Some techniques for obtaining connectomes, such as bar-
code sequencing, do not generate this information, even
approximately, so it must be supplied from other sources. Even
techniques that do reveal morphology of cells, such as optical
or EM, are subject to errors introduced in the staining and
fixing process. None of the reconstruction techniques reveal
the resistivity of the cytoplasm. Membrane capacitance is well-
defined, per unit area, but influences such as myelinization can
change the effective value.

Another problem arises if simulation of extracted
connectome, or a theoretical model of operation, is the
goal. In these cases the models from EM reconstruction are
typically much more detailed than needed, requiring intelligent
reduction to get a useable representation (Gornet and Scheffer,
2017). A typical neuron reconstructed by EM has hundreds if not
thousands of segments, typically represented as an SWC file. This
is much more detail than required, at least when considering
electrical effects, and results in impractical runtimes. Reducing
the level of detail leads to orders of magnitude better execution
times, and for many neurons the resulting error is acceptable.
There are some neurons, however, where full reduction leads to
inaccurate simulations. This problem is illustrated in Figure 5,
where the first panel shows the impracticality of including all
detail, but the second panel shows a case where the detail cannot
be entirely ignored.

This analysis can be quantified using a simple approximation
of simulation accuracy, which shows that EM produces much
more detail than is likely required, but that larger neurons cannot
be reduced to a single compartment. Neurons operate on roughly
millisecond time scales. Compartments with much smaller time
constants make solving the equations of simulation difficult (due

to both the large number of compartments and the wide span
of time constants) while adding little accuracy. Compartments
with time constants much larger than a millisecond are easy to
simulate but may be silently inaccurate. So what is in general
desired is a model with time constants somewhat less than a
millisecond, but not too much less. The exact tradeoff of course
depends on the accuracy needed and the circuit under analysis.

Using a resistor-capacitor(RC) model to estimate time
constants, the Elmore delay (Elmore, 1948) d of a cylinder of
diameter D, length L, cytoplasmic resistivity ρ, and membrane
capacitance Cm, is

d =

R · C

2
=

1

2
· ρ

4L

πD2
· CmπdL = ρCm

2L2

D
(1)

Typical values are ρ = 1 ohm·m, and Cm = 10−2 F/m2. A thin
branchmight have a diameterD of 100 nm or 10−7m,while a very
thick neurite might have a a diameter of 10µm. The resulting
delays are shown in Figure 6. For example, a length L of 50µm
yields a delay of 0.5 millisec for a thin neurite.

Since the delay scales as L2, but only inversely as diameter D,
this means that even a very thin branch will allow compartments
10µ in length, within which the differential delay will be less than
100µs. Conversely, long neurons (such as those 1 mm or longer)
will need to be divided into compartments, even if they are very
thick, to keep the differential delay under a millisecond.

This drives the requirement that the EM skeletons must
be reduced (otherwise they will overwhelm simulation
resources and create time-constant problems), but
cannot be reduced indiscriminately (or they will not be
accurate). Very similar problem have been addressed in
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FIGURE 6 | Electrical delay through a simple model of a neurite as a function

of length and diameter.

the field of electronics when simulating circuits derived
from IC layouts, and previously developed solutions
(for example, Sheehan, 1999; Ionutiu et al., 2011; Reis
and Stykel, 2011) can provide good starting points
here.

Consider what would be needed to do a simulation of a
functional unit comprising a subset of amuch larger connectome.
Even in a small animal such as an insect, just defining the
subset of neurons to simulate is already a big task if performed
manually—a typical functional circuit (say the mushroom body,
the seat of olfactory learning in insects) already contains
a few thousand neurons. In a vertebrate or mammal, the
circuits are likely even larger. Here are some of the steps
required:

• First, the user needs to pick out the relevant neurons
that define a sub-circuit to simulate. This can require
defining sizeable subsets from circuits containing hundreds
of thousands of neurons (for connectomes currently being
reconstructed as of 2018). This is already too big to do
manually.

• Next, the user must decide what to do with the neurons that
stick out of the volume. Outside the volume, theymay not need
synapses, but will need ion channels, cytoplasmic volume, and
so on, to get characteristics such as time constants right.

• The user must decide which synapses to include. Since these
are often detected automatically, there may be a recall-
precision tradeoff in this decision. The user may wish to get
as many synapses as possible, at the cost of false positives, or
use only those that are certain.

• The user must decide how the synapses work. The first step
is defining the neurotransmitters(s). These may be available
from NeuroSeq or explicit staining, but these are different
databases, maintained by different folks for different purposes,
using different nomenclature.

• Next, the receptors need to be decided. Often there are
multiple families of receptors (for example muscarinic and
nicotinic) and then many variations on these.

• The usermust decide how to drive the inputs and what outputs
to measure. The neural coding used by animal brains can
make this cumbersome. For example, one representation of
odor in a fruit fly is believed to involve a 6% randomly sparse
representation of roughly 3000 neurons. Even defining one of
these patterns requires effort.

• The software must then compress the neurons down to a
sensible size, small enough to simulate efficiently but not so
small as to introduce significant inaccuracy.

• Finally, then the user can perform simulations to try to figure
out biology, likely involving comparisons to electrophysiology
and/or behavior.

To make this easier, the software that writes the
simulator input should do a number of these (non-
trivial) operations automatically, then format the file for
the simulator concerned (perhaps Neuron, Genesis, or
Nest).

An interesting problem that has not yet been seriously
addressed is matching simulation results with in-vivo recordings
made before the reconstruction. Several data sets have acquired
in-vivo 2-photon calcium imaging of nervous system activity
before ex-vivo reconstruction, usually with the goal of identifying
some subset of cells in later images (Bock et al., 2011;
Briggman et al., 2011; Lee et al., 2016). Matching simulated
with measured results holds the potential of demonstrating
that all relevant factors have been considered. We are quite
far from this ideal currently, due to both lack of detailed
knowledge of much of the cellular machinery, and limitations of
current reconstructions. In particular, all existing reconstructions
include many neurons that extend outside the reconstructed
volume. Accurate simulation of these neurons is impossible,
nor can the activity of all such neurons be adequately
measured by existing techniques. Better recording techniques,
increased knowledge of cellular detail, and larger reconstructions
will all bring this goal closer, but it remains many years
away.

Finally, large, and particularly full-animal, connectomes will
drive the requirement to co-simulate with mechanical and other
simulators. These will be animal and environment specific, such
as acoustic simulation for animals that echolocate, hydrodynamic
simulation for animals that swim, and aerodynamic simulation
for animals that fly. This co-simulation will require cross-domain
conversion, for example converting neural activity to muscular
forces, to drive mechanical models, and converting joint angles,
forces, and other sensory inputs back into neural codes. Steps in
these directions have been taken by programs like AnimatLab
(Cofer et al., 2010) and FlySim (Huang et al., 2014), but much
more remains to be done.

6. CONCLUSIONS

Until recently, connectomes have been difficult and time
consuming to acquire. Analysis took a comparatively small effort
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and was performed by the same team doing the reconstruction.
Reconstruction technology, however, is rapidly improving and
we are about to enter a new era. In this era, analysis rather
than data collection will dominate, and the researchers doing
analysis will often be distinct from those doing reconstruction.
This change happened quickly in the field of genomics, and we
need to plan for a similar transition in connectomics.

Along these lines, we note that the many unique analyses
required to date are likely a result of our lack of understanding
of the principles behind neural circuit organization. It seems
likely that as more and more connectomes are analyzed, patterns
of circuit organization will emerge. In the future, it is therefore
possible that a standard set of analyses may suffice for most users,
as is currently the case for genomics.
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