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Summary

In this work, we present the development and char-
acterization of a strain of Pichia kudriavzevii
(TY1322), with highly improved phytate-degrading
capacity. The mutant strain TY1322 shows a bio-
mass-specific phytate degradation of 1.26 mmol
g ' h™' after 8 h of cultivation in a high-phosphate
medium, which is about 8 times higher compared
with the wild-type strain. Strain TY1322 was able to
grow at low pH (pH 2), at high temperature (46°C)
and in the presence of ox bile (2% w/v), indicating
this strain’s ability to survive passage through the
gastrointestinal tract. The purified phytase showed
two pH optima, at pH 3.5 and 5.5, and one temper-
ature optimum at 55°C. The lower pH optimum of
3.5 matches the reported pH of the pig stomach,
meaning that TY1322 and/or its phytase is highly
suitable for use in feed production. Furthermore,
P. kudriavzevii TY1322 tolerates ethanol up to 6%
(v/iv) and shows high osmotic stress tolerance.
Owing to the phenotypic characteristics and non-
genetically modified organisms nature of TY1322,
this strain show great potential for future uses in
(i) cereal fermentations for increased mineral
bioavailability, and (ii) feed production to increase
the phosphate bioavailability for monogastric ani-
mals to reduce the need for artificial phosphate for-
tification.
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Introduction

Phytases are enzymes that degrade phytate by hydrolys-
ing its phosphate groups and simultaneously release its
bound or chelated minerals, proteins and/or starches. In
order for monogastric animals, including humans, to utilize
the nutrients bound to the phytate in food, degradation of
phytate is necessary. Monogastric animals do not have
phytase enzymes in the intestinal tract, hence phytate
degradation needs to be mediated by external enzymes.
Phytate degradation can be achieved in different ways, for
instance during food fermentation by phytase-active
microorganisms (De Angelis et al., 2003; Rizzello et al.,
2010), through addition of commercial phytase solutions
(mainly in the feed industry) (Dersjant-Li et al., 2014) or by
endogenous phytases present in the food or feed raw
materials (Leenhardt et al., 2005). In the feed industry,
phytase solutions are added to the feed with the main goal
of releasing phosphate, thereby reducing the need for arti-
ficial phosphate fortification and reducing the subsequent
eutrophication issue. For pig feed applications, a phytase
having a pH optimum around 3.5 is desirable, as this is the
approximate pH in the stomach of pigs (Kim et al., 2006),
and can allow continuous phytate degradation inside the
stomach also after ingestion of the feed. In human nutri-
tion, the focus is on increasing the mineral and protein
bioavailability from the food. Addition of commercial phy-
tase solutions is currently not applied in human food pro-
duction, mainly due to the fact that all commercial phytase
producing organisms today are genetically modified
organisms (GMO), which is commonly not accepted for
human food production. Phytate degradation in food is
instead mediated mainly by fermentations using phytate-
degrading microorganisms, or during the food processing
by the endogenous phytases in the food matrix.

One example of a food fermentation of recent increas-
ing scientific and public interest is sourdough. In sour-
dough fermentations, both yeasts and lactic acid bacteria
are present, and contribute to both the organoleptic and
nutritional properties of the product, for example through
phytate degradation and mineral release (Nielsen et al.,
2007; Pable et al., 2014; Caputo et al., 2015). Previous
studies have reported isolation of several different yeast
species from sourdough (Meroth et al., 2003; Pulvirenti
et al., 2004; Nuobariene et al., 2012) where Pichia kudri-
avzeviiis one of the often isolated species. In our previous
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work (Hellstrom et al., 2012; Hellstrom et al., 2015a,b),
one strain of P. kudriavzevii, TY13, originally isolated from
the traditionally fermented Tanzanian food called Togwa
(Hellstrom et al., 2010), was investigated for its high phy-
tate-degrading capacity. Although several yeasts are
known to produce phytase enzymes (Kaur et al., 2007;
Hellstrom et al., 2010), the enzymes are in most cases
exported only into the periplasmatic space, leaving the
enzymes trapped inside the yeast cell wall. Our previous
work on P. kudriavzevii TY13 revealed, however, this
strain’s impressive ability to release non-cell-bound phy-
tases also to the surrounding medium, from young grow-
ing populations (i.e. not by leaking from lysing old cells)
under certain cultivation conditions (Hellstrom et al.,
2015a,b). Released enzymes in the surrounding media
may (i) significantly increase the interactions between the
substrate (phytate) in the food matrix and the phytase
enzyme, thereby increasing the overall phytate degrada-
tion and mineral release and (ii) greatly ease the product
recovery during industrial production of phytase solutions.
Furthermore, the TY13 strain was able to rapidly degrade
phytate also at moderately high concentrations of phos-
phate (Pi) in the surrounding medium, which has previ-
ously shown to inhibit the phytase expression by yeast
(Andlid et al., 2004). In addition, recent data from our lab-
oratory (unpublished) also revealed efficient degradation
of phytate during fermentation of a model bread dough
using TY 13, indicating the strains promising capacity to be
used in future starter cultures and/or commercial bread
production.

As the phytase activity from the promising strain TY13
was still to some extent regulated in response to the med-
ium composition in our previous study (Hellstrom et al.,
2015a,b), the present study was undertaken to further
evolve TY13 to create strain(s) with (i) improved phytate
degradation at high surrounding Pi levels, (ii) increased
phytate degradation per biomass and, preferably (iii)
increased ratio of exported non-cell-bound phytases. As
GMO are commonly not accepted for use in food produc-
tion, and not well received by consumers, this study
employs the alternative method of random mutagenesis
induced by UV irradiation, followed by selection of positive
mutant strains. As the nature of the mutation(s), i.e. the
location and type of mutation, is not known using this ran-
dom mutagenesis method, an important aspect during the
evaluation of mutant strains is to ensure sustained pheno-
typic traits. For successful implementation of the mutant
strain in industrial or household settings, maintained
growth capacity under different conditions is of high impor-
tance.

In this study, we present the significantly improved
yeast strain, TY1322, originating from TY13. This study
presents strain mutagenesis and selection, phenotypic
characterization the strains, characterization of the

biomass-bound phytase and finally the purification
and characterization of the released non-cell-bound
phytase.

Results

Mutagenesis and isolation of improved strains of
P. kudriavzevii TY13

Exposure of UV at 254 nm for 18 s was chosen to
achieve about 60% survival rate. The mutagenesis was
performed in two consecutive rounds, using strain
P. kudriavzevii TY13wt (wild type) as parental strain in
the first round, and strain TY1310 in the second round.

From the first round, a total of 6653 colonies were
examined for blue colour formation on 5-Bromo-4-chloro-
3-indolyl phosphate (BCIP) agar plates. The screening
resulted in selection of 33 colonies with presumably
increased phosphatase activity, based on stronger blue
colour formation on the BCIP plates. Screenings of the
33 selected putative mutants in liquid cultures of PMyopi
and PMyp; led to the final selection of a strain annotated
TY1310 as the most prominent one (data not shown).

In the second round of mutagenesis, using strain
TY1310 (from the first round) as parental strain, a total
of 8109 colonies were investigated on the BCIP agar
plates. From those, 89 colonies were initially selected for
a second investigation on BCIP plates, resulting in a
final selection of 21 colonies (having stronger blue colour
formation) for further screenings.

Screenings for strains with improved phytate-degrading
capacity

First, single liquid cultures of the 21 putative mutants
from the second round of mutagenesis, together with the
two parental strains TY13wt and TY1310, were
assessed for phytate degradation in PMyopi (phosphate-
free phytate medium) and PMyp; (high-phosphate phy-
tate medium). The putative mutants fell into three groups
based on amount degraded IPg, showing high (number
22, 81, 84), medium (number 2, 18, 40, 85) or low (num-
ber 13, 19, 23, 24, 32, 34, 36, 37, 50, 53, 56, 59, 60,
72) phytate degradation (Fig. 1A and B).

A large group of the putative mutants (number 13, 19,
23, 24, 32, 34, 36, 37, 50, 53, 56, 59, 60, 72) together
with the two parental strains, TY1310 and TY13wt,
showed inhibited phytate-degrading capacity at high Pi
levels (Fig. 1B). In the Pi-free medium (Fig. 1A), this
group still showed clearly lower phytate-degrading
capacity compared with the other two groups. The origi-
nal strain, TY13wt, consistently showed the lowest phy-
tate-degrading capacity at the prevailing conditions, and
the second parental strain, TY1310, was found among
the low-phytate-degrading group of putative mutants.
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Fig. 1. Screenings of the 21 putative mutants of the second-round mutagenesis, the wild-type strain TY13 (wt) and the second-round mutagen-
esis parental strain TY1310 (number 10). (A) IPg degradation in single liquid cultures in PMyop; medium (YNB w/o phosphate, IPg 3 g 17", glu-
cose 20 g I7" in succinate buffer). The presented data represent degradation after 6 h of incubation. (B) IPg degradation in single liquid cultures
in PMyp; medium (YNB w/o phosphate, IPg 3 g 177, glucose 20 g I”", Pi 3.5 g ™" in succinate buffer). The presented data are after 6 h of incu-
bation. (C) Screening for released non-cell-bound phytase activity in a secretion-inducing medium (YNB w/o phosphate, yeast extract 10 g I,
glucose 20 g 7" in succinate buffer pH 5.5). The assay is performed on cell-free supernatants from 9 h old cultures, and the presented data
are from 15 min of assay time.
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Second, the 21 putative mutants were further
assessed for secretion of non-cell-bound phytase in
secretion-inducing medium (SIM) and in a non-secretion-
inducing medium (NSIM). In SIM, none of the mutants
demonstrated any obvious improvement in non-cell-
bound phytase activity compared with the parental
strains TY13wt and TY1310 (Fig. 1C). Furthermore,
none of the putative mutants showed secretion of non-
cell-bound phytase in NSIM (data not presented).

From the screenings, strains TY1322, TY1384 and
TY1381 showed the most prominent results in terms of
phytate-degrading capacity and reduced phosphate
repression. From the growth assessment, strain TY1381
showed impaired growth at several conditions (data not
shown). Strain TY1322 was finally selected for further
characterization.

Characterization of phytase-active mutant strains
TY1310 and TY1322

The mutant stability of strains TY1310 and TY1322 was
assessed by cultivation of the strains for several genera-
tions on non-selective medium (yeast extract peptone
dextrose, YPD), followed by assessing the phytase activ-
ity. At no occasion were there any fluctuations in phy-
tase activity observed from the strains, indicating that
the mutation obtained is stable in the strains.

To more thoroughly compare the two strains TY1310
and TY1322 with the wild-type strain TY13wt, the growth
and phytate-degrading capacities of the strains were
assessed by cultivations in PMyp; medium. Phytate-
degrading capacity and growth performance were
assessed. As seen (Fig. 2A and B) strain TY1322
showed almost complete phytate depletion at 6 h of cul-
tivation (1.69 mM phytate degraded), while strain
TY1310 showed only 0.39 mM phytate degradation and
TY13wt showed no degradation. The growth capacity is
largely maintained in the two improved mutant strains
compared with the wild-type strain.

Furthermore, the degradation was also evaluated in
PMnopi medium, where strain TY1322 showed complete
phytate degradation (1.87 mM) at 6 h of cultivation and
1.12 mM degradation at 4 h of cultivation. At6 hand 4 hin
the same medium, strains TY1310 showed 0.82 mM and
0.17 mM phytate degradation, and strain TY 13wt showed
0.68 mM and 0.07 mM phytate degradation respectively.

The temperature and pH optima for the strains phy-
tase activities were determined, revealing a phytase
activity optimum at 55°C for both TY1322 and TY13wt
(Fig. 3A). The phytase activity at different pH for the bio-
mass-associated phytase of TY13wt and TY1322
showed a pH optimum at 3.5 (Fig. 3B).

To investigate the cell-bound phytate-degrading capac-
ity from the viable yeast cells of strains TY13wt and
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Fig. 2. Phytate degradation and growth (optical density at 600 nm)
for strains TY13wt (solid line), TY1310 (dotted line) and TY1322
(dashed line), cultivated in PMyp;. All data are means of triplicate
cultures with standard deviation presented. Panel A shows the phy-
tate degradation (mM) and panel B shows the growth as measured
by optical density (600 nm) during 24-h cultivation.

TY1322, biomass was harvested after 6, 8, 10 and 15 h
of incubation in a Pi-rich and IPg-rich medium. The bio-
mass-bound activity by strain TY1322 was consistently
higher than that of the parental strain TY13wt (Fig. 4).
The wild-type strain showed no phytate degradation dur-
ing the first 8 h of cultivation, whereas strain TY1322
showed immediate phytate degradation already at the
first time point (6 h). At 8 h of cultivation, the biomass-
bound activity by TY1322 is 1.26 mmol g~ ' h™', which is
about 8 times higher compared with TY13wt. Further-
more, both strains show a peak in biomass-bound activity
at 8 h of cultivation under those conditions.

Purification and characterization of TY13 phytase

The secreted non-cell-bound phytase was concentrated
and purified by fractionation on Sephadex G75 gel column.
Samples from each step of the purification process were
analysed for phytase activity (U mi~") and protein content
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Fig. 4. Biomass-specific phytase activity during cultivation of strains
TY13wt (grey bars) and TY1322 (white bars) in a high-phosphate

(8 g I"") and high-phytate (3 g I"') medium. Samples were taken at
6, 8, 10 and 15 h and the biomass specific activity is presented as
mmol degraded IPg per g dry weight biomass and hour of enzymatic
reaction.

(mg ml~") to determine the yield and degree of purifica-
tion. Table 1 presents the protein content and the phytase
activity of the samples from each of the purification steps.

Improved phytase-active strain of P. kudriavzevii 345

Table 1. Summary of purification of phytase from Pichia kudriavze-
vii TY13wt and TY1322.

Total Total Specific
protein  activity activity Purification Yield
Sample (mg) (mU) (Ug™ (fold) (%)
TY13wt
Culture filtrate  2810.06 55 610 19.79 1.00 100
Amicon 85.84 15210 177.21 8.96 27.36
concentrate
Spin filter 4395 12200 277.66 14.03 21.95
concentrate
Sephadex G75 6.15 12 950 2105.69 106.41 23.29
TY1322
Culture filtrate  3260.05 62 750 19.25 1.00 100
Amicon 101.85 16 140 158.43 8.23 25.72
concentrate
Spin filter 80.04 12330 154.03 8.00 19.65
concentrate
Sephadex G75 5.54 12 540 2266.42 117.75 19.99

The protein content and the phytase activity of the anal-
ysed fractions for TY13wt and TY 1322 were investigated
(Fig. S1). The analysis of protein content yielded three
main peaks, in fraction 4-5, fraction 7 and fraction 10-13,
with a shoulder peak in fraction 15 (Fig. S1). For both
strains, the phytase activity was found in the first protein
peak, corresponding to fractions 3, 4 and 5, which were
pooled followed by determination of phytase activity and
protein content of the pooled sample. Fraction number 6
was not pooled, even though it shows phytase activity, as
this fraction possibly also contained the proteins corre-
sponding to the second peak in the chromatogram.

The pooled respectively samples of TY13wt and
TY1322 were denaturated with mercaptoethanol and run
on a polyacrylamide gel along with a known size ladder.
The phytase size was estimated to be 120 kDa for both
samples, there were no larger protein bands appearing
on this gel.

High-resolution, high-mass accuracy proteomic analysis
of the respective pooled sample from TY13wt and TY 1322
confirmed the identity of phytase proteins in both samples.
The genomic database for P. kudriavzevii from the Uniprot
repository contains four sequences with the RHGXRXP
sequence motif, which is characteristic for phytases. The
three of four phytase sequences were confidently identi-
fied in both purified samples with 1-14 unique peptides at
1% false discovery rate, suggesting that the three
sequences are expressed in both samples (Table S1).
Proteomic analysis suggests that the phytases are plausi-
bly the main components of both samples. The protein
sequence coverage is very similar between the TY13wt
and the TY 1322 sample, ranging from 19% to 37% for dif-
ferent phytases. However, such an experiment cannot
prove or contest the potential sequence differences for
each of the phytases between the strains, as the strain-
wise genomic sequencing information is not available.
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The purified phytase samples of TY13wt and TY1322
respectively were assessed for temperature and pH
optima. The temperature optimum was 55°C (Fig. S2A)
for the purified phytase of both TY13wt and TY 1322, and
there were two pH optima (Fig. S2B) at pH 3.5 and 5.5.
The purified phytase showed much broader tolerance
towards both pH and temperature, as compared to the
assay of the cell-bound enzymes (Fig. 3A and B).

The phytase samples were further assessed for its
phytase activity in the presence of various metal ions
and at high levels of phosphate. Both TY13wt and
TY1322 phytases showed the same response in activity
towards the tested ions; more or less no influence from
Ca®" and Mg?* at any of the tested concentrations, an
almost linearly increased inhibiton from Cu?* with
increasing ion concentration and a complete inhibition
from Fe®* already at 1 mM concentration (Fig. 5A).

The purified phytase showed no inhibition in phytate-
degrading capacity at high levels of phosphate
(3.5 g I"") in the assay mixture compared with the activ-
ity found in the phosphate-free assay mixture (Fig. 5B).

To assess the phytase temperature stability, the puri-
fied phytase from strain TY1322 was incubated at the
temperatures 55°C, 65°C, 75°C, 85°C and 95°C for 10
respectively 60 s. The results revealed no decrease in
phytase activity after 10 s at 65-85°C (above 99% main-
tained activity compared with the positive control). Incu-
bation at 95°C resulted in 83% maintained activity at
10 s of incubation. After 60 s of incubation, only the
sample treated at 65°C maintained any activity, corre-
sponding to 47% of the initial activity.

Phenotypic characterization of yeast strains TY 13wt and
TY1322

Growth (determined as optical density) was assessed
under acidic conditions, in the presence of ox bile and at
elevated temperatures. Those experiments were carried
out in duplicate cultures for 3 days of incubation; the
results are presented in Fig. 6A.

The two strains, TY13wt and TY1322, showed similar
temperature tolerance, being able to grow up to 46°C,
albeit the growth was successively impaired with the
temperature raise (Fig. 6A). Both strains grew well in the
presence of ox bile up to 2% (w/v) and both were able
to grow in acidic conditions down to pH 2 (Fig. 6A). The
growth was however inhibited at pH 2 and the cultures
reached only about 50% of the cell density found at
pH 3. Our data suggest that those two strains of P. ku-
driavzevii prefer lower pH for growth, reaching the
highest cell density in a medium of pH 3.

Furthermore, growth assessment was also done to
investigate utilization of different carbon sources, growth
in ethanol or lactic acid and to test the osmotic stress
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Fig. 5. Relative phytate-degrading capacity (% of maximum activity)
of the purified phytase from strain TY13wt (O) and TY1322 (@) dur-
ing the presence of iron (short dashed line), copper (dotted line),
calcium (long dashed line) and magnesium (solid line), presented in
(A). (B) It shows the amount of degraded phytate from the purified
phytase of strain TY13wt and TY1322 during phytase assay at the
presence of phosphate (3.5 g I”") or without the presence of phos-
phate; TY13wt in high-phosphate assay (white bar), TY13wt in
phosphate-free assay (grey bar), TY1322 in high-phosphate assay
(vertically striped bar) and TY1322 in phosphate-free assay (hori-
zontally striped bar).

tolerance by cultivation in high-glucose media. All experi-
ments were again carried out in duplicate cultures, but
this time for 2 days of incubation, the results are pre-
sented in Fig. 6B.

The two strains TY13wt and TY1322 were able to
grow in a medium containing yeast extract (1%), pep-
tone (2%) with either ethanol up to 6%, or with lactic
acid at 1% (Fig. 6B). The strains were also tolerant to
osmotic stress as induced by glucose concentrations up
to 60%.
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Fig. 6. (A) It shows the growth of strain TY13wt (dark bars) and
TY1322 (white bars) at different temperatures from 27°C to 50°C (in
YPD of pH 6.5), in the presence of ox bile from 0.5% to 2% (in YPD
with pH 6.5, at 37°C) and at pH from 2 to 4.8 (at 37°C). Growth
was assessed after 3 days on incubation as optical density at

630 nm. (B) It shows the growth of strain TY13wt (dark bars) and
TY1322 (white bars) in YP based media with different levels of lactic
acid, ethanol or glucose. All incubations were done at 30°C and
growth was assessed after 2 days on incubation as optical density
at 630 nm.

The strains did not show growth on other carbon
sources than glucose in this setup (data not shown).
Neither of the strains showed strong resistance towards
oxidative stress, having a growth inhibition zone (i.e. the
radius from the H,O, disc to the growing cells, indicating
the zone of inhibition) with a diameter of 17 mm for
TY13wt and 15 mm for TY1322.

Discussion

This study presents the successful mutagenesis of the
phytate-degrading yeast P. kudriavzevii TY13 resulting

Improved phytase-active strain of P. kudriavzevii 347

in the improved strain P. kudriavzevii TY1322 with
strongly increased phytate-degrading capacity. In addi-
tion to superior phytase production, the strain also has
other phenotypic properties suitable for applications in
food and feed industries.

The improved strain was achieved by random UV
mutagenesis and subsequent selection of improved
phosphatase positive mutants based on colour develop-
ment on an agar-based medium. The selection of phos-
phatase positive strains successfully also led to the
isolation of phytase-active strains. Our results clearly
show improved phytate-degrading capacity of the
improved strain TY1322 over the wild-type strain TY 13wt
and the intermediate parental strain TY1310.

There was a very small growth impairment in strain
TY1322 at certain conditions (Fig. 2B) which is not an
unexpected trade-off considering that this strain must use
a larger part of its available energy for phytase biosynthe-
sis, and hence less for biomass formation, something
that has been shown also in previous work (Veide and
Andlid, 2006). However, this growth impairment was
more or less a negligible side effect in comparison with
the strong positive outcome being the essentially
improved phytate-degrading capacity (Fig. 2A).

The phytase activity of strain TY1322 was not
repressed at the high phosphate concentrations used in
this work (3.5 g I7"), as opposed to the wild-type strain
at the same conditions. The strain TY1322 shows
promising results also in comparison to other studies on
phytases and phosphate repression, for example the
phytase from Sporotrichum thermophile (Singh and
Satyanarayana, 2008) which showed a significant
repression on phytase production already at 0.25%
phosphate concentration. The superior nature of strain
TY1322 was further underlined by a much higher phy-
tase activity from its biomass, compared with TY 13wt in
a high-phosphate medium (Fig. 4). The phytase activity
from TY13wt biomass was more or less undetectable
until 10 h of cultivation, which is probably an effect of
the surrounding phosphate levels still being too high for
the yeast to actively express phytases. As the phos-
phate levels in the surrounding medium then decreased
during prolonged incubation time, the phytase activity
could be detected at the later stages of incubation. For
the biomass of strain TY1322 on the other hand, phy-
tase activity was detected already at 6 h of incubation,
and after 8 h of cultivation, the activity by biomass of
strain TY1322 was about 8 times higher compared with
the wild-type biomass.

Other studies on improvement of microbial phytase
activity has used optimization of cultivation conditions as
the method for improvement and achieved, for example
3.75-fold improvement in S. thermophile (Singh and
Satyanarayana, 2008) and 10-fold improvement in
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Saccharomyces cerevisiae (Ries and Alves Macedo,
2011). This grade of improvement highlights the outcome
of our strain improvement by mutagenesis, being an
eightfold improvement, and further opens up for future
potential improvement by cultivation optimization.

The phytase from strains TY13wt and TY1322 was con-
centrated and purified by filtration methods and Sephadex
chromatography. This methodology allows a very high
degree of purification, but cannot guarantee complete
purification as other same sized proteins may be present
in the final pooled sample. In this work, we refer to the
highly purified and pooled sample as ‘purified’. The puri-
fied non-cell-bound enzyme showed two pH optima, at 3.5
and 5.5, while the pH optimum for the cell-associated
enzyme (incubation done with washed biomass) was 3.5.
The reason for the different pH optima still remains
unknown to us, but it may be hypothesized that the pres-
ence of the biomass in various ways (chemically or physi-
cally) may affect the activity of the phytase. However, the
pH optimum at 3.5 correlates well with the pH of the pig
intestine (Kim et al., 2006), making the phytase produced
by P. kudriavzevii TY1322 very suitable for use in feed
production in order to increase phosphate availability and
reduce the need for synthetic phosphate fortification and
the accompanying eutrophication issues. We have also
demonstrated in this work that the strain TY1322 is able to
release its phytase to the surrounding medium (depending
on medium) in young viable cultures which, as discussed
in our previous work (Hellstrom et al., 2015a,b), is not to
be compared to the phytase release that occur in old cul-
tures as an effect of dying and lysing cells. This early and
high phytase release indicates a great potential applica-
tion for reduced downstream processing in industrial
crude phytase production, using this non-GMO strain.

The purified phytase of TY13wt and TY 1322 showed no
repression in activity when assayed at high phosphate
levels, meaning that the improved phytase activity at high
phosphate levels seen by strain TY1322 is indeed an
improved ftrait of the yeast and not a difference in the
expressed phytase by this strain compared with TY13wt.
Furthermore, the phytase produced by TY 1322 maintains
its activity (above 99%) after 10 s of incubation at 85°C.
In the feed industry, heating to around 80-95°C is applied
during the pelleting and held for a short time, from less
than a minute to more than 2 min depending on factory
and setup (Rasmussen, 2010). Although the phytase in
our work was not stable at elevated temperatures for
longer incubation times (60 s), it should be noted that dur-
ing pelleting, various matrices and methods can be used
in which the enzyme can be more or less protected from
the heating (Rasmussen, 2010). To determine the thermo-
tolerance and performance of the phytase from TY1322
for feed production applicability, tests need to be made in
the real matrix under the real conditions.

The activity of the phytase from TY13wt and TY1322 in
the presence of iron and copper was inhibited, while in the
presence of magnesium and calcium, the activity
appeared uninfluenced. The responses to the presence of
metal ions are varying for various phytases, as for exam-
ple Zhang and colleagues (Zhang et al., 2013) found acti-
vation by calcium, no effect of iron (Fe®*") and inhibition
from magnesium and copper on fungal phytase, while
Igamnazarov and colleagues (lgamnazarov et al., 1999)
found activation by both magnesium and calcium, and
inhibition by iron and copper on a bacterial phytase.

The proteomic analysis of the pooled purified samples
of TY13wt and TY1322 shows a strikingly similar picture,
with the three phytase sequences identified as the most
abundant proteins in the preparations. Sequence cover-
ages were also very similar between the TY13wt and
TY1322 preparations (Table S1). However, in the
absence of the gene sequencing data for each of the
strains, proteomic experiment could not account for
potential for mutations within the phytase sequences. As
the characterization of the samples (performance at vari-
ous pH, temperatures, in the presence of metal ions,
etc.) showed the same results for both the TY13wt and
TY1322 samples, the proteomic results further adds to
our belief that the mutagenesis has resulted in an
improvement of the yeast itself, rather than in the phy-
tases produced by the yeast.

The wild-type strain TY13wt and the improved strain
TY1322 were further subjected for some phenotypic char-
acterization. There was no major difference in growth per-
formance during any of the investigated conditions for
TY 1322 compared with TY13wt. The strains were thermo-
tolerant and grew up to 46°C; however, the growth was
inversely correlated with higher temperatures and the
highest growth occurred at 27-30°C. The strains were not
sensitive towards ox bile up to 2% and grew well at low
pH, showing growth even at pH 2. Furthermore, the
strains showed high osmotic tolerance by growing in a
medium of 60% glucose, and were also able to grow in
ethanol concentrations up to 6% and lactic acid concen-
trations of 1%. The phenotypic traits of the yeast TY1322
indicates its ability to grow in a wide range of media and
food matrices, and its robustness makes it interesting for
application in industrial food and feed processes.

Cereal-based fermented foods such as Togwa, from
which the wild-type strain in this work was initially isolated,
are consumed containing viable cells. The potential for
TY13wt and TY1322 to survive through the gastrointesti-
nal tract (growth at low pH, in the presence of ox bile and
at 37°C) indicates that they may function as probiotics,
and may be able to mediate continued degradation of
phytic acid from our meal also in the gastrointestinal tract
after consumption. However, the probiotic potential of the
strain TY1322 needs further investigation.
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The phytate-degrading capacity of strain TY1322 was
1.26 mmol IPg per gram yeast and hour (Fig. 4). In a
standard bread dough previously used (Andlid et al.,
2004), 5.7 g yeast was added in a whole wheat flour
dough with a total weight of 533 g, which means
0.011 g yeast per g dough. The dough was found to
contain 9 umol IPg/g. With the capacity of TY1322 found
in the present study, degradation during 1 h of leavening
would be 13.86 umol [IPg/g dough (1.26 mmol x
0.011 g), which is 54% more than the total amount in
the dough. Expressed differently, with the rate found,
TY1322 would degrade all IPg in 39 min. However, sev-
eral factors influence the yeast and enzyme activity in a
dough, hence further studies are needed.

To conclude, yeast strain TY1322 and its phytase are
shown to be promising candidates for application in both
food and feed industries for production of goods with
increased bioavailability of minerals and phosphate.

Experimental procedures
Strains and media

In this work, the strain P. kudriavzevii TY13wt,
previously isolated from Tanzanian Togwa (Hellstrom
et al., 2010), has been used as the parental strain for
UV mutagenesis in order to isolate positive mutant
strains.

For short-term storage, yeasts were kept on YPD agar
plates (10 g 1" yeast extract, 20 g I"! peptone, 20 g I
glucose and 15 g I~" agar) at 4°C for up to 2 weeks. For
long-term storage, yeasts were kept in 15% glycerol
solution at —80°C.

Determinations of survival rate were done by plating
on YPD agar. Selection after mutagenesis was done on
plates containing 6.9 g I~' yeast nitrogen base with
phosphate (Pi), YNByp; (Formedium), 20 g I"' glucose
and 0.05 g I"! BCIP. Colonies possessing phosphatase
activity turn blue on this medium after incubation due to
BCIP, and colonies with higher activity could be visibly
selected for further screenings.

For all liquid screenings, yeast nitrogen base without
phosphate, YNB,,.p; (Formedium), was used together
with glucose and addition of various phosphate sources
and other additives. For liquid screenings of phytate
(IPg)-degrading capacity, two phytate-containing media
(PM) without or with phosphate were prepared, referred
to as PMyopi (YNBy,opi Supplemented with 20 g - glu-
cose, 1 g I=" IPg) and PMyp; (YNB,opi Supplemented
with 20 gl "' glucose, 1 gl' IPg and 35gl"
KH,PO,). For assessing secretion of non-cell-bound
phytase in liquid media, a SIM (YNB,,p; Supplemented
with 20 g I"! glucose and 10 g I™' yeast extract) and a
NSIM (YNB,p supplemented with 20 g1~ glucose)
were prepared.
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In evaluations of biomass-bound phytase activity, a Pi-
and IPg-rich medium was used (succinate buffer at pH
5.5 containing 20 g I"' glucose, 3g 1" IPs, 3591
KHoPOL, YNByo pi)-

All incubations were carried out aerobically at 30°C.

Determination of survival rate

Pichia kudriavzevii TY13 from —80°C storage were inoc-
ulated on YPD agar overnight before transfer to liquid
YPD cultures. The pre-culture was made in two steps,
and cells were washed and resuspended in sterile 0.9%
NaCl solution (saline) before inoculation to the experi-
mental culture of 200 ml YPD to a starting optical den-
sity (OD, 600 nm) of 0.1. The OD was monitored during
growth, and when the cultivation reached middle expo-
nential phase, cells were harvested by centrifugation at
4000 g for 5 min. Cells were washed twice in sterile sal-
ine and resuspended in sterile saline to an OD of 1 (ap-
proximately 107 cells mi~"). A volume of 50 ml was
transferred into a sterile 500 ml beaker containing a
magnetic stirrer and placed on a magnetic stirring table.
The surface of the cell suspension was located 50 cm
below the UV lamp (XX-15M UV Bench Lamp, P/N 95-
0042-15, 15 W and 230V, from UVP, Upland, CA,
USA), which was equipped with two UV-C lamps of
254 nm (G15T8). Aliquots of 5 ml were withdrawn at
times 0, 10, 20 and 30 s and immediately placed in the
dark for 30 min. All work with cells after UV irradiation
was done away from light. The withdrawn samples were
then diluted to approximately 4000 cells mi~', from
which 100 pl were spread onto YPD plates. The plates
were incubated in the dark for 48 h and the number of
colonies was counted for determination of survival rate,
using a non-treated sample as control.

Mutagenesis and selection of improved strains of
P. kudriavzevii TY13

The mutagenesis was done according to the same proce-
dure as for the determination of survival rate, with a total
irradiation time of 18 s. The whole cell suspension was
thereafter immediately placed in the dark for 30 min
before diluting an aliquot of the cell suspension to approxi-
mately 3500 cells ml~", from which 50 pl was streaked
onto several agar plates containing BCIP. All plates were
incubated in the dark for 48 h before colony investigation.
Colonies showing stronger blue colour than the wild type,
or that had an indication of blue halo formation were
selected to be re-streaked and further evaluated.

The mutagenesis was done in two consecutive
rounds, the first one using TY13wt as parental strain,
and the second one using the most prominent strain
from round one, called TY1310, as parental strain.
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Screening methods for strains with improved phytate-
degrading capacity

Selected putative mutants, plus the parental strains
P. kudriavzevii TY13wt and TY1310 from round 1 and 2
respectively, were pre-cultured on YPD plates and then
incubated overnight in 5 ml of the selected screening
media before the screenings were conducted as
described below. Due to the large number of putative
mutants from the mutagenesis, the screenings were per-
formed without replicates.

To assess the phytate-degrading capacity in a phos-
phate-free and a high-phosphate media, respectively, all
putative mutants were inoculated into a volume of 15 ml
of PMnopi and PMyp; respectively, to a starting OD of
0.3, and samples were withdrawn after 0, 3, 6 and 11 h
of incubation. Samples were immediately made cell-free
by centrifugation at 4000 g and the cell-free super-
natants were mixed with HCI to a final concentration of
0.5 M to quench enzymatic reactions. Samples were
then analysed for IPg content by high-performance liquid
ion chromatography (HPIC) as described in our previous
work (Qvirist ef al., 2015) to determine the amount of
degraded IPg. In brief, the supernatant and assay solu-
tion [1 g I”" IPg in acetate buffer (NaAc/HAc) pH 5] were
mixed at 1:5 (vol:vol). Incubation was done at 37°C for
1 h with sampling at 0, 5, 10, 20, 30 and 60 min, with
addition of HCI to a final concentration of 0.5 M to stop
enzymatic reactions. All samples were kept at —20°C
until the phytate analysis by HPIC.

To investigate the release of non-cell-bound phytases
from the putative mutants, they were inoculated into a
volume of 5 ml of SIM and NSIM respectively, to a start-
ing OD of 0.5 and incubation was carried out for 9 h.
The supernatants were then made cell-free by centrifu-
gation, and the cell-free supernatants were used for the
phytate degradation assay as described previously.

Characterization of phytase-active mutant strains
TY1310 and TY1322

The superior strain from the first round of mutagenesis,
annotated TY1310, was further used as parental strain
in the second round of mutagenesis, generating the final
strain annotated TY1322. After the screenings, TY1310
and TY1322, plus the original wild-type strain (TY13wt)
were used for further investigations as described below.
In addition, the stability of the improved mutant strains
TY1310 and TY1322 in terms of phytase activity was
assessed by cultivating the strains for several genera-
tions on YPD medium and assessing the phytase
activity.

The growth and IPg degradation was assessed for the
three strains TY13wt, TY1310 and TY1322 in the high-

phosphate medium, PMyp;, using triplicate cultures with
incubation for 24 h. The IPg degradation was additionally
assessed also in phosphate-free medium PMyop; but for
6 h of incubation. Samples were withdrawn for assess-
ing growth (OD, 600 nm) and for determination of phy-
tate concentration throughout incubation.

The sample to be used for phytate concentration
determination was rapidly made cell-free by centrifuga-
tion, and the enzymatic reaction was immediately
stopped by adding HCI to a final concentration of 0.5 M,
before analysis on HPIC.

To investigate the optimal pH and temperature for the
biomass-associated phytase, duplicate samples of
washed biomass from overnight incubation in SIM were
subjected to phytase assays at different pH and temper-
atures.

To study the phytase activity at different pH, TY13wt
and TY1322 were inoculated into 5 ml SIM, from pre-cul-
tures of the same medium, and incubated overnight at
30°C. Biomass from 0.5 ml of each culture was har-
vested by centrifugation, washed twice in sterile milliQ,
pelleted by centrifugation and then resuspended in
0.9 ml of assay buffer of different pH, containing 1 g I
IPs. The investigated pHs ranged from 2 to 9 (pH 2-3
glycine/HCI, pH 4-5 acetic acid/sodium acetate, pH 6
citric acid/NaOH, pH 7-8 Tris/HCI, pH 9 glycine/NaOH).
Incubations were done at 40°C for 5 min, before the
samples were made cell-free by centrifugation and the
enzymatic reactions were stopped by addition of HCI to
a final concentration of 0.5 M and analysed using HPIC.

To study the phytase activity at different temperatures,
cultures were prepared as for the pH tests, but biomass
from 0.2 ml of each culture was used. Biomass was col-
lected by centrifugation, washed twice in sterile milliQ
and resuspended in 0.9 ml assay buffer of pH 3.5 con-
taining 1 g I"" IPg. Incubations were done for 3.5 min at
the various temperatures, ranging from 30°C to 80°C.
The samples were made cell-free by centrifugation and
the enzymatic reactions were stopped by addition of HCI
to a final concentration of 0.5 M and analysed using
HPIC.

To assess the biomass-associated phytase activity of
TY13wt and TY1322, a high P; and high IPg (3.5 g I " and
3 g I respectively) medium was used. Two-step pre-cul-
tures were made and the latter one was used to inoculate
triplicate experimental cultures to a starting OD of 1. Two
samples of 1 ml each were withdrawn from each culture
at 6, 8, 10 and 15 h of incubation, to determine dry weight
of the biomass and to assess the phytase activity from the
biomass. Samples were harvested by centrifugation and
cells were washed twice in sterile saline. For dry weight
determination, cells were frozen and lyophilized. For phy-
tase activity determination, cells were suspended in
1.3 ml of assay buffer with 1 g I~" IPg and incubated at
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pH 3.5 at 55°C, with sampling during 60 min of incubation.
Samples were immediately made cell-free by centrifuga-
tion and the enzymatic activity was stopped by addition of
HCI to a final concentration of 0.5 M. Samples were anal-
ysed for phytate content on HPIC and the activity was
expressed as mmol IPg degraded per gram dry weight bio-
mass and hour of assay.

Purification and characterization of released phytase of
TY13wt and TY1322

The two strains TY13wt and TY 1322 were inoculated from
—80°C stocks on YPD agar plates overnight. Thereafter,
cells were inoculated into duplicate 25 ml cultures of SIM
and incubated for 8 h, yielding a final OD of about 7.5.
The cells were then used as inoculum to duplicate 300 ml
SIM cultures with an initial OD of 0.07 for both strains.
After 68 h of incubation, the cultures were centrifuged
(4000 g) and filtered in 0.22 pum filter top unit (TTP) to
remove all cells. The biomass-free samples are referred
to as culture filtrate samples. The culture filirate samples
were concentrated using Amicon filtration equipment, the
membrane (Millipore cellulose, Bedford, MA, USA) having
a cut-off of 10 kDa, using magnetic stirring and overpres-
sure of nitrogen gas. The buffer was simultaneously
exchanged to succinate buffer of pH 5.5. This sample is
referred to as Amicon concentrate. The Amicon concen-
trate was further concentrated using a spin filter (Macro-
sep, Pall filtration) with a 10 kDa cut-off at 5000 g, and
this sample is referred to as spin filter concentrate. The
samples from those three steps were kept at 4°C until
determination of protein content and phytase activity.

The protein content was determined (mg ml~") by
measuring the absorbance at 260 and 280 nm. The SIM
medium, in which the phytase is expressed, contains
yeast extract; hence, there is a potential presence of
amino acids in this medium. As amino acids may inter-
fere with the protein determination, the protein content
was calculated with the formula 1.55*Absa,gg
— 0.76*Abs,eo to adjust for possible presence of free
amino acids (Stoscheck, 1990; Simonian, 2001). To
maintain consistency, the calculation was applied for all
protein determinations in this study.

The enzyme solution from the spin filter concentrate
was used for size exclusion separation and fractionation
using gel-filtration on a Sephadex G75 gel column
(1.5 x 20 cm, 13 cm bed height) with NaAc/HAc (0.1 M
pH 4) containing 0.15 M NaCl as running buffer. A peri-
staltic pump (W-M Alitea, Stockholm, Sweden) was used
at a flow of 1 ml min~"! and fractions of 2 ml were col-
lected using an automated fraction collector (Waters,
Milford, MA, USA). All fractions were assessed for protein
content, and all fractions containing detectable levels of
protein were further investigated for phytase activity.
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The phytase activity assay was performed by mixing
each fraction at 1:10 (vol:vol) with the assay buffer
(1 g I”" IPg containing NaAc/HAc buffer at pH 5), fol-
lowed by incubation at 40°C for 5 or 10 min; thereafter,
the enzymatic reactions were stopped by addition of HCI
to a final concentration of 0.5 M. The samples were then
analysed for IPg content by HPIC, and the activity was
expressed as U (u mole degraded IPg/minute from the
enzyme solution). The fractions containing phytase activ-
ity were pooled and stored at —20°C until further use.

For estimation of the molecular weight of the phytase,
the pooled fractions of TY13wt and TY 1322 phytases were
mixed with loading buffer containing 10% v/v mercap-
toethanol and boiled at 95°C for 5 min before being loaded
onto a TGX 12% polyacrylamide gel (Bio-Rad, Solna,
Sweden) in a Tris/Glycine/SDS running buffer (Bio-Rad).
Bio-Rad’s precision Plus Kaleidoscope Standard (#161-
0375) was used as size ladder. The gel was run at 220 V
for 23 min, stained with Coomassie blue C25 and scanned
in a GS-800 Calibrated Densitometer (Bio-Rad).

The methodology used for concentration and purifica-
tion of the phytase containing supernatants enable a
very high degree of purification, even though a complete
purification cannot be guaranteed as other same sized
proteins may also be present in the final sample. How-
ever, in this study, we refer to the final pooled phytase
sample as ‘purified’.

The purified enzyme samples were used for determi-
nation of optimal pH and temperature, by the same pro-
cedure as described for the cell-associated phytase
above.

The phytase activities of the purified phytase samples
of TY13wt and TY1322 in the presence of various metal
ions and in the presence of high phosphate levels were
assessed based on the work by Igamnazarov and col-
leagues (Igamnazarov et al., 1999). The different metals
used during assay was magnesium (Mg®*), calcium
(Ca®*), copper (Cu®*) and iron (Fe?*) at either 1, 2 and
5 mM concentration. Metal chlorides were used as
sources for the metals. The phytase assays were per-
formed as described previously but at 55°C incubation
temperature (found to be the optimal working tempera-
ture of this enzyme) and with one single sampling at
10 min. All experiments were done in duplicates. The
phytate concentration in the differently treated samples
were analysed by HPIC and compared with a positive
control assay sample without addition of metals.

The pooled phytase of strain TY13wt and TY1322
were further assessed in duplicates for the activity in
the presence of high levels of phosphate. The high-
phosphate assay mixture was prepared using 1 gl
IPs and 3.5 g I”! phosphate (KH,PQ,) in acetate buffer
at pH 5. As positive control, the same assay mixture
was prepared, but without addition of phosphate.
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Incubation was done at 55°C for 10 min, and thereafter
the amount of degraded phytate was determined from
HPIC analysis.

The pooled phytase sample of strain TY1322 was
assessed for its thermal tolerance, by incubating tripli-
cate samples of 100 pl for 10 or 60 s in a water bath at
55°C, 65°C, 75°C, 85°C and 95°C respectively. After
incubation, samples were transferred immediately to a
cold (4°C) water bath. All samples were then used for
phytase activity assay as described previously but at
55°C incubation temperature, with sampling after 10 min.
The phytate concentration in the differently treated sam-
ples were analysed by HPIC and compared with the
level found in the samples incubated at 55°C.

Proteomics analysis of the purified enzyme samples of
TY13wt and TY1322

The pooled protein samples of TY13wt and TY1322
(30 ng each) were digested with trypsin using the filter-
aided sample preparation method (Wisniewski et al.,
2009). Briefly, protein samples were reduced with
100 mM dithiothreitol at 50°C for 40 min, transferred on
30 kDa MWCO Pall Nanosep centrifugal filters (Pall Life
Sciences, Ann Arbor, USA), washed with 8 M urea solu-
tion and alkylated with 10 mM methyl methanethiosul-
fonate in 50 mM TEAB and 1% sodium deoxycholate.
Digestion was performed in 50 mM TEAB, 1% sodium
deoxycholate at 37°C in two stages; the samples were
incubated with 500 ng of Pierce MS-grade trypsin
(Thermo Scientific, Rockford, USA) overnight, then
500 ng more of trypsin was added and the digestion
was for 3 h. The digested peptides were desalted using
Pierce C-18 spin columns (Thermo Scientific, Rockford,
USA), the solvent was evaporated and the peptide sam-
ples were reconstituted in 3% acetonitrile, 0.1% formic
acid solution for LC-MS/MS analysis.

For the LC-MS/MS analysis, each sample was anal-
ysed on Q Exactive mass spectrometer (Thermo Fisher
Scientific, Bremen, Germany) interfaced with Easy-nLC
Il nanoflow liquid chromatography system. Peptides were
trapped on the C18 trap column (200 um x 3 cm, parti-
cle size 3 um) separated on the home-packed C18 ana-
lytical column (75 um x 30 cm, particle size 3 um) using
the gradient from 7% to 27% B in 25 min, from 27% to
40% B in 5 min, from 40% to 80% B in 5 min at the flow
rate of 200 nl min~"; solvent A was 0.2% formic acid
and solvent B was 98% acetonitrile and 0.2% formic
acid. Precursor ion mass spectra were recorded at
70 000 resolution. The 10 most intense precursor ions
were fragmented using HCD at collision energy setting
of 30 spectra and the MS/MS spectra were recorded at
35 000 resolution. Charge states 2—-6 were selected for
fragmentation, and dynamic exclusion was set to 30 s.

For identification of proteins, a database search was
performed using Proteome Discoverer version 1.4
(Thermo Fisher Scientific, Waltham, USA). Sequence
database for P. kudriavzevii (August 2016, 6873
sequences) was downloaded from Uniprot repository
(Proteome ID UP000029867), and the phytase
sequences were manually identified in the database and
marked as the ‘putative phytases’. Mascot 2.3.2.0 (Matrix
Science, London, United Kingdom) was used as a
search engine with precursor mass tolerance of 15 ppm
and fragment mass tolerance of 0.02 Da. One missed
cleavage was allowed; mono-oxidation on methionine
was set as a variable modification, and methylthiolation
on cysteine was set as a fixed modification. Target/de-
coy approach was used to refine the identification
results, and target false discovery rate of 1% was used
as a threshold to filter the confidently identified peptides.

Phenotypic characterization of yeast strains TY13wt and
TY1322

The wild-type strain TY13wt and strain TY1322 were
investigated for growth at different cultivation conditions.
All cultivations were done in triplicates in 96-well micro
plates. The cultivation volumes were 195 ul and the
inoculation volume from overnight cultures was 5 pl,
yielding a starting OD about 0.2.

The strains were tested for growth in YPD at pH 2, 3
and 4.8, in YPD with ox bile at 0.5%, 1% and 2% (w/v),
all at 37°C and 150 r.p.m. orbital shaking. The growth
was also assessed in YPD (natural pH 6.5) at 27°C,
37°C, 42°C, 46°C, 48°C and 50°C. The growth was
assessed by measuring the optical density at 630 nm
after 3 days of incubation at 30°C (or at the test temper-
ature) with shaking at 150 r.p.m.

Utilization of different sugars was tested in micro well
plates in duplicates, using a base of yeast extract
(10 g I"") and peptone (20 g I ") and addition of 20 g I’
of either glucose, xylose, lactose, maltose, mannitol,
sucrose or arabinose. Furthermore, growth in the pres-
ence of lactic acid or ethanol was tested duplicates in a
medium containing yeast extract (10 g I”') and peptone
(20 g I"") with addition of 1%, 6% or 12% (vol/vol) of lactic
acid or ethanol. To test the osmotic tolerance, YPD was
prepared using 50% or 60% of glucose. The growth was
assessed by measuring the optical density at 630 nm after
2 days of incubation at 30°C with shaking at 150 r.p.m.

The resistance towards oxidative stress was investi-
gated by spreading a dense liquid yeast culture of each
strain on small YPD plates, allowing the liquid cell sus-
pension to absorb, and thereafter placing a filter paper
(d =5 mm) soaked in hydrogen peroxide (H>O,) in the
centre of the plate. By measuring the length from the
centre of the filter papers to the yeast growth zone
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border after 48 h of incubation at 27°C, the relative
resistance to oxidative stress could be compared
between the strains.
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