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This paper proposed a novel algorithm to sparsely represent a deformable surface (SRDS) with low dimensionality based on
spherical harmonic decomposition (SHD) and orthogonal subspace pursuit (OSP). The key idea in SRDS method is to identify
the subspaces from a training data set in the transformed spherical harmonic domain and then cluster each deformation into
the best-fit subspace for fast and accurate representation. This algorithm is also generalized into applications of organs with
both interior and exterior surfaces. To test the feasibility, we first use the computer models to demonstrate that the proposed
approach matches the accuracy of complex mathematical modeling techniques and then both ex vivo and in vivo experiments
are conducted using 3D magnetic resonance imaging (MRI) scans for verification in practical settings. All results demonstrated
that the proposed algorithm features sparse representation of deformable surfaces with low dimensionality and high accuracy.
Specifically, the precision evaluated as maximum error distance between the reconstructed surface and the MRI ground truth is
better than 3 mm in real MRI experiments.

1. Introduction

Organ deformation during operations has imposed substan-
tial challenges for performing precise diagnosis and surgery
in minimum invasive surgery (MIS), such as natural orifice
transluminal endoscopic (NOTES) [1]. The deformation
markedly decreases the precision of the prior surgical plan
that is based on the preoperative images (e.g. computed to-
mography (CT) or magnetic resonance imaging (MRI)), so
it must be effectively compensated to lower surgical risks.
However, this is not a trivial task due to the high degree of
freedom of the 3D nonrigid deformation and limited field
of view [1] for observation during MIS. To recovery, the 3D
deformation with high resolution in real time, a critical issue
is to seek an efficient representation of deformable surface,
according to which the sampling and surface recovery strat-
egy can be designed for updating the 3D visualization. This
paper focuses on the topic of block sparse representation of
deformable surfaces. The later topic of real time tracking an
deformable organ with limited access to the organ is explored
further in [2–4].

Various techniques have been proposed for surface de-
scription, and each has its own advantage and disadvantage
according to the application requirements. Broadly speaking,
there are two major categories of surface representation
methods: local feature-based models and global or para-
metric models. The work in [5] based on geometric partial
differential equations (PDE) belongs to the former category
which derives Euler-Lagrange equation and then a geometric
evolution equation (or geometric flow) to describe the
surfaces. Similarly, the method in [6] treats the whole surface
as a union of localized patches. Global surface representation
methods [7–10], particularly, decomposing surfaces into
other primitive shapes, are more appropriate for shape
analysis and classification due to the lower dimensionality
of the parameter space. This paper falls into the category of
parametric global surface description.

Parametric surface representation describes a surface in
a single functional form, such that the surface is fully char-
acterized by a set of parameters in a particular domain.
Surface harmonics such as spheroidal harmonics, cylindrical
harmonics, and spherical harmonics (SH) [7] are widely

mailto:wang0889@mail.utexas.edu


2 International Journal of Biomedical Imaging

used as building blocks for global surface description. Each
harmonic does not bear localized features but contributes to
the entire shape description. Among those different types of
harmonics, a well-known approach is the spherical harmonic
decomposition (SHD), which has advantages of smoothness
and high accuracy [7, 11]. With proper parameterization
[11, 12], any genus-0 surface (The genus of a connected
surface is an integer representing the maximum number of
cuttings along nonintersecting closed simple curves without
rendering the resultant manifold disconnected. It is equal to
the number of handles on it, so a sphere is genus 0 and a
torus is genus 1.) can be analyzed in the harmonic domain
with reduced data dimensions. SHD has been widely used
in applications related to surface description, including static
modeling of kidney [8] and brain [9, 10], as well as spatial-
temporal modeling of left-ventricular with known motion
period. In [13], hemisphere is also applied to open surfaces.

Sparse signal representation has steadily gained attention
over the years in the signal processing community. The aim
is to find a representation which is sparse, or compact, such
that most of the energy of a signal can be captured with
only a few nonzero coefficients in a given dictionary. The
first widely applied methods to seek sparse representation are
greedy approaches, including matching pursuit (MP) [14],
orthogonal matching pursuit (OMP) [15], and orthogonal
least square (OLS) [16]. Those methods iteratively first
select the most correlated element from dictionary and then
remove the contribution of that element with decorrelation,
before finding the next atom. Iteration terminates when any
stopping criteria is met. The second type is global optimiza-
tion algorithms, such as Basis Pursuit (BP) [17], FOCUSS
[18] and Iterative Thresholding [19]. Global Optimization,
in the approximate sense, relaxes the sparseness constrain,
and its sparsity is a side-effect of the optimization. For exam-
ple, the basis pursuit (BP) method approximates the l0-norm
sparsity constraint with an l1-norm criteria, which effectively
converts the problem into a convex optimization one, solved
globally with linear programming. The orthogonal subspace
pursuit (OSP) method [20] used in our paper belongs to the
greedy category, which does not require prior knowledge of
the dimension of the subspaces and combines the learned
subspaces to produce a data-driven dictionary with good
sparseness and generalizability.

Besides sparse decomposition algorithms as mentioned
above, an equally important issue for sparse representation is
how to select a dictionary for an application. The two main
groups for dictionary design methods are structured dic-
tionaries built out of common bases, and trained dictionaries
that are inferred from the training data. For the common
bases, it is well known that the wavelet transform can be
used to generate sparse multiscale representations of im-
ages, the short-time Fourier transform (STFT) generates
sparse time-frequency representation of speech signals, and
the DCT is another transform that has been used for
compression in audio coding algorithms due to its good
compaction property. For dictionary learning, the applicable
approaches include maximum likelihood estimation (MLE)
[21], method of optimal directions (MOD) [22], maximum
a-posteriori (MAP) [23], and so forth. Those methods

attempt to generalize the type of considered signal with the
basis identified from a representative training data set. The
proposed approach is based on trained dictionary, since, to
the best of our knowledge, there is no common basis in which
random surfaces can be sparsely represented.

Although sparse representation has been widely applied
in the fields of signal compression, image denoising, blind
source separation, and compressed sensing, there is still very
limited application in 3D surfaces [24]. In fact, the main
statistically motivated surface modeling methods are based
on principle component analysis which is not sparse [25–29].
Those methods first compute the mean shape and then build
the model by establishing legal variations learned from a set
of training data for a given type of images, such as bone [25].
With PCA, the major variations of the shape populations are
described by the first few basis vectors, such that any surface
of that shape population can be projected into an orthogonal
subspace spanned by the retained vectors. More advanced
techniques, such as multiresolution deformable model [27],
are provided to improve the accuracy considering limited
sample size.

Most of the previous surface modeling/representation
works are designed for either static models [8–10], or
particular deformable organs with known physical properties
(such as motion cycle) [30]. Further, computation bottleneck
caused by large spherical harmonics basis hampered the
applicability for real-time application. For PCA-based mod-
eling methods, the resulting space that captures the variation
in the population is either a super subspace including all
training data or a truncated subspace with sacrificed gen-
eralization. In addition, PCA tends to be computational
expensive when performing eigenvector decomposition as
training data dimension increases, and it does not lead to any
structure in the representation.

To bring the demonstrated merits of sparse coding to
3D surface representation, we propose a generally applicable
algorithm of parametric sparse representation of deformable
surfaces based on SHD and orthogonal subspace pursuit. The
main contributions of this paper include the following.

(i) Propose an algorithm of sparse representation of de-
formable surfaces.

(ii) Generalize the representation approach for organs in-
volving both interior and exterior surfaces.

(iii) Present evaluation results conducted using computer
models, ex vivo experiments based on 3D MRI scans
of freshly excised porcine kidneys, and in vivo cardiac
MRI scans of real patients.

This paper is organized as follows: in Section 2, we de-
scribe the proposed algorithm of sparse representation of
deformable surface, denoted as SRDS thenceforth. Section 3
presents some experimental results using finite element
model (FEM) data, ex vivo and in vivo experimental data.
Finally, in Section 4, we finish with a few conclusions.
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2. The SRDS Algorithm

The SRDS algorithm consists of three main steps to achieve
sparse representations of deformable surfaces, as outlined
in Figure 1. Initially, SHD is performed to depict the
deformable surfaces in the training set in the harmonic
domain. Then OSP is applied in the transformed domain
to identify the subspaces in which the SH coefficient vectors
of the deformations can be linearly represented. Finally,
each deformation is clustered to the proper subspace and
represented with the corresponding coefficient vector with
block sparsity. This representation method is also extended
to organ deformations occurred on both interior and exterior
layers as described in Section 2.4. Furthermore, as a practical
issue, pixel-wise surface alignment among all the 3D surfaces
is also addressed in Section 2.5.

2.1. Step 1: SHD. Spherical harmonics are solutions to La-
place’s equation expressed in the spherical coordinate system,
defined as

Ylm
(
θ,ϕ

) = (−1)m
√

2l + 1
4π

√
(l −m)!
(l + m)!

Plm(cos θ)eimϕ, (1)

where θ is the polar angle within [0, π], ϕ is the azimuthal
angel within [0, 2π), l is the harmonic degree within [0, +∞],
and m is the harmonic order varying in [−l, l]. Plm is the
associated Legendre function. After proper parameterization
[11, 12], a 3D surface x with finite energy can be expanded
with SH series as

x
(
θ,ϕ

) =
∞∑

l=0

+l∑

m=−l
flmYlm

(
θ,ϕ

)
. (2)

Each harmonic coefficient flm is calculated using the inner
product of the function x(θ,ϕ) and basis Ylm(θ,ϕ)

flm =
∫ 2π

ϕ=0

∫ π

θ=0
x
(
θ,ϕ

)
Ylm
(
θ,ϕ

)
sinθ dϕdθ. (3)

Assume that harmonics up to level L (l ≤ L) are involved
in the transformation. Let Y denote the matrix composed
of all (L + 1)2 discretized harmonics, so Y has the following
formation:

Y =
∣∣
∣
−→
Y 0,0

−→
Y 1,−1

−→
Y 1,0

−→
Y 1,1 · · · −→Y L,L

∣∣
∣
N×(L+1)2 . (4)

Then a surface can be represented in the matrix format as

x = Y
−→
f , (5)

where x stands for a surface with N samples and−→
f = [ f0,0 f1,−1 f1,0 f1,1 · · · fL,L]T is the harmonic

coefficient vector. Notice that this equation is not exactly
equal but approximately. For simplicity, we still use equal
sign with least square estimation in this paper. The linear
problem in (5) can be solved with the least square (LS) con-

straints outputting
−→
f

−→
f =

(
YTY

)−1
YTx. (6)
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Figure 1: Flowchart of SRDS algorithm consists of three steps spec-
ified in the solid rectangulars; ellipsoids denote data input and
output.

Perform SHD for each of the K training deformed sur-
faces in X = {xk}Kk=1, so the group of deformations can be
described by matrix F

F =
∣
∣
∣
−→
f 1

−→
f 2 · · · −→f K

∣
∣
∣

(L+1)2×K . (7)

Consequently, the training set of deformations can be totally
characterized by columns in F as

X = YF. (8)

2.2. Step 2: Subspace Identification with OSP. The aim of
the second step is to explore the structures in those training
deformations in the transformed harmonic domain and rec-
ognize the inherent subspaces in which the SHD coefficient
vectors of the training deformations can be projected with
high accuracy. The newly developed OSP algorithm [20]
is adopted since it features better generalization and less
computational cost compared to the gold standard K-SVD
algorithm [31]. OSP is an iterative process that terminates
when one of the predefined criteria is met. In this paper,
we specify the following two stopping criteria: (1) an error
threshold for ε subspaces selection and (2) a maximum
number of iterations Emax for both controlling the subspace
dimensions and avoiding deadlock searching. Further, the
threshold for vector clustering is denoted as η, that is, we
declare that a vector lives in a subspace if it can be projected
to that subspace with error (l2 distance) no larger than η.

A. Subspace Pursuit. Initially, each vector
−→
f k of length

(L + 1)2 in F is normalized by l2 norm. For convenience, we
still use F to denote SH coefficient matrix even after nor-
malization. The algorithm first identifies a subspace from F
based on the stop criteria, then finds all the vectors in F that
can be represented in that subspace with error level below
η and remove those vectors from F to prepare for the next
subspace pursuit. The process can be generalized as follows,
in whichA⊗B means that elements from B are excluded from
A, and A⊕ B stands for inclusion.
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(1) Initialization: i = 0, D = ∅, F0 = F,

(2) Subspace searching and clustering

(i) i = i + 1; choose a vector
−→
f i from Fi (e.g. first

column of Fi) and let Fi = Fi−1 ⊗ −→f i to remove−→
f i.

(ii) Find ni vectors from F′ = F⊗−→f i for represent-

ing
−→
f i with error no larger than ε within Emax

iterations and the ni vectors form Si.
(iii) Perform SVD decomposition on Si: UΣVT =

Si; let Ai contain the first ni vectors of U ; update
D = D⊕ Ai.

(iv) Select vectors from Fi that can be represented by
Ai with error no larger than η, and then remove
them from Fi.

(v) Repeat above steps until all the vectors are
clustered.

B. Subspace Pruning. One disadvantage of the traditional
OSP algorithm is the presence of “spurious” or redundant
subspaces especially as the dimension of the training data set
increases. Those subspaces identified in the earlier iterations
actually can be better represented by the later identified
subspaces. Therefore, a postprocessing step is used to identify
and then discard the redundancy among the subspaces
without decreasing the performance. This is implemented by
repartitioning the training data among the initial subspaces
and then eliminating subspaces in which very few or no
vector is clustered. In some cases, where the subspace size
is limited to some constraint, an optimization step can be
applied in conjunction with the pruning step. The details of
the subspace optimization design is described in [20].

C. Matrix F Factorization. After identifying the inherent sub-
spaces, the coefficient matrix F of training set can be parti-
tioned into two-part union of subspaces and corresponding
coefficients via the following procedures.

Since each vector
−→
f k has been clustered into the belong-

ing subspace during the subspace identification process, the

corresponding coefficients for each
−→
f k can be obtained

accordingly. Suppose that
−→
f k lives in subspace Ai which

is spanned by ni orthogonal basis, so its corresponding
coefficients −→c k can be calculated using LS estimator

−→c k =
(

AT
i Ai

)−1
AT
i

−→
f k. (9)

Then
−→
f k can be characterized by −→c k in its subspace

−→
f k = Ai

−→c k. (10)

If there are totally J subspaces identified from F, a
structured dictionary constructed by concatenating all defor-
mation subspaces is established as D = ⋃J

i=1{Ai}, with

dimension I = ∑J
i=1 ni. Since each vector

−→
f k lies in one of

the subspaces,
−→
f k can also be represented in the structured

dictionary with a block sparse vector {−̃→c k}, which is obtained

via extending the coefficients {−→c k}Kk=1 by zero padding in
positions corresponding to other subspaces in D. Figure 2
provides an example of 3 subspaces to illustrate the sparsity

of coefficient vector −̃→c 1. If
−→
f 1 lies in subspace A2 which are

spanned by the 5th, 6th, and 7th columns in D, then −̃→c 1 has
nonzero values only at index of 5, 6, and 7. Consequently, F
can be factorized as

F = DC, (11)

where C = |−̃→c 1
−̃→c 2 · · · −̃→c K |I×K is the corresponding

coefficient matrix with block sparsity.

2.3. Step 3: Structured Sparse Surface Representation

A. Sparse Representation of Training Surfaces. Integrating
the subspace pursuing results in the harmonic domain
in (11) with the initial SHD process in (8), the training
deformations X can be sparsely represented in the original
spatial domain as

X = YDC

= GC,
(12)

where G = YD with size of N × I is the desired structured
dictionary in the spatial domain. Since D = ⋃J

i=1{Ai}, G is
inherently structured by subspaces of G = ⋃J

i=1{Gi} with
Gi = YAi of size N × ni.

Up to this point, with matrix G that captures the
deformation features in the considered population, each
training deformation xk in X can be fully characterized by

a sparse coefficient −̃→c k as

xk = G−̃→c k. (13)

The sparsity of −̃→c k has already been illustrated in Figure 2.

B. Sparse Representation of Testing Surfaces. For the testing
deformations beyond the training set, we utilized the fact that
the dictionary identified from an extensive training data fea-
tures good generalization such that any deformation of that
particular population can be represented in the subspaces
with high accuracy. This is justified because organs only
deform in limited ways due to their mechanical properties, so
the deformation variations can be fully learned from a train-
ing data set. This applied structure allows fast deformation
representation in subspaces of low dimensionality.

The testing set is denoted as H = {hm}Mm=1, where
M is the number of deformations to be represented. The
straightforward strategy is to find a best-fit subspace for hm

by projecting it to every subspace {Gi}Ji=1 and choose the
subspace with minimal projection error. Since the number
of subspaces J and the dimension of each subspace {ni}Ji=1
are both small with the postprocessing of subspace pruning,
this best-fit strategy still results in low computational cost.
However, when the number of subspaces is too large, an
alternative threshold approach can be applied by finding
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−→
f1

×
Non-zero

coeffs

A1 A2 A3

=

D
−̃→c1

Figure 2: Sparsity of coefficient vector −̃→c 1.

a subspace Gi in which hm can be represented with an
error level smaller than η. The former best-fit method is
implemented in Section 3 for performance validation.

Suppose that Gi∗ is the chosen subspace, so coefficient
vector −→c m can be estimated with LS as

−→c m =
(

GT
i∗Gi∗

)−1
GT

i∗hm. (14)

Then block sparse vector

−̃→c m = [0 0 · · · −→c m · · · 0 0 0] (15)

is obtained according to the rules described in Section 2.2.

Further, the sparsity of −̃→c k or −̃→c m can be increased by
trimming off nonzero elements with absolute value lower
than a given threshold δ.

It is worth noting that, different from the traditional
learning approaches relying on orthogonal least square
(OLS) [32] or matching pursuit (MP) [33] algorithms which
select atoms from the training set and recombine them for
representing each surface in the testing set sparsely, our SRDS
algorithm avoids this heavy overload caused by reshuffling all
the atoms. Instead, we apply the block structure of the dic-
tionary learned from a representative training data set. This
essentially enables the representation of each deformable
surface compactly and sparsely with high accuracy and low
computational cost.

2.4. Extended Sparse Surface Representation. For an organ
with both interior and exterior surfaces, such as bladder,
deformations can take place on both layers. The above theory
can be extended to achieve sparse surface representation for
deformations occurred on both interior and exterior wall of
the object.

Initially, spherical parameterization is conducted on in-

terior and exterior parts separately. We denote −→x in
k and−→x ex

k (1 ≤ k ≤ K) as the corresponding interior and exterior

of each training surface −→x k. Then each pair of −→x in
k (with N1

vertices) and −→x ex
k (with N2 vertices) can be approximated by

spherical harmonic basis as

−→x k =
⎡

⎢
⎣

−̂→x in
k

−̂→x ex
k

⎤

⎥
⎦ =

⎡

⎣
Yin O

O Yex

⎤

⎦ ·
⎡

⎢
⎣

−→
f

in

k

−→
f

ex

k

⎤

⎥
⎦ (16)

where Yin of size N1 × (L + 1)2 and Yex of size N2 ×
(L + 1)2 denote the spherical harmonic basis for inner
and outer surfaces, respectively. L is the highest degree of

harmonics included.
−→
f

in

k and
−→
f

ex

k are the corresponding
harmonic coefficient vectors. Therefore, each deformation

is represented by vector
−→
f k =

[ −→
f

in

k−→
f

ex

k

]

, and all K training

frames can be characterized by F = ⋃{−→f k}Kk=1 as

X = YF =
⎡

⎣
Yin O

O Yex

⎤

⎦

⎡

⎢
⎣

−→
f

in

1 · · ·
−→
f

in

K

−→
f

ex

1 · · ·
−→
f

ex

K

⎤

⎥
⎦. (17)

The following procedures of subspace identification and
sparse surface representation as described in Sections 2.2
and 2.3 can be applied straightforwardly. After identifying J

subspaces D = ⋃J
i=1{Ai} from SH coefficient matrix F, each

training deformation can be sparsely represented with block

sparse coefficient vector −̃→c k as:

−→x k =
⎡

⎢
⎣

−̂→x in
k

−̂→x ex
k

⎤

⎥
⎦ =

⎡

⎣
Yin O

O Yex

⎤

⎦D−̃→c k

= G−̃→c k = Gi
−→c k,

(18)

where Gi =
[

Yin O
O Yex

]
Ai is the subspace with size of (N1 +

N2) × ni, and G = ⋃J
i=1{Gi} is the desired structured

dictionary. Accordingly, −̃→c k is the block sparse vector, and−→c k is the nonzero coefficient values in the selected subspace.

2.5. Surface Correspondence. Similar to other surface mod-
eling methods [25, 27, 28], the proposed approach requires
point-wise correspondence across difference surfaces besides
rigid registration [34]. Specifically, this point-to-point align-
ment is established, such that an identical spherical param-
eterization can be applied in the SHD procedure. Figure 3
illustrates the goal of surface correspondence. Same colored
vertices on deformation 1 and 2 indicate a matched pair.
After established correspondence of the point pairs over
the two deformations, vertices on deformation 2 can be
numbered in the same order as deformation 1.

Different correspondence methods have been proposed,
such as minimum description length [35], SH-coefficient
alignment [36], and so forth. We applied the SH based
method [36] in this paper as well as ray-casting method for
simple surfaces. The former SH-based method is based on
the underlying fact that two points with the same parameter
pair when mapped to a sphere are considered to be a
corresponding pair. Therefore, it fixes parameterization of
the template and rotate the other to optimize the surface
correspondence by minimizing the root mean squared
distance of the two SH coefficient vectors. The latter ray-
casting method is introduced in the following section.

2.5.1. Point Correspondence with Ray Casting. For surfaces,
if unique intersection exists between a ray starting from its
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Figure 3: Surface correspondence: (a) vertex index on deformation
1, (b) vertex index on deformation 2 before correspondance, (c)
corresponding vertex index on deformation 2.

object center and the surface, a ray-casting method can be
applied to obtain sample pairs across all the deformations.
For illustration, Figures 4(a) and 4(b) depict two different
cases of ray-surface intersection in the simplified 2D space.
In Figure 4(a), there is only one intersected point (p1 for ray−→r1 , and p2 for ray −→r2 ) between each ray and the deformed
surface S1. By contrast, Figure 4(b) gives an example when
multiple intersections (p1, p1′, p1′′ for ray −→r1 and p2 for ray−→r2 ) are involved between rays and the surface S2.

If the condition of single ray-surface intersection applies,
deformations can be resampled through the following steps
to achieve point correspondence.

(i) Construct an icosahedron of W vertices with radius
large enough to embrace the largest deformation
volume among those under consideration; larger W
results in denser samples to maintain the local details
but incurs more computational cost.

(ii) Align the center of the 3D surfaces to the origin of
icosahedron such that rays casting from the origin
can intersect with the surface.

(iii) For each ray segment originated from the center to
a vertex on the icosahedron, find the triangle on the
surface mesh that intersects with the segment and use
that intersected point as new surface sample.

Figure 4(c) illustrates the desired sample pairs as
(p1,1, p2,1) and (p1,2, p2,2) over two deformations S1 and S2.
This resampling process also establishes a one-to-one map
between a point on the object and a point on the sphere
(icosahedron), which naturally meets the purpose of spheri-
cal parameterization. As a result, point-wise correspondence
can be achieved across all the resampled surfaces, and a
uniform spherical harmonic matrix Y can be applied. As an
example, Figures 5(a) and 5(b) compare an original kidney

surface with the corresponding resampled surface. We can
see that ray-casting procedure well maintains the shape.

3. Experiments

Three types of experiments are conducted to demonstrate the
feasibility of the proposed SRDS algorithm. The computer-
generated FEM data is first used to demonstrate that the
SRDS approach matches the accuracy of complex mathe-
matical modeling techniques, then an ex vivo experiment is
conducted using 3D MRI scans of porcine kidneys for eval-
uation in practical settings, and finally in vivo experiment is
carried over dynamic cardiac MRI scans for evaluation in real
patients.

3.1. Experiment with FEM Data. Three representative organs
are employed in this FEM experiment: 3D cortical mesh as
an example of complicated shapes, gallbladder as an instance
with geometrically simple shape, and bladder consisting of
both interior and exterior walls.

3.1.1. Computer Model Setup. The initial 3D models of dif-
ferent organs are fed into a FEM-based surgical simulation
tool to generate deformation data for testing. For instance,
Figure 6 demonstrates two examples of shape distortions
due to the endoscope poking and grasping one side of the
gallbladder.

Table 1 lists the FEM experimental setup of the three or-
gans including number of vertices N , SH level L, number of
deformations for training K , and testing M. “GBL” stands
for gallbladder in all the tables. The maximum SH level
used for brain model is chosen according to [9], and the
levels for gallbladder and bladder are determined when the
SHD representation error is below 0.1% (EOF). The complex
brain structure requires more vertices and higher SH level
for surface representation to achieve sufficient accuracy. To
evaluate the representation precision qualitatively, an eval-
uation parameter EOF is defined as the normalized Euclidean
distance between the original surface and the reconstructed
surface

EOF =
∥
∥x̂k − xk

∥
∥

2

‖xk‖2
. (19)

All surfaces are centered to the origin of the coordinate
system so that EOF will not be heavily affected by the de-
nominator.

3.1.2. Results. With the FEM data, the proposed SRDS al-
gorithm is evaluated from three perspectives: (1) subspace
dimensionality, (2) sparsity and accuracy of representations,
and (3) the effect of subspace pursuit threshold ε and co-
efficient truncation threshold δ on the performance. The

sparsity is defined as the l0 norm of the coefficient vector −̃→c m.

A. Training Results. During training stage, we set ε = 0.005
for subspace detection, η = 0.01 for clustering, Emax =
50 as the maximum iteration times, and δ = 0.005 for
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Figure 4: Ray casting sampling: (a) unique ray-surface intersection, (b) multiple ray-surface intersections, and (c) ray casting on two de-
formed surfaces.
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Figure 5: Resample with ray casting (a) original surface of kidney,
(b) resampled surface of kidney.
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Figure 6: Gallbladder deformation generated by surgical simulator:
(a) and (b) are distortions caused when the endoscope pokes and
grasps the gallbladder.

coefficient truncation. Subspaces on X , Y , and Z axis are
identified separately. Table 2 shows that the subspace number
J and dimensions of resulting dictionary (dim(G) = I) are
markedly small relative to N or L2 in all three tests. We
notice that the subspace dimensions of brain are relatively
smaller than the other two. This is because of smaller training
data size and minor extent of deformation considered in the
brain experiment, which results in smaller dictionary size to
capture the deformation features.

B. Sparsity and Accuracy Evaluation. Sparsity is examined
in terms of (μ/σ), where μ is the average l0 norm of the

coefficient vector −̃→c k (training) or −̃→c m (testing) and σ is
the corresponding standard deviation. To verify that whether
our method achieves equivalent sparsity and precision when
applying the structure of the dictionary, we also test the
case without relying on any structure learned from training
set, during which sparse representation of each deformation
in the testing set is repursued from the training set using

Table 1: FEM Model setup.

Vertices N SH level L Training K Testing M

Brain 40962 80 35 35

GBL 3038 25 250 114

Bladder N1 = 4434, 30 74 46

N2 = 4274

Table 2: Dimension of dictionary (J/I).

Brain GBL Bladder

Subspace on X (J/I) 2/13 2/39 1/37

Subspace on Y (J/I) 2/6 2/48 1/30

Subspace on Z (J/I) 1/3 1/42 1/34

Table 3: Sparsity (μ/σ) and accuracy evaluation.

X (μ/σ) Y (μ/σ) Z (μ/σ) EOF (%)

Brain train (SRDS) 3.1/0.2 3.4/0.9 3.0/0.2 1.31

Brain test (SRDS) 3.5/0.5 3.9/0.4 3.0/0.0 1.32

Brain test (OSP) 4.1/0.6 4.5/0.5 3.9/0.8 1.30

GBL train (SRDS) 25.8/12.2 4.8/1.8 32.3/7.3 0.13

GBL test (SRDS) 33.2/1.0 44.1/1.1 40.8/1.3 0.15

GBL test (OSP) 44.4/4.0 48.3/2.3 43.9/4.5 0.13

Bladder train (SRDS) 24.1/3.7 20.8/2.9 24.8/4.0 0.076

Bladder test (SRDS) 24.6/2.7 21.0/2.5 25.6/3.2 0.073

Bladder test (OSP) 22.5/4.3 16.3/6.5 23.0/5.2 0.070

OSP approach. In the following tables, we use “OSP” to
refer to the results obtained using such a repursuing process.
Table 3 summarizes the sparsity of the SRDS representation
of three organs for both training and testing set. It illustrates
that the number of atoms needed for representing the
complex deformations is much smaller than the dimension
of spherical harmonic vectors ((L + 1)2), and particularly the
sparsity and accuracy via SRDS is very close to that from OSP
repursuit for the testing deformations, which indicates the
good generalization of the structured dictionary.

The reconstruction error in terms of EOF is further
compared with that from standard SHD method, as shown
in Figure 7. In general, the accuracy of SRDS is equivalent
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Figure 7: EOF of brain, gallbladder, and bladder reconstruction
with SHD and SRDS methods. The left pair is for training set; the
right pair is for testing set.
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to that of SHD method. Specifically, it shows that the SRDS
method achieves average EOF of 1.32% (brain) and 0.14%
(gallbladder) versus 1.29% (brain) and 0.13% (gallbladder)
with SHD method. For bladder model with deformations on
multiple layers, the overall representation error with SRDS
is 0.07%, very close to 0.06% with SHD. Figures 11 and
12 show typical reconstructed deformations of the testing
data for the three organs with SHD and SRDS methods.
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Figure 9: Sparsity (μ) of surface representation changes with dif-
ferent ε on three axis: (a) is for training set; (b) is for testing set.
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Figures 12(e) and 12(f) demonstrate the interior and exterior
representation of the bladder at a same time instance. From
those results, we can see that the SRDS algorithm achieves
the accuracy equivalent to complex mathematical modeling
techniques while significantly lowers the representation di-
mensionality.
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Figure 11: Reconstructed brain deformations using SHD approach: (a) is the initial brain shape and the circle marks one typical area under
deformation, (b)–(e) are the reconstructed brain deformations.
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Figure 12: Reconstructed brain deformations using SRDS approach: (a) is the initial brain shape, (b)–(e) are the reconstructed brain de-
formations.
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Figure 13: Sparsity (μ) of surface representation changes with dif-
ferent δ on three axis: (a) is for training set; (b) is for testing set.

C. Effect of ε. The performance of SRDS algorithm is exam-
ined as the subspace pursuit threshold ε varies. Specifically,
we study the effect of ε on the dimensionality (I) of the
structured dictionary G, sparsity and accuracy of the surface
representation. Figure 8 shows how the subspace dimensions
on three axis change during the training stage as ε increases
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Figure 14: EOF of gallbladder reconstruction increases as δ gets
larger for both training and testing sets.

from 0.001 to 0.01. Figure 9 displays the influence of ε on
the average sparsity μ of the surface representation results
for both training and testing data sets. In general, smaller
ε leads to larger subspace size and less description sparsity,
since lower ε usually leads to more recruited atoms to meet
the desired representation accuracy. Therefore, there is a
tradeoff between representation accuracy and desired spar-
sity. Figure 10 reveals the representation EOF as a function
of ε. Not surprisingly, the reconstruction error is increased
as ε becomes larger. An empirical point can be chosen
according to the training curve when space dimension I
expands significantly but only trivial EOF improvement is
gained, that is, ε = 0.005 is a preferred value in this test
according to Figure 10.
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Table 4: Subspace dimension and sparsity (μ/σ) for intramodel ex-
periment.

X (μ/σ) Y (μ/σ) Z (μ/σ) EOF (%) Haus (mm)

J/I 1/17 2/31 2/31

Train (SRDS) 16.9/0.4 15.5/1.5 15.8/1.5 0.24 0.55

Test (SRDS) 17.0/0.0 16.9/0.3 16.7/0.9 0.64 0.87

Test (OSP) 16.6/1.5 16.3/0.9 17.1/0.8 0.60 0.85

Table 5: Subspace dimension (J/I) in intermodel experiments.

X axis Y axis Z axis

Ex1 (J/I) 1/36 1/37 1/37

Ex2 (J/I) 2/87 2/86 2/87

Ex3 (J/I) 3/79 2/88 3/83

D. Effect of δ. The influence of coefficient truncation thresh-
old δ on the performance of SRDS algorithm is also
tested while δ is varied among [00.0001 0.0005 0.001
0.005 0.01 0.05 0.08 0.1]. Figure 13 shows the effect of
δ on the average sparsity μ of the surface representation
results. We can see that, as the truncation threshold δ
enlarges, the sparsity of the representation is increased for
both training and testing data sets at the price of decreased
representation error as shown in Figure 14, so there is
tradeoff between sparsity and accuracy. Empirically, one
can choose the δ value when the representation precision
remarkably deteriorates while the sparsity is still increasing.
Therefore, according to Figures 13 and 14, an appropriate
value for δ is between 0.005 and 0.01.

3.2. Ex vivo Experiment Using MRI. To evaluate the proposed
algorithm in real applications, an ex vivo experiment using
three porcine kidneys were conducted at the Center for
Interdisciplinary Applications in Magnetic Resonance (CIA-
MR) of University of Minnesota. Deformations imposed to
each kidney were controlled and maintained still during
imaging by a customized nonmagnetic mechanical device
as shown in Figure 15. Each deformed kidney shape was
scanned in 3D MRI mode with spatial resolution of 1.2 mm
to generate both training set and testing set. The SH degree
L of the organ representation is set to be 20, and each 3D
kidney mesh after surface correspondence has N = 4002
vertices. Different from computer-generated deformations
where surface correspondence is intrinsically established, the
shapes from MRI scans are rendered independently, so the
method described in Section 2.5 is applied to achieve point-
wise correspondence.

Both intramodel and intermodel experiments are con-
ducted. The former uses training and testing deformations
from the same kidney; the later utilizes two out of the three
kidneys for training and the third one for testing in a cross-
evaluation fashion. Besides sparsity and EOF, Hausdorff
distance between the represented shape and corresponding
MRI surface is also examined as a physical measurement of

error. The Hausdorff distance between surface x and x′ is
defined as

d(x, x′) = max
p∈x d

(
p, x′

)
, (20)

where d(p, x′) is defined as the distance between a point p on
surface x and the closest point on surface x′, that is,

d
(
p, x′

) = min
p′∈x′

∥∥p, p′
∥∥

2 (21)

with ‖ · ‖2 denoting the Euclidean norm.

3.2.1. Intramodel Test. In the intramodel experiment, 31 de-
formations of the same kidney were generated and scanned
by the MRI machine, among which 20 frames were randomly
selected as training set, and the other 11 were applied for
testing the generalization of the learned subspaces.

Table 4 shows the trained subspace dimensions (J as
number of subspace, I as dictionary size of G), the sparsity
of the descriptors in each axis for both training set and
testing set, and the corresponding errors in terms of EOF
and Hausdorff distance. Similar to the FEM experiment, the
sparsity is also evaluated with OSP repursuit process in the
testing set for comparison. The table shows that the sparsity
and the accuracy achieved with SRDS is very close to that
from OSP repursuing process. However, the SRDS method
features delay-free surface representation by applying the
structure in the identified dictionary. Further results about
computational efficiency are shown in Section 3.4. One may
notice that the size of training data in the MRI experiment
is smaller than that in FEM test due to the less availability
of 3D MRI images. As a rule of thumb, larger training set
carries richer deformation information and thus leads to
better generalization of the dictionary. However, given the
size of training data and extent of deformation involved in
the ex vivo experiment, high representation precision is still
achieved.

Figure 16 illustrates the accuracy of the surface repre-
sentation in the intramodel test. The average EOF in Fig-
ure 16(a) for training set is 0.24% and 0.64% for testing set,
with maximum rate less than 1%. Further, error as Hausdorff
distance (shown in Figure 16(b)) is 0.55 ± 0.23 mm with
95th percentile error of 0.86 mm for the training set, and
0.87 ± 0.10 mm with 95th percentile error of 0.96 mm for
the testing set. This intramodel experiment demonstrated
that the SRDS algorithm identifies subspaces generalizable
enough to accurately represent deformations beyond the
training set for the same object.

Figure 17 visualizes the color-coded error distribution
at all vertices on the represented surface with SRDS rel-
ative to the actual MRI scans. Figure 17(a) illustrates the
error range for different colors. Figures 17(b) and 17(d)
show the error distribution for a typical reconstruction in
the training and testing set, respectively. Figures 17(c) and
17(e) show maximum 90% level reconstruction errors, that
is, 90% of all deformations in the training or testing set
have representation point errors less than the values shown in
the figures. Consistent with the EOF and Hausdorff distance
results, the color diffusion in Figure 17 indicates that the
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Figure 15: Images of three porcine kidneys for experiment.
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Figure 16: Boxplots of representation error in intramodel experiment: (a) EOF of training and testing set, (b) Hausdorff distance of training
and testing sets.

precision in the testing group is relatively lower than that in
the training group. However, among all the pixel-wise errors
shown in Figure 17(e), less than 3% of all the surface points
have error distance larger than 0.5 mm.

3.2.2. Intermodel Test. Three intermodel experiments are
performed to further validate the proposed SRDS method
applied to organs from different subjects. In the following
context, “Ex1” stands for the experiment training on Kidney
2 and 3 plus one initial shape of Kidney 1 while testing
on deformations of Kidney 1, and the like for “Ex2” and
“Ex3”. In each experiment, both sparsity and accuracy are
examined.

The number of subspaces (J) and dimensions (I) of
the identified dictionary are listed in Table 5. The training

results vary among the three experiments but all features
low subspace dimensions. Table 6 shows the sparsity of the
intermodel experiments using the SRDS algorithm, and the
error level is evaluated in terms of EOF and Hausdorff
distance. Each testing deformation is also sparsely retrained
using OSP for comparison. We can see that the sparsity and
representation error resulting from SRDS method is very
close to that using OSP.

Figure 18 shows the representation accuracy using SRDS
algorithm in training and testing sets for the three tests. In
general, the error in testing set is larger than that in the train-
ing set. Particularly, as for EOF evaluation, “Ex1” leads to the
largest EOF error relative to “Ex2” and “Ex3”, but the average
error rate is still as low as 0.3% for training set and 2.0% for
testing set. Table 7 lists the specific Hausdorff measurements
corresponding to boxplots in Figures 18(c) and 18(d),
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Figure 17: Representation error in intramodel experiment: (a) color-coded scales, (b) example representation error in training set, (c) 90%
representation error in training set, (d) example of representation error in testing set, and (e) 90% representation error of testing set.
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Figure 18: Boxplots of representation error in intermodel experiments: (a) EOF of training set, (b) EOF of testing set, (c) Hausdorff distance
of training set, (d) Hausdorff distance of testing set.

including minimum, 95th percentile and mean. We can
see that the 95th percentile Hausdorff distance across all
experiments is below 3 mm, and the mean is belong 2.1 mm.
Comparing those error levels with the intramodel test, one
can see that the homology existing among the training
and testing deformations contributes to better dictionary
generalization and, thus, leads to higher representation
accuracy.

Figures 19, 20 and 21 show the color-coded error fields
of a typical representation and at the maximum 90% level
for the three intermodel experiments. In either training set
or testing set, it is observed that large errors are mostly
distributed around the edge area where local details are rich.
Consistent with the previous EOF and Hausdorff distance
measurements, the color diffusion in Figures 19–21 indicates
that errors in testing set is larger than that in training set and
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Figure 19: Representation error in intermodel Ex1: (a) color-coded scales, (b) example of color-coded point error in training set, (c) 90%
color-coded point error in training set, (d) example of color-coded point error in testing set, and (e) 90% color-coded point error of testing
set.
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Figure 20: Representation error in intermodel Ex2: (a) color-coded scales, (b) example of color-coded point error in training set, (c) 90%
color-coded point error in training set, (d) example of color-coded point error in testing set, and (e) 90% color-coded point error of testing
set.
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Figure 21: Representation error in intermodel Ex3: (a) color-coded scales, (b) example of color-coded point error in training set, (c) 90%
color-coded point error in training set, (d) example of color-coded point error in testing set, and (e) 90% color-coded point error of testing
set.
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Figure 22: Boxplots of representation error in LV interpatient experiments: (a) EOF, (b) Hausdorff distance.
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Table 6: Sparsity (μ/σ) and accuracy evaluation for intermodel experiment with kidneys.

X (μ/σ) Y (μ/σ) Z (μ/σ) EOF (%) Haus (mm)

Ex1 train (SRDS) 34.7/5.5 35.6/5.5 36.4/1.6 0.32 0.69

Ex1 test (SRDS) 35.7/1.3 36.7/0.9 36.7/1.8 2.01 2.08

Ex1 test (OSP) 36.7/2.4 36.0/2.4 35.9/2.6 1.94 1.94

Ex2 train (SRDS) 42.8/4.5 42.8/2.2 43.5/3.7 0.26 0.59

Ex2 test (SRDS) 47.0/3.1 44.5/1.8 46.3/2.4 1.02 1.27

Ex2 test (OSP) 44.0/2.2 41.9/12.1 45.9/2.0 0.95 1.22

Ex3 train (SRDS) 37.1/9.1 43.3/2.2 40.8/1.3 0.25 0.59

Ex3 test (SRDS) 41.4/6.5 45.1/1.7 40.4/1.3 0.90 1.18

Ex3 test (OSP) 41.2/8.4 42.7/9.7 39.3/10.6 0.83 1.16

<0.3 mm

0.3∼0.6 mm

0.6∼0.9 mm
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1.2∼2 mm

(a) (b) (c)

Figure 23: Representation error in in vivo experiment: (a) color-
coded scales, (b) example representation error in testing set, (c) 90%
representation error of testing set.

“Ex1” generates relatively larger error comparing to “Ex2” or
“Ex3.”

3.3. In Vivo Experiment Using MRI. The proposed approach
is also tested over the in vivo cardiac MR images [37],
consisting of automatically segmented images from volumet-
ric MRI scans of a diastole-systole-diastole cycle. For each
patient, there are around 22 phases in a cardiac cycle. Surface
correspondence of LV shapes within and across patients are
accomplished using the approach described in Section 2.5.
Since the generated surfaces from automatic segmentation
software are quite rough, we use the spherical harmonic
representation as a filter to smooth out those surface noises
and then apply the smoothed surfaces as training and testing
data. Therefore, the demonstrated error in this section is
relative to the SHD surfaces, not to the original raw surfaces.
The iter-patient results are reported as follows.

Similar to the ex vivo test, we use the segmented left
ventricles (LV) of 2 different patients plus an initial LV
surface for the third patient as training data, and the
remaining LV shapes in a beating cycle of the third patient
are used to test the generalization of the identified subspaces.
The formulated tests are noted as “Ex1,” “Ex2,” and “Ex3.”
Table 8 lists the sparsity test results of the three cross
validations for both training and testing sets. We can see
that the sparsity in the training set is close to that in the

Table 7: Hausdorff distance for intermodel experiment with
kidneys.

Min (mm) 95th (mm) Mean (mm)

Ex1 train 0.23 1.14 0.69± 0.42

Ex1 test 0.33 2.81 2.08± 0.61

Ex2 train 0.30 1.03 0.59± 0.23

Ex2 test 0.49 1.99 1.27± 0.49

Ex3 train 0.23 1.03 0.59± 0.39

Ex3 test 0.54 1.74 1.18± 0.44

testing set, but the former achieves much higher accuracy.
This is because that the identified subspaces generalize
perfectly for those elected atoms among the training set
after spherical harmonic smoothing. Consistent with the
previous experiments, the representation of testing surfaces
using SRDS is also compared with that using repursuing OSP.
According to the results, SRDS achieves performance slightly
worse than but close to that of OSP. However, as demon-
strated in Section 3.4, without relying on the structured
dictionary learned from the training population, OSP is a
computational expensive task, since for each testing surface,
it requires to research for atoms from the training set to
achieve sparse representation.

Figure 22 provides boxplots for the representation accu-
racy of the testing set in terms of EOF and Hausdorff
distance. Table 9 provides the minimum, 95th percentile,
and mean Hausdorff measurements corresponding to Fig-
ure 22(b). In coincidence, “Ex1” leads to slightly larger errors
than the other two tests, with average EOF of 3.2% (“Ex1”),
and mean Hausdorff distance of 1.67 ± 0.39 mm. The 95th
percentile Hausdorff distance across all experiments is below
2.2 mm. Figures 23(b) and 23(c) show the color-coded error
field of a typical representation and at the maximum 90%
level for the testing set in one interpatient experiment (c).
As indicated by the color distribution, majority of the point
errors are below 0.9 mm. Particularly, in the 90th percentile
evaluation in Figure 23, only 3% of all the point-wise errors
are above 0.9 mm.

3.4. Efficiency. To examine the efficiency of the proposed
SRDS method quantitatively, the computational time to rep-
resent each surface in the testing set using SRDS method is
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Table 8: Sparsity (μ/σ) along X , Y , Z axis and accuracy of in vivo LV tests.

X (μ/σ) Y (μ/σ) Z (μ/σ) EOF (%) Haus (mm)

Ex1 train (SRDS) 37.0/0.0 35.4/0.5 31.7/9.0 0.13 0.08

Ex1 test (SRDS) 37.0/0.0 36.0/0.0 34.6/1.5 3.21 1.07

Ex1 test (OSP) 33.3/10.5 36.8/2.6 33.8/9.2 2.92 0.98

Ex2 train (SRDS) 35.4/7.4 32.8/14.1 32.4/3.3 0.17 0.10

Ex2 test (SRDS) 38.0/0.0 37.0/0.0 34.0/0.0 2.31 1.15

Ex2 test (OSP) 32.1/6.3 24.0/10.5 32.3/6.5 1.93 1.07

Ex3 train (SRDS) 36.7/3.2 38.8/1.5 38.4/0.5 0.12 0.07

Ex3 test (SRDS) 39.6/1.2 40.0/0.0 38.8/0.4 2.33 1.09

Ex3 test (OSP) 32.7/11.5 33.4/11.3 30.1/12.2 1.98 0.99

Table 9: Hausdorff distance for in vivo experiment with LV.

Min (mm) 95th (mm) Mean (mm)

Ex1 train 0 0.50 0.08± 0.18

Ex1 test 0.99 2.16 1.67± 0.39

Ex2 train 0 0.63 0.10± 0.24

Ex2 test 0.75 1.37 1.14± 0.18

Ex3 train 0 0.60 0.07± 0.21

Ex3 test 0.72 1.46 1.09± 0.24

Table 10: Computational time of SRDS and OSP.

Training K SH level L SRDS (sec) t1 OSP (sec) t2 t2/t1
Brain 35 80 0.3 51.2 170.7

GBL 350 25 0.6 39.1 65.2

Bladder 74 30 2.5 57.2 22.9

Kidney 52 20 0.8 9.2 11.5

LV 51 25 0.5 6.9 13.8

compared with that resulting from OSP repursuing approach
for the above five organs. The results are summarized in
Table 10, including training set size K , maximum SH level
L, average time (in seconds) required with SRDS (t1) and
OSP (t2), respectively, and the ratio between the two. As
shown in Table 10, the time consumption for seeking sparse
representation of the testing surfaces using the SRDS is
at least 10 times lower than that using the original OSP
method which does not rely on the dictionary structure
learned from the training data set. The advantage is more
pronounced when the training data size K or the SH level
L is large. For example, in the brain model, the high SH
level L leads to substantial computational delay during the
search for proper atoms for representation, such that the
SRDS achieves a speed orders of magnitude faster than the
OSP method without training. On the other hand, for the
case of gallbladder, the large training size also increases the
time used by repursuing OSP, so it runs 65 times slower than
SRDS.

To summarize, considering the test results for sparsity,
accuracy, and efficiency given in this experiment section,
we can see that the proposed SRDS method achieves sparse

surface representation with high computational efficiency
and accuracy.

4. Conclusions and Discussion

This paper introduced a new algorithm for block sparse rep-
resentation of deformable organ surfaces with high accuracy.
The proposed SRDS design first identifies the deforma-
tion subspaces from the training data set in the trans-
formed spherical harmonic domain and then represents each
deformed surface with a block sparse vector in the structured
dictionary. SRDS is generalized to applications involving
organs with multiple surface layers, such as bladder. The
algorithm has been validated with FEM data and real 3D
MRI scans under both ex vivo and in vivo conditions.
The FEM test results demonstrate that SRDS achieves
accuracy matching that of complex mathematical modeling
techniques. Further, the maximum representation error in
ex vivo experiment is below 1 mm for intramodel test and
below 3 mm for intermodel test. For the in vivo experiment,
the SRDS achieves an accuracy of better than 2.5 mm.

SRDS algorithm has already been used in tracking organ
deformations in minimum invasive surgery [2–4]. The struc-
ture introduced in the dictionary enables efficient surface
recovery from limited samples. In addition, the merits of
block sparse surface representation presented here can be
applied to various medical organ modeling, shape classi-
fication, and similarity retrieval where reduced parameter
dimension can potentially speed up the implementations.
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