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Abstract

Purpose

To computationally separate dynamic brain functional BOLD responses from static back-

ground in a brain functional activity for forward fMRI signal analysis and inverse mapping.

Methods

A brain functional activity is represented in terms of magnetic source by a perturbation

model: χ = χ0 +δχ, with δχ for BOLD magnetic perturbations and χ0 for background. A brain

fMRI experiment produces a timeseries of complex-valued images (T2* images), whereby

we extract the BOLD phase signals (denoted by δP) by a complex division. By solving an

inverse problem, we reconstruct the BOLD δχ dataset from the δP dataset, and the brain χ
distribution from a (unwrapped) T2* phase image. Given a 4D dataset of task BOLD fMRI,

we implement brain functional mapping by temporal correlation analysis.

Results

Through a high-field (7T) and high-resolution (0.5mm in plane) task fMRI experiment, we

demonstrated in detail the BOLD perturbation model for fMRI phase signal separation

(P + δP) and reconstructing intrinsic brain magnetic source (χ and δχ). We also provided to

a low-field (3T) and low-resolution (2mm) task fMRI experiment in support of single-subject

fMRI study. Our experiments show that the δχ-depicted functional map reveals bidirectional

BOLD χ perturbations during the task performance.

Conclusions

The BOLD perturbation model allows us to separate fMRI phase signal (by complex divi-

sion) and to perform inverse mapping for pure BOLD δχ reconstruction for intrinsic functional

χ mapping. The full brain χ reconstruction (from unwrapped fMRI phase) provides a new

brain tissue image that allows to scrutinize the brain tissue idiosyncrasy for the pure BOLD

δχ response through an automatic function/structure co-localization.
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Introduction

The blood oxygenation level-dependent (BOLD) signal [1–4] has been widely leveraged for

neuroimaging studies using functional magnetic resonance imaging (fMRI). Through the use

of a gradient-recalled echo (GRE) echo planar imaging (EPI) sequence and quadrature detec-

tion, the data acquisition of BOLD fMRI produces a timeseries of T2�-dephasing images,

which are complex-valued in nature. Conventionally, we depict the brain functional map from

the 4D T2� magnitude dataset, while discarding the 4D T2� phase dataset. However, the T2�

phase conveys information concerning brain magnetic state that is different from the T2� mag-

nitude [5,6]. Especially, the inverse mapping for brain magnetic source reconstruction can

only be achieved via T2� phase rather than T2� magnitude [7–10]. The inverse mapping for

BOLD fMRI seeks the dynamic BOLD magnetic source from the timeseries of T2� phase

images [8].

A complex T2� image is formed by an intravoxel spin dephasing mechanism [6,8]. The

image contrast is attributed to the origin of brain tissue heterogeneity in terms of inhomoge-

neous magnetic susceptibility property distribution that causes an inhomogeneous fieldmap

via a tissue magnetization process in a main field B0. For BOLD fMRI studies focusing on the

brain, we are concerned with the original magnetism expression (in terms of intrinsic tissue

magnetic property, prior to magnetization and other MRI transformations) of BOLD informa-

tion conveyed in the T2� magnitude and phase datasets. A T2� image contains morphologic

distortions and is nonlinearly related to the magnetic source [5,7,8]. Consequently, the time-

series of T2� magnitude or phase images have a complicated relationship to the original BOLD

responses. These relationships have been numerically simulated [5,11–15]. Even so, the BOLD

fMRI model remains incomplete, in particular in the magnetic expression of a neurovascular-

coupled physiologically driven BOLD signal. By decomposing a brain magnetic state into a

static background and a dynamic perturbation, we may look into the insights of BOLD fMRI

for the static brain parenchymal and dynamic functional contributions and their inverse map-

pings separately.

Our recent research [8,16–19] has demonstrated that the T2� phase data can be used to

reconstruct the original brain magnetic susceptibility source (denoted by χ). We propose

using a BOLD perturbation model to describe the brain χ source in a decomposition of static

brain parenchyma (denoted by χ0) and dynamic BOLD perturbation (denoted by δχ). With

dynamic/static source separation, the dataflow during T2� imaging in an accompaniment of

BOLD field perturbation and BOLD phase perturbation models can be shown. Our ultimate

goal is to reconstruct the BOLD δχ dataset from the T2� phase dataset by solving an inverse

imaging problem [20], achieving χ-depicted intrinsic brain functional mapping.

The fMRI signals are noisy and small (accounting for less than a 5% change in energy con-

sumption [21,22]) such that a brain functional activity is indiscernible in a snapshot of brain

imaging. For a task-evoked BOLD fMRI experiment, a designed task paradigm that consists

of a repetition of stimuli is always used to deal with the BOLD signal weakness. While multi-

subject population statistics are widely accepted for group-level BOLD fMRI studies, a

research trend of using individual fMRI study has recently emerged under the claim that

“data from a single subject are actually meaningful and reliable” [23,24]. Accordingly, we

applied our BOLD perturbation model to two single-subject task fMRI experimental data

analyses (one 7T high-resolution dataset and another 3T low-resolution one). Without

group averaging, the single-subject experimental data analysis allows us 1) to examine the

brain BOLD perturbation model in technical detail; 2) to observe the single subject’s func-

tion idiosyncrasy; and 3) to co-localize a brain function map with its brain tissue structure

(background) per se.

BOLD fMRI perturbation model
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Theory, model and methods

The overview of BOLD fMRI and its inverse for brain functional χ mapping is shown in Fig 1,

which consists of a cascade of three stages: (a) BOLD fMRI for data acquisition (T2� phase

imaging); (b) Inverse mappings for δχ and χ source reconstructions; and (c) brain function/

structure depictions in reconstructed δχ and χ source dataspaces.

The magnetic source of BOLD fMRI is a dynamic spatiotemporal distribution of brain

tissue magnetic susceptibility (primarily the change in cerebral vascular blood magnetism),

denoted by χ(r,t). Under MRI scanning (in a static field B0) through the use of a GRE EPI

sequence (with an echo time TE), the BOLD fMRI data acquisition produces a timeseries of

complex-valued T2� images, denoted by C[r,t]. With an additive BOLD perturbation model

for the magnetic source χ(r,t), denoted by χ(r,t) = χ0(r) + δχ(r,t), we may extract the BOLD

contribution in the T2� signal (in terms of phase changes δP[r,t], see below) and retrospec-

tively reconstruct the BOLD magnetic source (in terms of δχ[r,t]) by performing inverse

mapping. The ultimate goal is to depict brain functions in the reconstructed BOLD magnetic

source dataspace (δχ[r,t]). It is noted in Fig 1 that the BOLD fMRI data acquisition introduces

the MRI parameters (such as B0 and TE) that are thereafter removed by inverse fMRI, and that

the BOLD perturbation modeling enables both δχ[r,t] and χ[r,t] reconstructions. More details

about this technique are addressed in the followings.

BOLD perturbation modeling for fMRI data acquisition

Let χ0(r) denote a static brain tissue magnetic state, δχ(r,t), which is a dynamic brain BOLD

activity in an expression of cerebral blood magnetism. We assume an additive perturbation

model to describe the spatiotemporal evolution of brain χ states by

wðr; tÞ ¼ w0ðrÞ þ dwðr; tÞ ðw perturbationÞ

with jdwj << jw0j
ð1Þ

The BOLD χ perturbation model in Eq (1) greatly simplifies the complicated neurovascular

process associated with a brain biophysiological activity and is very useful for numerical

BOLD fMRI simulations [5,7,14,15]. Herewith, we make use of the BOLD χ perturbation

model presented in Eq (1) to trace the data flow of BOLD δχ source during BOLD fMRI data

acquisition.

Placed in a main field B0, the brain tissue is subject to a magnetization (magnetic polariza-

tion) process that manifests as a spatial orientation alignment of the magnetic dipole moments

along B0 (parallel for paramagnetic magnetization and antiparallel for diamagnetic magnetiza-

tion). Since brain tissue is a nonmagnetic material (strictly, a weak magnetic material, with

|χ| ~ 1×10−6 in dimensionless unit in SI metric), the tissue magnetization can be linearly

approximated [25] by

m0MðrÞ ¼ wðrÞB0 ðlinear magnetizationÞ

withMðrÞ �

X

r02d3r

mðr0Þ

jd3rj

ð2Þ

where m(r) denotes a microscopic magnetic dipole moment, M(r) a macroscopic magnetiza-

tion vector per macroscopic volume, |d3r| a volume element, and μ0 = 4π×10−7 N/A2, a mag-

netic constant (vaccum permeability). Under linear magnetization approximations, the

BOLD fMRI perturbation model
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χ-induced fieldmap is given by

bðr; tÞ ¼ B0wðr; tÞ � hdipoleðrÞ ðlinear magnetization approxÞ

with hdipoleðrÞ ¼
1

4p

3z2 � r2

jrj5
ðdipole kernelÞ

ð3Þ

where hdiople denotes the magnetic field distribution of a point magnetic dipole and � denotes a

3D spatial convolution. Strictly viewed, b(r,t) only represents the z-component of the 3D vec-

tor field (related to the 3D magnetization vector M) at a time point t. Since the spatial convolu-

tion is a linear spatial transformation, the fieldmap resulting from χ(r,t) is given by

bðr; tÞ ¼ b0ðrÞ þ dbðr; tÞ ðfieldmap perturbationÞ

with b0ðrÞ ¼ B0w0ðrÞ � hdipoleðrÞ ðstatic backgroundÞ

dbðr; tÞ ¼ B0dwðr; tÞ � hdipoleðrÞ ðBOLD portionÞ

ð4Þ

That is, the intracranial fieldmap b(r,t) consists of two parts: the static field background b0(r)

and the dynamic BOLD field perturbation δb(r,t). It is mentioned that b(r,t) is linearly related

to χ(r,t), so is δb(r,t) to δχ(r,t) due to the additive decomposition.

The T2�MRI detection on a snapshot of the fieldmap b(r,t) produces a complex-valued

image (called a complex T2� image) by an intravoxel dephasing formula [5,15,26], as given by

C½r; t� ¼
1

jOj

X

r02OðrÞ

eig�TE �bðr0 ;tÞ ðintravoxel dephasingmechansimÞ

≜ A½r; t�eiF½r;t� ðcomplex in fmagnitude; phasegformatÞ

ð5Þ

where γ denotes the proton gyromagnetic ratio (a constant), O(r) a small voxel at r = (x,y,z),
|O(r)| the voxel size (in a measure of a number of proton spins in a voxel space),and 1/|O| for

signal normalization (C[TE = 0] = 1). The intravoxel dephasing signal formation implements a

data mapping from a real-valued continuous fieldmap b(r,t) to a complex-valued discrete T2�

image C[r,t], where (r,t) denotes the continuous space and time variables and [r,t] their dis-

crete versions. The T2� imaging is a continuous-to-discrete non-linear data transformation,

Fig 1. Overview diagram of BOLD perturbation model for brain imaging and functional mapping.

https://doi.org/10.1371/journal.pone.0191266.g001
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which denies a closed form for an explicit analytic expression for the voxel magnitude and

phase signals (the discrete A[r,t] and P[r,t]) in relation to the continuous fieldmap b(r,t).

The nonlinearity of A[r,t] can be illustrated with its 1st-order approximations (reported in

Appendix B3) by

A½r; t� � 1þ
ðgTEÞ

2

2jOj

X

r02OðrÞ

ðbðr0; tÞÞ2 ð1st � order approx:Þ ð6Þ

That is, the T2� magnitude assumes a quadratic nonlinearity under the 1st–order approxima-

tion. Therefore, we conclude that the T2� magnitude is an inherent nonlinear transformation

of the fieldmap, which disables an inverse solution due to an irreversible nonlinearity like

|±a| = a� 0 (the least nonlinear condition of the 1st–order approximation in Appendix A2

and B3). In practice, the magnitude loss (calculated by 1—A[r,t]), which represents a non-

decay signal by 0), is used in fMRI instead.

Meanwhile, with 1st- and 2nd-order T2� phase signal approximations (reported in Appendix

B4) and fieldmap perturbation model (in Eq (4)), we illustrate the P[r,t] nonlinearity and its

perturbation decomposition by

P½r; t� � arctan
gTEb½r; t�

1 � ðgTEÞ
2b2½r; t�=2

 !

� gTEb½r; t�

¼ P0½r�þdF½r; t�

ð2nd � order approx:Þ

ð1st � order approx:Þ

ðphase perturbationÞ

with P0½r� ¼ gTEb0½r�;

b0½r� ¼
1

jOj

X

r02OðrÞ

b0ðr
0Þ;

b½r� ¼
1

jOj

X

r02OðrÞ

bðr0Þ;

dP½r; t� ¼ gTEdb½r; t�

db½r; t� ¼
1

jOj

X

r02OðrÞ

dbðr0; tÞ

b2½r; t� ¼
1

jOj

X

r02OðrÞ

b2ðr0; tÞ

ð7Þ

It is shown that the T2� phase signal is nonlinearly related to the fieldmap in a general setting.

The linear approximation (see Appendix) leads to a linear mapping between b[r,t] and P[r,t],

and the BOLD perturbation modeling (in terms of χ = χ0 + δχ and b = b0 + δb) leads to a phase

perturbation decomposition (P = P0 + δP).

Inverse fMRI

In the context of medical imaging, the source can be reproduced by seeking an inverse imag-

ing solution. As indicated in Eq (6), the T2� magnitude imaging is irreversible, implying

that the χ source cannot be reconstructed from T2� magnitude images. Fortunately, we can

perform an inverse solution to the linear T2� phase imaging model in Eq (7). In correspond-

ing to two forward mappings (χ(r,t)! b(r,t)! P[r,t]), we perform two inverse mappings

(P[r,t]! b[r,t]! χ[r,t]) by a computed inverse MRI (CIMRI) model [20]. The BOLD per-

turbation model offers a two-step forward mapping δχ(r,t)! δb(r,t)! δP[r,t] for a contin-

uous-to-discrete conversion and a two-step inverse mapping δP(r,t)! δb[r,t]! δχ[r,t] for

a discrete source reproduction.

BOLD fMRI perturbation model

PLOS ONE | https://doi.org/10.1371/journal.pone.0191266 January 19, 2018 5 / 24

https://doi.org/10.1371/journal.pone.0191266


Brain χ[r,t] source reconstruction

A raw T2� phase image is usually severely wrapped, especially for high-field T2� phase imag-

ing. The phase wrapping phenomenon can be removed through the use of a phase unwrapping

algorithm. There have been many reports on 3D MRI phase unwrapping. Perhaps the most

efficient 3D phase unwrapping can be achieved by a Laplacian technique [27,28], which has

been used for brain phase image processing [16,29]. Applied to a 3D wrapped phase image

Pwrap(r) 2 [-π, π) rad, the Laplacian unwrapping algorithm is expressed [16,29] by

Punwrap ¼ FT � 1
FT
�
cosPwrap � FT � 1

�
k2 � FTðsinPwrapÞ

�
� sinPwrap � FT � 1

�
k2 � FTðcosPwrapÞ

�	

k2

� �

with Pwrap 2 ½� p;pÞ and Punwrap 2 ð� 1;1Þ
ðunwrappingÞð8Þ

where FT and FT-1 is a Fourier transform pair (with an identity FT-1(FT) = 1) and k = |k| repre-

sents the 3D discrete coordinates in the 3D Fourier domain. Besides phase unwrapping, the

Laplacian algorithm in Eq (8) can largely remove the harmonic background phase [16,29] (in

principle ofr2eiP(r) = 0). By applying a 3D Laplacian unwrapping procedure to each 3D phase

image in Pwrap[r,t] at a time point t, we obtain a 4D unwrapped phase dataset Punwrap[r,t] 2

(-1,1) rad.

With the linear T2� phase imaging model in Eq (7), from an unwrapped phase image

(denoted by P for succinct), we can reconstruct the fieldmap by

b½r; t� ¼
P½r; t�
gTE

ðlinear T2 � phase imagingÞ: ð9Þ

It is noted that b[r,t] and P[r,t] are spatially conformed to the scale difference (1/(γTE)) at

each snapshot time t. The linear inverse mapping from P[r,t] and b[r,t] cancels the TE parame-

ter dependence.

Using the b[r,t] dataset, we can then reconstruct a χ[r,t] dataset by solving a dipole inver-

sion problem. An iterative solution is given by

w½r; t� ¼ arg min
w½r;t�

B0w½r; t� � hdipole½r� � b½r; t�
� �

: ð10Þ

where the reconstructed 4D χ[r,t] provides a discrete representation of the continuous brain

dynamic source χ(r,t), hence the 4D χ tomography [30,31]. It is noted that the parameter B0 is

canceled and the spatial convolution is removed in Eq (10). The discreteness effect associated

with the computationally tomographic χ reconstruction diminishes as the spatial resolution

increases.

The solution to the iterative dipole inversion problem is a nontrivial task. We refer readers

to different solutions, such as truncated inverse filtering (filter truncation regularization)

[32,33], iterative L1-norm or L2-norm regularizations [34–38], and total-variation (TV)-regu-

larized split Bregman iteration (TVB) [20,30,34,39,40].

BOLD δχ source reconstruction

From a 4D T2� phase dataset, we can extract the dynamic relative phase change (relative to a

reference or baseline) by a complex division algorithm [8]:

dP½r; tn� ¼ Arg
expðiP½r; tn�Þ
expðiPref ½r�Þ

 !

; n ¼ ½1; 2; � � � ;Nt�

with Pref ½r� ¼ P½r; t1�

ð11Þ

BOLD fMRI perturbation model
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where Arg denotes an operator to find the phase angle (or argument) of a complex number

(via a trigonometric function arctan) and Nt is the number of snapshot captures in a 4D T2�

dataset. The reference phase image Pref[r] is selected from a T2� phase image captured at

a time point (not necessarily the 1st time point). The complex division serves as a phase sub-

traction algorithm to find the phase difference between two phase images. Notably, it can cor-

rectly extract the relative phase change δP[r,t] between two wrapped phase images as long as

|δP|< π. For a timeseries of severely wrapped T2� phase images, we can extract the temporal

phase changes (relative to a snapshot reference) using the complex division in Eq (11), obtain-

ing a 4D dataset δP[r,t] in which each 3D δPmap is free from phase wrapping phenomenon

(|δP|< π). In this sense, the complex division algorithm implements phase unwrapping in the

time domain [8,9]. Obviously, the static phase background P0(r) (the culprit of phase wrapping

effect) is completely removed by the complex division in Eq (11).

From the 4D dataset δP[r,t], we can reconstruct a 4D dataset δχ[r,t] in the same manner as

for 4D χ[r,t] reconstruction, as represented by

dwrecon½r; t� ¼ arg min
dw½r;t�

B0dw½r; t� � hdipole½r� �
1

gTE
dP½r; t�

� �

ð12Þ

Again, the MRI parameters {B0, TE} are cancelled and the dipole effect is removed in the itera-

tive minimization solution.

Brain function map extraction

As discussed above, a brain activity may be represented in a variety of timeseries images from

different perspectives, such as in T2� image dataspaces by {‘A[r,t]’, ‘P[r,t]’, ‘δP[r,t]’} and in

source dataspaces by {‘χ[r,t]’, ‘δχ[r,t]’}. Since the BOLD response is very weak (< 5%), a mea-

surement repetition through a designed paradigm is needed for fMRI data acquisition and a sta-

tistic parametric mapping (SPM) technique is need for brain function map (fmap) extraction.

In particular, we are interested in the brain functional mappings in the magnitude image data-

space (A[r,t]) and the reconstructed BOLD magnetic source dataspaces (χ[r,t] and δχ[r,t]).

For a 4D dataset from a task-evoked BOLD fMRI study, which acquires a 4D fMRI dataset

through a designed task paradigm with a timecourse of task[t], we can extract the task-stimu-

lated fmap by a task-correlation algorithm [16,18], as given by

Ltcorr½r� ¼ tcorrðL½r; t�; task�½t�Þ; for L ¼ f
0A0;0 w0;0 dw0g

with task�½t� ¼ task½t� � hrf ½t�
ð13Þ

where tcorr stands for temporal correlation, which reduces the 4D spatiotemporal dataset into

a 3D spatial map, and hrf[t] for a canonical hemodynamic response function (available in SPM

software), which accounts for the lagging neurovascular response in response to a task stimu-

lus. The 3D tcorrmap offers an intuitive understanding of brain function pattern: a large posi-

tive tcorr represents a high correlative response, while a negative tcorr constitutes an anti-

correlation response. It is pointed out that the temporal correlation data analysis on a 4D

BOLD dataset can largely suppress the effect of physiological fluctuations (e.g., heartbeat and

breathing cycles) as long as the task paradigm (a long timecourse of task waveform) is out of

the phase with the physiological pulsations.

Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR)

A task-evoked BOLD fMRI experiment is essentially a time-locked weak signal repetition

detection technique. Through the use of complex division, we can extract the pure BOLD

BOLD fMRI perturbation model
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responses, which are buried in heavy noise. In the experiment result report below, we provided

signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) measurements to numerically

characterize the pure BOLD responses at different stages (in the original source δχ, the δχ-

induced fieldmap δb, and the output image δP). Based on the SNR and CNR definitions

reported in [41], we define the dynamic SNR and CNR metrics for a timeseries of images by

SNR½t� ¼
jmeanðROIact½t�Þj
stdðROIinact½t�Þ

CNR½t� ¼
jmeanðROIact½t�Þ � meanðROIinact½t�Þj

stdðROIinact½t�Þ

ð14Þ

wheremean(�) and std(�) stand for statistic mean and standard deviation, ROIact[t] and

ROIinact[t] for activation and inactivation regions of interest at a time point t. The ROIact and

ROIinact can be retrospectively specified (through a visual selection of an activation blob and

an inactive region in an fmap afterward). It is mentioned that the signal noise measurement at

an air region (defined in [41]) is applicable for phase signal noise measurement because there

is no water proton (signal carrier) in an air region that consequently causes capricious phase

signals therein. Instead, we define an inactive tissue region (retrospectively specified) for noise

measurement.

Function/structure co-localization

Conventionally, brain anatomical structure is procured by a high-resolution T1 scan (at sub-

millimeter resolution). The fmap is always displayed over a high-resolution T1 image, which

can be obtained by T1 imaging on the same brain (intra-subject inter-scan data acquisition) or

adopted from a standard brain template (inter-subject data). The function/structure associa-

tion requires intra-subject image coregistration that is computationally intensive and prone to

digital errors; and additionally, the inter-subject function/structure association suffers from a

loss of the brain tissue structure individuality.

Upon availability of high-resolution GRE-EPI data and subsequent high-resolution χ
source reconstruction, we propose to co-localize an fmap on a brain χ structure background.

Since all the data (including raw data and processed data) are derived from the same source at

a single scan (intra-scan data derivations), they are spatially automatically coregistrated. High

field fMRI enables high-resolution functional mapping and function/structure association

with rich spatial information, especially for hopefully scrutinizing the vascular origin of brain

function source.

Task fMRI experiments

We conducted one high-field high-resolution task fMRI experiment at the Auburn Univer-

sity MRI Research Center on a healthy adult volunteer. The human subject MRI scanning

was approved by the Institutional Review Board at the Auburn University. Written consent

was obtained from the human subject before the MRI scanning. The subject was instructed

to perform a finger-tapping task using the scan session. The scanner was Siemens MAGNE-

TOM 7T scanner and we used a standard GRE-EPI sequence with the following parameter

settings: TR/TE = 3000/29 ms, flip angle = 70˚, slice spacing = 0mm, slice oblique = 0˚, voxel

size = 0.5 × 0.5 × 1.2 mm3, and matrix = 234 × 234 × 24 voxels for a coverage of the superior-

most portion of the brain encompassing the motor cortex (slab thickness = 28.8mm). These

complex images were reconstructed from 32 coil elements through a GRAPPA PAT mode

with an acceleration factor of 3 in the phase-encoding dimension and a sum-of-square

BOLD fMRI perturbation model
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algorithm for coil combination (which is optimal for magnitude MRI but suboptimal for

phase MRI, leaving a room for improvement). The task consisted of 15-second blocks alter-

nating between task and rest for a total of 50 volumes (5 cycles of {5 ON, 5 OFF}). An in-

house modification to the acquisition protocol allowed for the production of both 4D raw

magnitude and 4D phase datasets as denoted by A[x,y,z,t] and F[x,y,z,t], in a matrix form of

234×234×24×50.

We also conducted a low-field low-resolution finger tapping task fMRI experiment by

scanning a different healthy adult volunteer in a Siemens 3T TrioTim scanner at the Mind

Research Network (MRN). The subject experiment was approved by the Institutional Review

Board at MRN and by the informed written consent from the subject. The task paradigm

was designed as a block timecourse consisting of 5 cycles of {15 OFF, 15 ON} plus 15 OFF, a

total number of 165 timepoints. With the experiment settings {standard GRE-EPI sequence,

TR/TE = 3000/29ms, flip angle = 75˚, isotropic voxel = 2 × 2 × 2 mm3, matrix = 128 ×128×30

voxels for a brain superior coverage}, we obtained a pair of 4D magnitude and phase images in

a matrix form of 128 ×128 ×30 ×165.

Results

In this section, we report our experimental results by applying our BOLD perturbation model

to two single-subject task fMRI data analyses (data acquisition method was described in the

previous section). We applied our perturbation model to these two task fMRI datasets sepa-

rately by performing forward fMRI phase perturbation decomposition and inverse mapping

through the same procedure. We reported the high-resolution 7T task fMRI experimental

results in Figs 2 through 6 in technical detail, while summarized the low-resolution 3T task

fMRI experimental results in Fig 7.

In Fig 2(a1, b1) we showed a pair of the 7T fMRI magnitude and phase images (raw data)

acquired at a snapshot of task-ON state (defined by task�[t]� 0.5), and in Fig 2(a2, b2) for the

3D images at a task-OFF state (defined by task�[t]� 0.5). The task paradigm for capturing 50

snapshot images is also displayed in Fig 2, in which the waveform task�[t] accounts for the lag-

ging hemodynamic responses. More slices (16 axial slices selected from a 24-slice volume) in a

snapshot volume were presented in S1 and S2 Figs. It is noted that the raw T2� phase images

are severely phase wrapped in the data range of [-π, -π) rad, and that the differences between a

task-ON and task-OFF state (either in magnitude images (a1,a2) or in phase images (b1,b2))

are too subtle to be visually perceived.

In Fig 3(a1, b2) we illustrated the 7T fMRI phase image processing (using Eq (8)) and the

χ[r,t] reconstruction (using Eq (10)), displayed with an axial slice (at z0 = 10.8 mm distant

from brain top). The SNR and CNR values were calculated from the 3D images according to

the definition in Eq (14), with the ROIact and ROIinact (in size of 5 × 5 × 3 voxels) retrospec-

tively defined in Fig 5(c2). The task�[t] was included for observing the dynamics of SNR and

CNR with respect to the stimuli. The SNR and CNR numbers denote the time averages (over

Nt -1 = 49 timepoints). More z-slices of the reconstructed χ[r,t] (at one time point t1) were pre-

sented in S3 Fig.

From the phase perturbation dataset δP[r,t] (obtained by the complex division in Eq (11)),

we reconstructed the pure BOLD χ response dataset δχ[r,t] using the TVB algorithm (in Eq

(12)), as demonstrated in Fig 4. More z-slices of reconstructed δχ[r,t] (at one time point t1)

were presented in S4 Fig. Note that the task-evoked small BOLD response (in terms of δP or

δχ) was not visually discernible in a snapshot image in Fig 4.

In Fig 4, we also provided the SNR and CNR measurements for δP[r,t] and δχ[r,t] datasets

(calculated by Eq (14) with ROIact and ROIinact defined in Fig 5(c2)). We observe the following

BOLD fMRI perturbation model
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Fig 2. T2� magnitude and phase image acquisition under a task paradigm. The ON states are defined by task�[t]� 0.5 and the OFF states by

task�[t]< 0.5.

https://doi.org/10.1371/journal.pone.0191266.g002
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aspects: i) the reconstructed χ[r,t] and δχ[r,t] assume different value ranges: χ2[-0.5, 0.5] ppm

(part per million, 10−6, in SI metric) and χ2[-0.03, 0.03] ppm, indicating the weakness of the

BOLD perturbation δχ; ii) The spatial maps of χ[r,t] and δχ[r,t] are more spatially smoothed

than those of P[r,t] and δP[r,t] due to the removal of the spatial derivative property of dipole

effect (5); and iii) The dataset δχ[r,t] gains higher SNR and CNR values than the dataset δP[r,t]

does (specifically, SNRδχ = 8.5 and CNRδχ = 5.2 versus SNRδP = 0.31 and CNRδχ = 0.34).

From 4D datasets {A[r,t], χ[r,t] and δχ[r,t]} (displayed with a z-slice in Fig 5(a1,b1,c1)), we

extracted the task-evoked brain fmaps using Eq (13), and obtained the 3D fmaps {Atcorr[r],

χtcorr[r], δχtcorr[r]} as displayed in Fig 5(a2,b2,c2). With inspection, we could identify the brain

active blobs at the motor cortex. We define an active and inactive region of interest (denoted

by ROIact and ROIinact, in size of 5 × 5× 3 voxels, corresponding to 2.5 × 2.5 × 3.6 mm3) for

image SNR and CNR calculations (in Eq (14)). In (a3,b3,c3), we also provide the p-values for

the tcorr calculations, which reveals an edge effect of tcorr-based fmap extractions in the recon-

structed source dataspaces (in the χtcorr and δχtcorr maps). Specifically, the maximal tcorr was

calculated at the activation foci (inside the blob in the ROIact) with a very small p-value

(< 10−2 for δχtcorr in Fig 5(c3)), implying a high statistical stability for the correlation-based

task idenfication. It is noted in Fig 5 that the task functional mapping using the reconstructed

χ data (b1,b2,b3) is less statistically reliable than using the reconstructed δχ data (c1,c2,c3) (as

inferred from the p-value maps (b2) and (c2)). The montage displays for the 3D tcorr fmaps
are presented in S5, S6 and S7 Figs.

Finally, we need to visualize the function/structure association. Instead of adopting a brain

anatomical template, we used a brain structure image (denoted by χ0[r]) for fmap visualization

by selecting a 3D χ source volume from χ[r,t]. We performed image enhancement (e.g., a

homodyne filtering [42]) on χ0[r] to enhance the cortex structure (gyri and sulci patterns).

The montage displays of 3D image χ0[r] are presented in S8 Fig. At the 0.5 mm in-plane spatial

Fig 3. (a1,b1,c1) T2� phase processing and χ[r,t] reconstruction; (a2,b2,c2) SNR and CNR characterizations. The SNR CNR values were calculated

according to the definition in Eq (14), with the ROIact and ROIinact defined retrospectively in Fig 5(c2), in a small size of 5 × 5 × 3 voxels. The task� is

included to observe the dynamics of SNR and CNR with respect to the stimuli. The SNR and CNR denote time averages.

https://doi.org/10.1371/journal.pone.0191266.g003
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Fig 4. The BOLD δχ[r,t] reconstruction from δP[r,t] by CIMRI (demonstrated with a z0 slice in a volume at an ON and OFF

snapshot). The SNR and CNR values were calculated according to the definition in Eq (14), with the ROIact and ROIinact defined

retrospectively in Fig 5(c2), in a small size of 5 × 5 × 3 voxels. The SNR and CNR denote time averages. The task� is included to

observe the dynamics of SNR and CNR with respect to the stimuli. The ON and OFF snapshots are labeled in Fig 2.

https://doi.org/10.1371/journal.pone.0191266.g004
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resolution, the reconstructed χ0 images reveal superior sagittal sinus and cortical details (gyri

and sulci patterns), but the intra-cortex vasculature remains undiscernible.

In Fig 6, we visually compare the magnitude-depicted fmap Atcorr[r] and the δχ-depicted

fmap δχtcorr[r] by color displays in (a1,a2), thresholded blob displays on reconstructed χ struc-

ture background in (a2,b2), and magnified blob displays in the insets. It is observed that the

δχtcorr[r] fmap reveals bidirectional BOLD χ responses to the task stimuli with compact and

Fig 5. Task-evoked brain functional mappings in different dataspaces: (a1, a2, a3) T2� magnitude image dataspace A[r,t]; (b1,b2,b3) the

reconstructed χ[r,t] source dataspace (including static background); (c1,c2,c3) the reconstructed δχ[r,t] source dataspace (pure BOLD χ
responses). In (c2), the ROIact defines a task-evoked active region of interest, and the ROIinact defines a task-irrelevant region of interest.

https://doi.org/10.1371/journal.pone.0191266.g005
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Fig 6. Visualization of magnitude- and susceptibility-depicted brain fmaps (on the reconstructed χ motor cortex image).

(a1,a2) Magnitude-based fmap (Atcorr); (b1, b2) BOLD χ-depicted fmap (δχtcorr). The magnified insets are for scrutinizing

function/structure associations. The numbers in (a1,a2) denote the z-scored tcorr values at the activation blobs.

https://doi.org/10.1371/journal.pone.0191266.g006
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strong activation blobs. In comparison, the conventional Atcorr[r] fmap appears a positive

dominance with more spatially spread in response patterns. Since all the images were derived

from the same scan data (intra-scan data), they were automatically self-aligned, thus facilitat-

ing the function/structure associations.

Fig 7. A low-field (3T) and low-resolution (2mm) brain task fMRI experiment (finger tapping) with task function analyses in different

dataspaces: (a1,b1,c1) fMRI magnitude, (a2,b2,c2) reconstructed susceptibility (χ), and (a3,b3,c3) reconstructed temporal susceptibility change

(δχ). A brain snapshot state (at a timepoint t1) was displayed with an axial slice (z0 = 14mm from brain top) in (a1) magnitude, (a2) reconstructed χ,

and (a3) reconstructed δχ. Correspondingly, task correlation fmap’s were displayed in (b1,b2,b3); and the maximal (red) and minimal (black) task-

correlated voxel timecourses were plotted in (c1,c2,c3). Note that the functional tcorrmaps (b1,b2,b3) were displayed over the reconstructed brain χ
image (a2). Display units: a.u., arbitrary unit (dimensionless); corr, correlation value in range [–1, 1] (dimensionless); ppm, parts per million 10−6

(dimensionless).

https://doi.org/10.1371/journal.pone.0191266.g007
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In Fig 7, we showed the low-resolution (2mm) 3T task fMRI data analysis results. In the

top row (a1,b1,c1), we displayed the task functional mapping in terms of the brain structural

image (in an axial slice), the task-evoked fmap (in an axial slice) and the most positive and neg-

ative responsive timecourses (at one activation focus withmax(tcorr) for task correlation and

at another activation focus with a negativemin(tcorr) for task anticorrelation). In the middle

row (a2,b2,c2) were showed the task functional mapping using the reconstructed full χ data

(BOLD response was superimposed on the background); and in the bottom row (a3,b3,c3)

were showed the pure BOLD response using the reconstructed δχ data by excluding the static

background.

The 3T experimental results in Fig 7 reveal the following aspects: 1) The pure BOLD δχ
response was too weak and noisy to be observable in a single snapshot (in Fig 7(a3)) and the

task map was extracted through a timeseries of 165 snapshots; 2) The reconstructed δχ data

yielded a higher task extraction performance than the reconstructed full χ data (in terms of

max(tcorr) in (c2,c3)); 3) The δχ-depicted task activation patterns consists of spatially sepa-

rated positive and negative blobs (bidirectional responses), which is different from the magni-

tude-depicted the prevailing positive response (cf. (b1, b3)); and 4) The low-resolution (2mm)

χ image (a2) hinders the cortical details (gyri and sulci) for the function/structure co-localiza-

tion in comparison with the high-resolution (0.5mm) χ image (the background image in Fig

6(b2)). Overall, this 3T task fMRI experiment shows that our BOLD perturbation model is also

applicable to low-resolution low-field individual fMRI data analysis.

Discussion

Under linear approximations of T2� phase imaging and with the additive BOLD perturbation

model, we can trace the BOLD activity (in a perturbation term) at different imaging stages.

Specifically, BOLD activity is expressed by δχ in the original source (with a χ + δχ model), δb
in the fieldmap (b + δbmodel), and δP in the T2� phase image (P + δPmodel). Reversely, the

BOLD signal decomposition enables inverse mappings of pure BOLD responses in the mag-

netic source dataspace by solving an inverse fMRI problem while excluding the static non-

BOLD signals.

In our previous publications [5,16,20,39], we have reported on a two-step forward mapping

model for brain MRI and a corresponding two-step inverse mapping model (a linear CIMRI

model [20]) that is for χ source reconstruction (called χ tomography in the context of source

reconstruction in medical imaging [16,30,31]). We apply the two-step inverse mapping model

for brain full χ source reconstruction, as illustrated by a data flow P[r,t]! b[r,t]! χ[r,t]. With

the BOLD perturbation model, we are allowed to trace the data transformations on a BOLD

signal during BOLD fMRI data acquisition, as illustrated by δχ(r,t)! δb(r,t)! δP[r,t]. Corre-

spondingly, by rendering inverse mappings, as denoted by δP[r,t]! δb[r,t]! δχ[r,t], we

reproduce the original intrinsic pure BOLD magnetic responses. Both χ and δχ reconstruc-

tions are implemented by CIMRI, which is essentially a linear inverse imaging solution.

The reconstruction of 4D χ[r,t] dataset from a 4D P[r,t] dataset (unwrapped phase images)

is essentially a repetition of quantitative susceptibility mapping (QSM) [34–38] at a timeseries

of snapshot images. There is an emergence of brain functional mapping in the reconstructed

magnetic susceptibility source data space, as termed by functional χ mapping [16] or func-

tional QSM [43,44], for more direct sourced-based brain function depiction. In fact, the QSM

was demonstrated in Fig 3 with a signal snapshot volume reconstruction. In the framework of

QSM, one difficulty is to unwrap the severely wrapped phase images and remove the phase

background, which can be effectively and efficiently solved through the use of Laplacian

unwrapping technique [27,28] (in Eq (8)). Fortunately, the 4D δχ[r,t] reconstruction does not
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involve the awkward phase unwrapping and phase background removal at all. The other diffi-

culty is a 3D dipole inversion, which is afflicted by a “divide-by-zero” problem, for which we

approach through a TVB iteration technique by dealing with a “multiply-by-zero” problem

instead [20,30,34,39,40].

A BOLD activity map can be extracted from a timeseries of T2� magnitude images through

the use of SPM (http://www.fil.ion.ucl.ac.uk/spm/), which is a software tool for whole brain

functional mapping. In our high-field high-resolution experiment by a GRE-EPI sequence, we

could cover a chunk of brain superior portion (with a thickness of 28.8mm from brain top),

which is not suitable for whole brain functional mapping by SPM. Expediently, we presented

the tcorrmaps for functional mappings.

Our previous reports [5,17] show that the magnitude-based brain fMRI suffers from non-

linear distortional mappings. With the BOLD perturbation model, we herein show that there

is a nonlinear interaction between the dynamic BOLD perturbation and the static background

in a T2� magnitude signal that manifests as a quadratic nonlinearity under the 1st order Taylor

expansion (in Appendix). This implies that a BOLD activity cannot be separated from the

non-BOLD background in a T2� magnitude signal. A high field (or a long TE) aggravates the

nonlinear magnitude signal coupling due to more nonlinear terms introduced from high-

order Taylor expansions. This poses a caveat on the magnitude-based brain fMRI and neuro-

imaging from the viewpoint of inseparable magnitude signals[17]. In comparison, we can

derive a linear T2� phase imaging model from the 1st-order Taylor expansion. It is understand-

able that higher-order Taylor expansions will bring more phase nonlinearity [7].

The Taylor expansion on a preliminary proton precession signal (in Appendix) is a mathe-

matic manipulation in a small phase angle condition, |γbTE|<< 1 rad, which is seldom

satisfied in a practical BOLD fMRI experiment. Nevertheless, the Taylor expansion reveals dif-

ferent magnitude and phase nonlinear behaviors [7]. Theoretically, the phase perturbation

term δP (extracted by complex division) could better meet the small phase angle condition

(see Fig 4(a1,a2) for |δP|< 1 rad) than the full phase signals (see Fig 5(b1) for P2(-6, 6) rad).

That is, the δχ reconstruction suffers less nonlinearity than the χ reconstruction. It is remind

of the displays of {P, δP, χ, δχ} in different window levels (grayscales or colorbars). In the sense

of depiction accuracy, we advocate brain functional χ mapping in the reconstructed δχ data-

space instead of χ dataspace.

The brain χ source may assume a bipolar-valued distribution in reflection of the brain tis-

sue diamagnetism and paramagnetism. The χ-expressed brain structure reconstruction from a

snapshot T2� phase volume is essentially a QSM technique. It is a new concept to represent a

brain tissue structure image by a bipolar-valued χ map [45], which is only available by a

computational imaging approach that allows negative values. Indeed, there exist both χ-

expressed positive and negative brain tissues. Specifically, a reconstructed brain χ image may

assume negative values (e.g. χwater < 0) and positive values (e.g. χferritin > 0 and χmyelin > 0),

and the BOLD δχ perturbation may assume negative values (e.g., χoxyHb < 0) and positive val-

ues (e.g. χdeoxyHb > 0). The linear T2� phase imaging retains the signs of bipolar-valued χ
source, whereas the T2� magnitude imaging completely suppresses the signs due to nonnega-

tive mapping. In particular, our experiment reveals concurrent positive and negative BOLD χ
responses (see δχtcorr in Figs 5 and 6), which may indicate the biological antagonism and

homeostasis during a brain activity: a stimulus evokes a positive response in one region (exci-

tation) meanwhile a negative response in another region (inhibition). In comparison, the con-

ventional magnitude-depicted fmap reveals prevailing positive responses over the brain (see

Atcorr).

In this report, we demonstrated our brain functional BOLD perturbation model for task

fMRI data analysis through the use of two single-subject task fMRI datasets acquired in
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different experiment settings. Both experimental data analyses produced similar results. Since

BOLD changes are relatively small, we cannot observe a brain function activity from a snap-

shot image. Through a designed task paradigm, we can infer the brain activity from a time-

series of repeating measurements through a task correlation method. Specifically, we used a

timeseries of 50 snapshots (in 5cylces) in our 7T task fMRI experiment and a longer timeseries

of 165 snapshots (in 51

2
cycles) in our 3T experiments. Besides the individual fMRI study, the

brain functional BOLD perturbation model is in principle applicable to group-level multi-sub-

ject brain function analysis. This is an ongoing research topic.

The brain functional BOLD perturbation model is very useful for brain fMRI data analysis

and computationally inverse mapping for brain χ source reconstruction. It is also useful for

numerical BOLD fMRI simulations [14,46]. In principle, a BOLD fMRI signal is, in general,

nonlinearly generated from a magnetic source (primarily χ); consequently, neither the magni-

tude nor the phase signal is a faithful representation of the internal magnetic source. The

BOLD perturbation model includes a linearization strategy: extracting a weak dynamic signal

from a static background-dominated nonlinear signal for linear dynamic signal processing.

Specifically, we separate a small BOLD response in a part of fMRI phase by complex division

and reconstruct the pure BOLD χ response by inverse mapping under linear approximations,

thereby avoiding the inherent fMRI nonlinearity [7].

Summary and conclusion

Brain activity only contributes to a very small portion of a brain fMRI signal (T2� magnitude

signal), which has been modeled by a BOLD contrast mechanism. We propose using a

BOLD perturbation model for better understanding the BOLD fMRI model from the view-

point of MRI transformations. The BOLD perturbation model originally represents a neuro-

vascular activity by a small additive perturbation term (δχ) in a magnetic-susceptibility-

expressed state (χ), i.e., separating a weak dynamic BOLD activity from an overwhelming

static background in the expression of χ source. Under linear approximations of tissue mag-

netization, the BOLD activity is represented in a δχ-induced fieldmap perturbation (δb).

Finally, T2� imaging conveys a BOLD activity in a complex T2� dataset. By performing a

complex division on the timeseries of T2� phase images (usually wrapped), we can extract a

temporal phase change (relative to a baseline) that is construed as the BOLD phase perturba-

tion (δP). Under linear approximations of T2� phase imaging, we show in theory that the

BOLD perturbation model leads to a cascade of linear mappings: δχ!δb!δP. By inverse

mappings (δP!δb!δχ), we reconstruct the BOLD δχ source from the BOLD δP image. For

the task-evoked BOLD fMRI experiment, we extracted the brain functional activity map

from the reconstructed BOLD δχ data in a measure of task correlative response. In this

proof-of-concept experiment, we demonstrated the BOLD perturbation model for brain

functional data analysis and found the bidirectional brain χ responses in the reconstructed

magnetic source dataspace. We also show that high-field high-resolution data enable more

informative function and structure depiction, especially the function/structure association

visualization with rich cortical details.

In conclusion, we propose a BOLD perturbation model to represent the magnetic source as

a dynamic BOLD response imposed on a static background, and thereby trace the components

separately in the forward fMRI for data acquisition and the inverse mapping for BOLD χ
source reconstruction. The reconstructed pure BOLD χ source (δχ) allows us to look into

brain functional activity more directly (i.e., in magnetic χ expression) and more accurately

(i.e., basically free from MRI-introduced transformations).
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Appendix

A. Taylor expansion of single proton precession signal

A T2� voxel signal is a spatial average of numerous preliminary nuclear proton precession sig-

nals in a voxel space. Over a fieldmap b(r), a nuclear proton precession signal is given by exp

(iγTEb(r)). The 1st and 2nd order Tayler expansions of the complex signal with respect to b(r)

are

expðigTEbÞÞ ¼ expðigTEbÞ

¼ 1þ igbTE þ
ðigbTEÞ

2

2!
þ
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Specifically, the 1st–order magnitude approximation is
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And the 1st-order phase approximation is

pðrÞ � arctanð1þ igbTEÞð1
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It is seen that the preliminary proton spin precession signal is of an inherent trigonomet-

ric nonlinearity. Its magnitude signal is of nonlinearity and non-negativity at all circum-

stances (taking on a quadratic behavior as the least nonlinearity at the 1st–order

approximation). Its phase signal reveals linear behavior under linear approximations

(resulting from the 1st order Taylor approximation together with a trigonometric approxi-

mation: arctan(x) � x).

B. Approximations of intravoxel dephasing magnitude and phase signals

A complex T2� signal is generated by an intravoxel dephasing average formula in Eq (5). The

T2� magnitude and phase signals are calculated by
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Note the notation [r,t] for discrete voxel signals.
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Based on the proton precession signal expansions in Appendix A, we have the 1st and 2nd

order Taylor expansions of intravoxel dephasing signal as follows

C½r; t� �
1

jOj

X

r02OðrÞ

1þ ig � TE � bðr
0; tÞ þ

ðig � TE � bðr0; tÞÞ
2

2!

� �

ð2nd Taylor expansionÞ

�
1

jOj

X

r02OðrÞ

ð1þ ig � TE � bðr
0; tÞÞ ð1st Taylor expansionÞ

ðB2Þ

From (B2), we obtain the T2� magnitude signal at the 1st order approximation

Araw½r; t� �
1

jOj

X

r02OðrÞ

1þ
ðg � bðr0; tÞ � TEÞ

2

2

� �

ð1st Taylor expansionÞ

¼ 1þ
ðgTEÞ

2

2jOj

X

r02OðrÞ

ðbðr0; tÞÞ2 ðquadratic nonlinearityÞ

ðB3Þ

That is, in the least nonlinearity approximation at 1st order Taylor expansion, a T2� magnitude

image exhibits a quadratic nonlinearity. Therefore, we conclude that the T2� magnitude signal

is a nonlinear mapping of the fieldmap in all circumstances. In particular, the quadratic non-

linearity causes the magnitude non-negativity, which prevents a static/dynamic decomposition

as illustrated by the inseparability of δb and b0 in (δb+b0)2 = (δb)2+(b0)2+2�δb�b0. Furthermore,

T2� magnitude imaging is irreversible (for b(r) reconstruction) due to a nonlinear mapping

like |±1| = 1.

Meanwhile, the 1st and 2nd approximations of T2� phase signal (from (B2)) are given by

P½r; t� � arctan
gTEb½r; t�

1 � ðgTEÞ
2b2½r; t�=2

 !

ð2nd� order approx:Þ

� gTEb½r; t� ð1st� order approx:Þ

with b½r� ¼
1

jOj

X

r02OðrÞ

bðr0Þ ðintravoxel fieldmap averageÞ

b2½r; t� ¼
1

jOj

X

r02OðrÞ

b2ðr0; tÞ

ðB4Þ

which shows that T2� phase signal is nonlinearly related to the fieldmap in a general setting (at

2nd and higher expansions).

Supporting information

S1 Fig. T2� magnitude image slices in a snapshot volume at a time point t1 (captured by a

GRE-EPI sequence). The z number (in units of mm) is the slice distance from brain top.

(TIF)

S2 Fig. T2� phase image slices in a snapshot at a time point t1 (captured by a GRE-EPI

sequence).

(TIF)

S3 Fig. Brain full χ source slices in a reconstructed 3D χ[x,y,z,t1] (a 3D χ reconstruction

from Laplacian-unwrapped phase volume by CIMRI).

(TIF)
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S4 Fig. Brain BOLD δχ source slices in a reconstructed 3D δχ[x,y,z,t1] (a 3D δχ reconstruc-

tion from a 3D δP by CIMRI).

(TIF)

S5 Fig. Task-correlated 3D brain functional map from the EPI magnitude dataset. The 3D

tcorr fmap was converted into z-scores.

(TIF)

S6 Fig. Task-correlated χ-depicted 3D brain functional map from a reconstructed 4D χ
dataset (including brain background χ0). The 3D tcorr fmap was converted into z-scores.

(TIF)

S7 Fig. Task-correlated δχ-depicted 3D brain functional map from a reconstructed 4D δχ
dataset (excluding brain background χ0). The 3D tcorr fmap was converted into z-scores.

(TIF)

S8 Fig. A χ-depicted brain cortex structure. Multiple axial slices from a reconstructed 3D χ
volume (image enhanced).

(TIF)

S1 Data. S1Data.rar (compressed raw 7T magnitude, part 1 of 2 parts).

(RAR)

S2 Data. S2Data.rar (compressed raw 7T magnitude, part 2 of 2 parts).

(RAR)

S3 Data. S3Data.rar (compressed raw 7T phase, part 1 of 2 parts).

(RAR)

S4 Data. S4Data.rar (compressed raw 7T phase, part 2 of 2 parts).

(RAR)

S5 Data. S5Data.rar (compressed raw 3T magnitude, part 1 of 3 parts).

(RAR)

S6 Data. S6Data.rar (compressed raw 3T magnitude, part 2 of 3 parts).

(RAR)

S7 Data. S7Data.rar (compressed raw 3T magnitude, part 3 of 3 parts).

(RAR)

S8 Data. S8Data.rar (compressed raw 3T phase, part 1 of 3 parts).

(RAR)

S9 Data. S9Data.rar (compressed raw 3T phase, part 2 of 3 parts).

(RAR)

S10 Data. S10Data.rar (compressed raw 3T phase, part 3 of 3 parts).

(RAR)
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