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Corydalis decumbens, a Traditional Chinese Medicine, has been widely used for the alternative and/or complementary therapy
of hypertension, arrhythmias rheumatoid arthritis, sciatica, stroke, hemiplegia, paraplegia, and vascular embolism. The aim of
this study was to determinate the potential effects of Corydalis decumbens on the five cytochrome P450 (CYP) enzyme activities
(CYP1A2, CYP3A4, CYP2C9, CYP2C19, and CYP2D6) by cocktail approach. To evaluate whether concurrent use of Corydalis
decumbens interfereswith the effect of several prescription drugs, saline (control group) orCorydalis decumbens (XTWgroup) were
administrated via gavage for 7 successive days. A probe cocktail solution (phenacetin, omeprazole, metoprolol, tolbutamide, and
midazolam) was given 24 h after the last dose of saline or Corydalis decumbens. A specific and sensitive UHPLC–MS/MS method
was validated for the determination of five substrates and their metabolites in control group and XTW group. Our results indicated
that Corydalis decumbens could have inductive effects of CYP2C19 and inhibit the activities of CYP1A2 and CYP3A4. However,
Corydalis decumbens had no significant influence on CYP2C9 and CYP2D6. The herb-drug interaction should require more
attention by careful monitoring and appropriate drug dosing adjustments to the concurrent use of westernmedications which were
metabolized byCYP1A2, CYP2C19, andCYP3A4 in human—Corydalis decumbens, CytochromeP450, Cocktail, Pharmacokinetics,
herb–drug interactions.

1. Introduction

Herbal medicine was gradually being used as an alternative
and/or complementary treatment for serious diseases [1].
Corydalis decumbens (Thunb.) Pers, a herbal medicine, was
named “Xiatianwu” inChina. Cultivation base of “Xiatianwu”
was officially approved byGoodAgriculture Practices (GAP),
in China since 1980. Corydalis decumbens, also a Traditional
Chinese Medicine (TCM), has been widely used for the
treatment of hypertension, hemiplegia or cerebral embolism
hemiplegia, paralytic stroke, rheumatic arthritis, and sciat-
ica [2]. Earlier clinical and/or preclinical studies also have
demonstrated thatCorydalis decumbens (tablet/injection) has
exerted the benefit effect on hypertension [3], rheumatoid
arthritis [4], sciatica [5], trigeminal neuralgia [6], inhibiting
platelet aggregation [7], and memory [8]. Thus, besides clin-
ical doctor’s recommendations, many patients take western

medication in combination with Corydalis decumbens or
other herbal medicine which they think is safe and often
not inform self-medication to their primary physician [9–
12]. However, there is a potential for herb–drug interactions
between herbal medicine and western medicine [7]. The
herb–drug interactions are implicated in pharmacokinetic
and pharmacodynamic effects and may lead to serious
adverse events or even death [13]. In order to avoid clinically
insufficient benefits and/or unacceptable risks, it is important
to discover and identify harmful combination interactions.

Cytochrome P450 (CYP), a superfamily of enzymes,
is the main phase 1 enzyme system for the metabolism
of various exogenous, endogenous components, and herbal
substance [14, 15]. Among many CYP enzymes, CYP1A2,
CYP2C9, CYP2C19, CYP2D6, and CYP3A4 are the major
contributors to metabolizing a vast majority of widely known
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drugs [16, 17]. Inhibition or induction of specific enzymes
has been considered as the mainly modulated factor for
herb–drug interactions (HDIs), which can appear when herb
and western medication are combined administration [18–
20]. Therefore, it is essential to understand the inhibitive and
inductive effects of CYP enzymes, in order to predict the
potential HDI.

The present work was to evaluate the effects of Cory-
dalis decumbens on the activities of CYP enzymes CYP1A2,
CYP2C9, CYP2C19, CYP2D6, and CYP3A4. The cocktail
approachwas effectively used tomonitor the activities of CYP
enzymes and recognized as one of the specific analytical tools
to study herb–drug interactions [21, 22]. Five probe drugs
(CYP1A2 for phenacetin [23], CYP2C9 for tolbutamide [24],
CYP2C19 for omeprazole [25], CYP2D6 for metoprolol [26],
andCYP3A4 formidazolam [27]) were analysed in rat plasma
with a specific and sensitive UHPLC–MS/MS method. Sev-
eral studies have demonstrated that rat CYPs (1A2, 2C6, 2D1,
2D2, and 3A1/2) are homologous to human CYPs (1A2, 2C9,
2C19, 2D6, and 3A4), respectively [17, 19, 28]. Therefore, the
results from rats could be extrapolated to human in clinical
use [17, 19]. Five CYP enzymes activities were analysed by
comparing pharmacokinetics of corresponding probe drugs
between XTW and control treatment groups. We hope that
our results will be helpful for avoiding the insufficient benefits
and serious adverse effects of herb–drug interactions between
Corydalis decumbens and western medicine.

2. Materials and Methods

2.1. Chemicals. Phenacetin, omeprazole, metoprolol, tolbu-
tamide, midazolam (purity > 98%), and carbamazepine
(internal standard, IS) were provided by Sigma–Aldrich Co.
(St. Louis, MO, USA). Corydalis decumbens injection was
obtained from Jiang Xi Herbi-sky Co., Ltd. (JiangXi, China).
A Milli–Q system (Millipore Co., USA) was used to produce
ultrapure water. Other chemical reagents (analytical grade)
used were from standard chemical suppliers.

2.2. Animals. Male Sprague–Dawley rats (n=12, weighing
220±20 g) were obtained from Laboratory Animal Research
Center of Wenzhou Medical University (Wenzhou, China).
The rats were kept in house cages with a temperature 22±2∘C,
humidity 50±5%, and light–dark (12 h/12 h) cycle. They were
maintained in house cages for at least one week prior to study
pharmacokinetics experimentation and fed with food and
drinking water freely. All experimental procedures in present
study were approved strictly by the Animal Care and Use
Committee of Wenzhou Medical University.

2.3. Apparatus and UHPLC–MS/MS Conditions. To analyse
the mixed compounds, the UHPLC–MS/MS was employed.
Chromatographic analysis was executed by an Agilent 1290
UHPLC system. The mass spectrometry was Agilent 6420
Series Triple Quadrupole Tandem Mass Spectrometer (Santa
Clara, CA, USA) equipped with an electrospray ioniza-
tion source in the positive-ion mode. MassHunter Agilent
Software (version B.07.00) was used for setting instrument
condition parameters and analysing data.

Separation of five probes and the IS was based on the
conditions described previously [17]. They were separated
using a 2.1 × 50 mm, 1.8 𝜇m particle, Agilent ZORBAX
Eclipse Plus C18 Rapid Resolution HD column at a constant
temperature of 30∘C. Formic acid–water, 1/1000, v/v (mobile
phase A), and acetonitrile (mobile phase B) were prepared
as initial mobile phases, which were ultrasonically degassed
before use. A gradient elution program was as follows:
0–0.3 min (30% B); 0.3–1.3 min (30%–50% B); 1.3–1.8 min
(50%–95%B); 1.8–2.8 min (95% B).The posttime was 1.0 min
for equilibration of the column, and the total run time was 3.8
min. The flow rate was 0.4 mL⋅min−1.

Nitrogen was considered as desolvation gas (10 L/h).
The nebuliser pressure and desolvation temperature of dry-
ing gas (both nitrogen) flow were adjusted to 45 psi and
350∘C, respectively. The capillary voltage was set to 4 KV.
The quantitative analysis of target ions was performed
in multiple reaction monitoring (MRM) mode with m/z
180.1→109.9 for phenacetin, m/z 346.1→135.9 for omepra-
zole, m/z 268.2→115.9 for metoprolol, m/z 271.1→91.0 for
tolbutamide, m/z 326.1→ 290.8 for midazolam, and m/z
237.1→194.0 for the IS.

2.4. Pharmacokinetics. The study was conducted in accor-
dance with the BCPT policy for experimental and clinical
studies [29]. The above 12 male Sprague–Dawley rats were
randomly divided into 2 groups: Corydalis decumbens treat-
ment group (XTW group) (n = 6) and control group (n =
6). Corydalis decumbens and saline (5 mL/kg via gavage, i.g.)
were administrated for 7 successive days. A probe cocktail
solution was prepared by phenacetin (10 mg/kg), omeprazole
(10 mg/kg), metoprolol (10 mg/kg), tolbutamide (1 mg/kg),
and midazolam (10 mg/kg) diluted with saline. The probe
cocktail solution (4 mL/kg via i.g.) was given 24 h after the
last dose of saline or Corydalis decumbens.

Tail vein blood samples (0.25-0.3 mL) were collected into
1.5 mL heparinized polyethylene tubes at 0.17, 0.5, 1, 2, 3, 4, 6,
8, 12, 24, 48, and 72 h, after probe drugs administration. The
blood samples were centrifuged at 10,000 g for 10 min and
plasma layers were dispatched aliquots of 100 𝜇L and frozen
at –80∘C until analysis.

2.5. Statistical Analysis. Drug and statistics (DAS) software
(version 3.0) was used to calculate the pharmacokinetic
parameters. The results were expressed as a mean ± standard
deviation (SD). All analyses for the main pharmacokinetic
parameters of the 2 groups were performed with the IBM
SPSS software system statistics (version 23.0) by use of
Student's t-test. Statistical significance was accepted if a value
of p < 0.05.

3. Results

3.1. Method Validation. The regression type of each analyte
in a certain range, correlation coefficient, and calibrations
were shown in Table 1. The calibration curves showed good
linearity over the selected concentration in all analyte samples
with a correlation coefficient (R2) > 0.990.The lower limit of
quantification(LLOQ) was 5.43 ng/mL for phenacetin, 3.43
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Table 1: The calibration curve of phenacetin, metoprolol, midazolam, omeprazole, and tolbutamide in plasma (n=6).

Analytes Calibration curves R2 linear range (ng⋅mL)
Phenacetin Y=0.502240∗X+0.010662 R2=0.9984 2.5-1000ng/ml
Metoprolol Y=0.301110∗X+0.063879 R2=0.9903 2.5-1000ng/ml
Midazolam Y=0.219790∗X+0.011036 R2=0.9965 0.5-200ng/ml
Omeprazole Y=0.556111∗X+0.030624 R2=0.9970 1-1000ng/ml
Tolbutamide Y=0.536867∗X+0.081507 R2=0.9952 20-8000ng/ml

Table 2: Precision, accuracy, extraction recovery, and matrix effect of five probes in rat plasma (n=6).

Analytes Concentration added (ng/mL) Intra-day Inter-day Recovery
(%)

Matrix effect
(%)RSD (%) RE (%) RSD (%) RE (%)

Phenacetin
5 4.93 2.10 4.90 -0.19 83.50 98.41
100 7.02 1.69 8.02 2.78 84.71 97.97
500 2.42 -1.39 5.06 -0.93 87.35 102.59

Metoprolol
5 10.85 -0.88 9.74 -0.39 88.98 95.26
100 8.27 -3.41 9.16 -2.74 90.76 97.67
500 4.70 1.86 5.90 0.42 87.24 97.27

Midazolam
2.5 8.01 4.40 8.82 0.68 85.62 95.46
25 8.60 -0.48 9.22 -2.21 84.02 96.47
100 5.65 0.77 7.56 -0.28 87.48 97.82

Omeprazole
5 5.69 -0.58 6.91 1.72 85.93 98.78
50 6.45 4.28 5.15 -2.18 88.93 95.91
500 2.25 6.24 2.90 1.66 86.95 100.34

Tolbutamide
100 2.41 -4.44 8.12 3.97 85.82 98.94
500 4.17 1.87 4.66 -0.73 87.43 95.97
5000 3.28 0.41 4.23 -1.19 86.85 99.18

ng/mL for tolbutamide, 5.65 ng/mL for omeprazole, 5.33
ng/mL for metoprolol, and 4.46 ng/mL for midazolam.

As shown in Figure 1, the retention times of relevant
analytes (phenacetin, tolbutamide, omeprazole, metoprolol,
and midazolam) and IS determined by a UHPLC-MS/MS
method in rat plasma were 1.035, 2.649, 0.529, 0.448, 0.715,
1.827 min, respectively. Meanwhile, there were no inter-
ferences of endogenous interfering peaks near the relative
retention time for analytes in EIC chromatograms. The
dates of precision, accuracy, recovery, and matrix effect of
five probes were summarized in Table 2. The intraday and
interday precisions ranged from 2.25% to 10.85% and 2.90%
to 9.74%, respectively. The intraday and interday accuracies
changed from 95.56% to 106.24% and 97.26% to 103.97%,
respectively. The extraction recoveries for phenacetin, tolbu-
tamide, omeprazole, metoprolol, and midazolam were larger
than 83.5%. The matrix effects for all analytes ranged from
95.26% to 102.59%.Abovementioned results were collected in
Table 2.

3.2. Effect of Corydalis decumbens on the CYP1A2 Activity.
Pharmacokinetic profiles of phenacetin in two different
treatment groups were used to depict CYP1A2 activity. As
shown in Figure 2(a) and Tables 3(a) and 3(b), XTW group
significantly prolonged T1/2 and increased MRT(0–t) and
MRT(0–∞) (P<0.05, P<0.01), when compared with control

group. Other pharmacokinetic parameters (Cmax, AUC and
CLz/F) of phenacetin in the XTW group showed no obvious
differences, comparing with control group (P>0.05). These
indicated that Corydalis decumbensmight inhibit the activity
of CYP1A2.

3.3. Effect of Corydalis decumbens on the CYP2C9 Activity.
Tolbutamide’s pharmacokinetic parameters in two different
groupswere expressed in Figure 2(b) andTables 3(a) and 3(b).
There were no obvious differences in the pharmacokinetic
parameters in XTW and control groups, which indicated
that Corydalis decumbens did not influence the activity of
CYP2C9 in blood samples.

3.4. Effect of Corydalis decumbens on the CYP2C19 Activity.
The activity of CYP2C19 was evaluated by measuring the
omeprazole’s pharmacokinetic parameters in different groups
(Figure 2(c), Tables 3(a) and 3(b)). T1/2, Tmax, MRT(0–t),
MRT(0–∞), AUC(0–t), and AUC(0–∞) values of omeprazole in
rats treated by Corydalis decumbens decreased significantly
(P<0.05, P<0.01). The value of CLz/F for omeprazole was
increased significantly with Corydalis decumbens treatment,
comparing with control group (P<0.05). These date demon-
strated that metabolism of omeprazole was obviously acceler-
ated by Corydalis decumbens treatment, and it had potential
to induct the CYP2C19 activity in blood samples.
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Figure 1: MRM chromatograms of (a) blank plasma samples, (b) blank plasma samples spiked with the probe drugs, and (c) plasma sample
obtained from rat after administration of five cocktail probe drugs.

3.5. Effect of Corydalis decumbens on the CYP2D6 Activity.
The activity of CYP2D6 was assessed by comparing the
metoprolol’s pharmacokinetic parameters between XTW and
control groups. As shown in Figure 2(d) and Tables 3(a)
and 3(b), the effect of Corydalis decumbens on the all
pharmacokinetic parameters ofmetoprolol was no significant
change, comparing with control group. Thus, metoprolol’s
pharmacokinetic behaviors demonstrated that the CYP2D6
activity might not be inhibited or inducted by Corydalis
decumbens.

3.6. Effect of Corydalis decumbens on the Activity of CYP3A4.
As shown in Figure 2(e) and Tables 3(a) and 3(b), pharma-
cokinetic behaviors ofmidazolamwere significant differences
in XTW and control treatment groups. The value of T1/2
and Cmax for midazolam was increased significantly with
Corydalis decumbens treatment (P<0.05, P<0.01), and the
value of CLz/Fwas decreased obviously (P<0.05). It indicated
that Corydalis decumbensmight prolong the elimination and
increase midazolam absorbed into blood. Meanwhile, other
pharmacokinetic parameters (MRT(0–t), MRT(0–∞), AUC(0–t),
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Figure 2: Plasma concentration-time curves of probe drug (phenacetin, tolbutamide, omeprazole, metoprolol, and midazolam). Control
Group: the metabolism of the probe drugs in vivo. XTWGroup: the metabolism of the probe drugs in vivo after rats received intraperitoneal
injection of Corydalis decumbens.
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Table 3

(a) Main pharmacokinetic parameters of six in rats (n=6, mean±SD)

Probe drugs Parameters T1/2z, h CLz/F, L/h/kg Cmax, ng/ml Tmax,h
Phenacetin Control 1.364±0.189 12.167±7.187 468.492±174.355 0.473±0.304

XTW 2.005±0.084∗∗ 6.489±3.258 715.237±216.924 0.528±0.266
Metoprolol Control 2.175±0.350 3.256±1.240 595.115±176.562 3.000±0.894

XTW 2.137±0.109 3.353±0.672 602.857±164.967 2.583±1.201
Midazolam Control 5.426±0.323 31.808±13.079 57.127±22.704 0.723±0.429

XTW 6.941±0.770∗∗ 13.913±4.180∗ 126.572±55.454∗ 1.167±0.683
Omeprazole Control 2.137±0.109 3.353±0.672 602.857±164.967 2.583±1.200

XTW 1.435±0.222∗∗ 160.865±125.736∗ 53.273±28.328∗∗ 0.335±0.181∗∗
Tolbutamide Control 7.928±0.501 0.123±0.024 5753.637±1135.602 3.167±0.753

XTW 8.196±0.400 0.122±0.016 5327.587±586.093 3.667±0.516
∗: significantly different from control, p<0.05. ∗∗: significantly different from control, p<0.01.

(b) Main pharmacokinetic parameters of six in rats (n=6, mean±SD)

Probe drugs Parameters MRT(0–t),h MRT(0–∞),h AUC(0–t), ng/ml⋅h AUC(0–∞), ng/ml⋅h
Phenacetin Control 1.881±0.364 1.934±0.336 1158.538±790.101 1162.355±789.191

XTW 2.460±0.294∗ 2.630±0.336∗∗ 1778.848±652.752 1802.074±657.140
Metoprolol Control 4.191±0.387 4.629±0.449 3266.639±1033.756 3399.903±1078.993

XTW 4.003±0.460 4.372±0.524 2995.480±681.621 3098.636±703.838
Midazolam Control 6.114±0.409 7.178±0.583 354.710±170.609 371.116±182.508

XTW 7.236±0.701∗∗ 9.330±1.093∗∗ 717.013±231.178∗ 780.230±260.146∗
Omeprazole Control 4.004±0.460 4.372±0.524 2995.480±681.621 3098.636±703.838

XTW 1.747±0.160∗∗ 1.941±0.176∗∗ 88.440±45.975∗∗ 90.921±47.286∗∗
Tolbutamide Control 11.563±0.526 12.339±0.505 82485.815±16562.483 83822.392±16723.482

XTW 11.897±0.709 12.742±0.850 81505.311±10227.159 82972.008±10446.975
∗: significantly different from control, p<0.05. ∗∗: significantly different from control, p<0.01.

and AUC(0–∞) were increased significantly (P<0.01) with
Corydalis decumbens treatment. These date showed that
the activity of CYP3A4 might be inhibited by Corydalis
decumbens.

4. Discussion

In the present study, the potential effects of Corydalis decum-
bens on the activities of CYP enzymes (CYP1A2, CYP2C9,
CYP2C19, CYP2D6, and CYP3A4) were detected by a novel
UHPLC-MS/MS method. The method was validated for
the determination of novel “cocktail” in linearity, accuracy,
precision, selectivity, recovery, matrix effect, and stability
and successfully applied in the pharmacokinetic study. Our
results indicated that the activities of CYP1A2 and CYP3A4
might be inhibited by Corydalis decumbens. And, the activity
of CYP2C19 was induced by Corydalis decumbens. However,
there were no significant differences in pharmacokinetics
dates of tolbutamide and metoprolol between two different
groups, which demonstrated that the activities of CYP2C9
and CYP2D6 were not obviously influenced by Corydalis
decumbens.

Recently, herbal medicine is an increasingly common
form of alternative and/or complementary therapy in several
countries (e.g., China, United States, Japan, Korea, Sweden,
France, Germany, and Australia) [1]. Often herbal products

are regulated as dietary supplements and patients typically
think it is safer than pharmaceutical drugs [30–32]. But,
several studies specifically defined that the concurrent use
of herbal medicines and prescription drugs may trigger the
potentiality of herb–drug interactions [33, 34]. These inter-
actions may cause the inhibition or induction of specific CYP
enzymes and elicit pharmacokinetic and pharmacodynamic
mechanisms which may result serious clinical consequences
[18]. Thus, it is important to update and improve pharma-
cist’s and physician’s knowledge of HDI to properly counsel
and avoid improper concurrent use of herbal medicine
and prescription drugs. Chinese Pharmacopoeia recorded
that Corydalis decumbens plays an important role in terms
of hypertension, arrhythmias rheumatoid arthritis, sciatica,
stroke, hemiplegia, paraplegia, and vascular embolism [2].
However, there are limited literature and data about HDI
in Corydalis decumbens. It is important to evaluate whether
concurrent administration of herbs may interfere with the
effect of drugs.

In the treatment of hypertension, Corydalis decumbens
could reduce blood pressure by relaxing vascular smooth
muscle and reducing peripheral resistance [3]. Propranolol,
an antihypertensive medication of the beta blocker class, is
mainly metabolized by CYP1A2 and CYP2D6 [35]. Nifedip-
ine, a calcium channel blocker, is mainly metabolized by
CYP3A4 [36]. In the present study, the activities of CYP1A2
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and CYP3A4 might be inhibited by Corydalis decumbens.
Thus, the concomitant use of Corydalis decumbens can
interfere with the pharmacokinetics or pharmacodynam-
ics of propranolol/nifedipine. As a result, the dosage of
these drugs may be decreased or the dosing interval be
increased.

Rheumatoid arthritis is a systemic immune disease char-
acterized by noninfectious inflammation of the joints and tis-
sues surrounding the joints [37]. Several clinical studies indi-
cated that Corydalis decumbens tablets have a benefit effect
on alleviating the clinical symptoms of rheumatoid arthritis,
with little side effects [3, 38]. Diclofenac, a nonsteroidal anti-
inflammatory drug, is commonly metabolized by CYP2C9
[7]. The present results showed that the activity of CYP2C9
was not obviously influenced by Corydalis decumbens. There
was no interaction with the concurrent administration
of Corydalis decumbens and diclofenac. When a patient
requires a concomitant drug to treat rheumatoid arthritis,
the therapy may produce synergistic effects and should be
favored.

Furthermore, Corydalis decumbens were usually used
as a complementary medicine for sciatica due to its phar-
macological effects of Tongluo analgesics [2]. Naproxen
is a nonsteroidal anti-inflammatory drug (NSAID), which
relieves pain, fever, swelling, and stiffness. Naproxen is also
metabolized by CYP2C9 [39, 40]. And, the concurrent use of
Corydalis decumbens and naproxen is recommended.

Last but not least, cerebrovascular disease is defined as a
general term for a group of diseases, which includes stroke,
hemiplegia, paraplegia, and vascular embolism, caused by
various acute and chronic cerebrovascular diseases. Antico-
agulant drugs and antiplatelet agent play an indispensable
role in treatment of these diseases, because platelet acti-
vation, adhesion, and aggregation are one of the initiating
factors of intravascular thrombosis. Warfarin, a vitamin K-
antagonist drug, is mainly metabolized by cytochrome P450
enzymesCYP2C9 andCYP1A2 [41–43].Our results indicated
that the activity of CYP2C9 was not obviously influenced
by Corydalis decumbens, but CYP1A2 was inhibited. The
herb–drug interaction could prolong the elimination and
increase warfarin absorbed into blood, which may increase
bleeding events. Meanwhile, warfarin has a narrow ther-
apeutic index, especially when combined with potentially
interacting drugs. Thus, it is a necessary reminder that the
dosage of warfarin can reduce and the dosing interval can
increase, when the patients receive long-term concurrent
use of Corydalis decumbens and warfarin. Clopidogrel is
an effective antiplatelet agent useful for the treatment of
ischemic cerebrovascular disease by blocking ADP receptors
on the platelet membrane [44]. Clopidogrel is metabolized by
cytochrome P450 enzymes CYP2C19 [45]. The present study
also found that the activities of CYP2C19 were inducted by
Corydalis decumbens. The clearance rate for clopidogrel may
increase significantly with Corydalis decumbens treatment.
The herb-drug interaction may produce quick therapeutic
effect and faster loss of efficacy. When a patient needs a
coprescription, it is properly counseled that the dosage of
clopidogrel may be increased or the dosing interval may be
decreased.

5. Conclusions

The cocktail approach was effectively used as a potential
screening tool for effects in vivo HDI. Five probe drugs
phenacetin, tolbutamide, omeprazole, metoprolol, andmida-
zolam were selected as specific substrates for rat CYP1A2,
CYP2C6, CYP2D1, CYP2D2, and CYP3A1/2, respectively.
Also, these probe drugs more often relate to human CYP1A2,
CYP2C9, CYP2C19, CYP2D6, and CYP3A4, even though
they are given to rats.Thus, the effects ofCorydalis decumbens
determined in rat are also useful for predicting clinical HDIs.
Our results indicated that Corydalis decumbens could induce
theCYP2C19 activity and inhibit the activities of CYP1A2 and
CYP3A4. During the concurrent use of Corydalis decumbens
with western medications which were extensively metabo-
lized by CYP1A2, CYP3A4, and CYP2C19 in human, the
herb–drug interaction should require more attention by care-
ful monitoring and appropriate drug dosing adjustments to
avoid some unacceptable risks and reduce drug accumulation
or ineffective treatment.
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