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Encoding tasks moderated 
the reward effect on brain activity 
during memory retrieval
Qianqian Ding, Jinfu Zhu* & Chunping Yan*

Previous studies have explored the effects of retrieval reward and depth of processing in encoding on 
recognition, but it remains unclear whether and how reward and depth of processing during encoding 
influence recognition. We investigated the effect and neural mechanisms of encoding reward and 
processing depth on recognition using event-related potentials (ERPs) in this study. In the study 
phase, participants were asked to perform two encoding tasks: congruity-judgment (deep processing) 
and size-judgment (shallow processing) in reward and no-reward conditions. The test phases included 
object (item) and background (source) tests. The results of item retrieval showed that the accuracy of 
rewarded items was higher than that of unrewarded items only in the congruity-judgment task, and 
the reward effect (the average amplitudes in the reward condition were significantly more positive 
than those in the no-reward condition) in the 300–500 and 500–700 ms were greater in the congruity-
judgment task than in the size-judgment task. The results of source retrieval showed that the accuracy 
of rewarded items was higher than that of unrewarded items, that the difference in the size-judgment 
task was significantly larger, and that the reward effect in the 300–500 and 500–700 ms were greater 
in the size-judgment task than in the congruity-judgment task. In conclusion, the encoding task 
moderated the reward effect in item and source memory.

Previous studies have shown that incentive motivation occurs when our behavior is directed toward a val-
ued  goal1–6. Monetary rewards can adjust top-down attention, bias attention to and promote the processing 
of reward-related stimuli. Reward anticipation improves episodic memory performance. Episodic memories 
are characterized by both content and context. If a task requires a participant to merely determine whether the 
stimulus was present at a particular time, that task is assessing item memory. If a task requires participants to 
recall the information associated with the stimulus, that task is assessing source  memory7–9. Episodic memory 
is also affected by other factors. For example, the levels-of-processing theory suggests that the task nature in the 
encoding phase has different effects on memory retrieval and that deeper processing strategies enhance memory 
 performance1,5. Recent works have also found that people learn to selectively engage deep encoding strategies 
to enhance memory of high-value  information10–12. In addition, a previous study found that the reward effect in 
item memory retrieval was also affected by encoding  tasks13.

Shigemune et al. investigated the effects of reward and encoding strategies on item memory using fMRI 
techniques, and they asked participants to encode words using either deep or shallow strategies, which led to 
variation in the difficulty of subsequent retrieval; during retrieval, participants selected target words under either 
high or low monetary reward  conditions13. A reward-related enhancement of memory was found only when 
memory retrieval was difficult (corresponding to shallow encoding)13, which was consistent with previous find-
ings of stronger reward effects during more difficult memory retrieval  tasks14–16. fMRI scans have shown that 
reward-related increases in activation of the substantia nigra/ventral tegmental area (SN/VTA), medial temporal 
lobe (MTL), dorsomedial prefrontal cortex (dmPFC), and dorsolateral prefrontal cortex (dlPFC) were greater 
during the difficult than those that were easier to retrieve, and their result can be explained by the optimal level 
theory, which states that subjective motivations and preferences are highest when stimulus variables such as 
complexity, novelty, uncertainty, conflict, and difficulty are maintained at an optimal  level13,17–20. For example, 
the motivation role to complete tasks at an appropriate level of difficulty is stronger than that of tasks that are 
too easy or difficult to encode, suggesting that if we want to complete specific tasks and requirements, we should 
ensure that the tasks are sufficiently complex and novel. Unlike the study by Shigemune et al., they only explored 
item memory, and source memory was also explored in our study because it is used more often in our daily 
life; therefore, we investigated the effects and neural mechanisms of encoding reward and processing depth on 
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item memory and source memory, utilizing event-related potential (ERP) measurements. In our study, ERPs 
were used because they have high temporal resolution and can better assess a temporal stream of neural activity 
than fMRI measurements, and we wanted to further verify the temporal characteristics of the effects as well as 
the neural mechanisms of reward and processing depth during encoding on item and source memory retrieval.

ERP studies have shown that LPP (a late positive component that appears approximately 300 ms after stimulus 
onset) reflect the effect of reward motivation and  emotion3,21. ERP studies on memory have also shown significant 
reward effects in the late LPP (the average amplitudes in the reward condition were significantly more positive 
than those in the no-reward condition) in  test2–4. The duration of later LPP might reflect stimulus significance 
and memory  encoding22–24. Previous ERP studies have shown that the average amplitudes of items with deeper 
processing strategies were more positive than those of items with shallower processing  strategies25. In addition, 
previous ERP studies have shown that the average amplitudes of old items were more positive than those of 
new items for both components, a finding called the “old/new effect”26–28. Dual-process theory proposes that 
familiarity (when individuals sense that the item is familiar but cannot recall any details about it) and recol-
lection (when people recall related details about an item) are dissociable processes contributing to recognition 
 memory8,27. The FN400 old/new effect (an earlier frontal negative component that peaks at approximately 400 ms 
after stimulus onset) correlates with familiarity; the LPC old/new effect (a late parietal positive component that 
peaks at approximately 600 ms after stimulus onset) correlates with  recollection26–28.

Following a previous  study11, two encoding tasks (a congruity-judgment task and a size-judgment task) to 
vary the depth of processing were used during encoding. The congruity-judgment task involved determining 
whether the object image matched the background image (object either always occurred in the background or 
often was used in the background in real life. For example, in a basketball and basketball court, basketball is 
always on basketball court), and the size-judgment task was to judge the size of the actual object compared to 
the size of the computer screen. As determined by previous studies, the congruity-judgment task involves deep 
processing, and the size-judgment task involves shallow  processing29,30. In our current study, during encoding, 
participants were required to remember images (half of the images were rewarded) while carrying out the two 
encoding tasks. Object and background tests were separately conducted immediately after the study phase, which 
ensured that old items judged to be “new” also could be judged as the  source31. During the object test phase, 
participants were required to judge whether the object image was new or old, which indicated item memory. 
Then, participants were asked to select the background that matched the object during the background test 
phase, which indicated source memory.

Based on previous studies, we predicted that for item memory, the accuracy of rewarded items would be sig-
nificantly higher than that of unrewarded items in the congruity-judgment task and that the significant reward 
effects of FN400 and LPC in the congruity-judgment task would be greater than those in the size-judgment 
task. For source memory, we predicted that the accuracy of rewarded items would be significantly higher than 
that of unrewarded items in the size-judgment task and that the significant reward effect of FN400 and LPC in 
the size-judgment task would be greater than that in the congruity-judgment task as well as appearing earlier 
than in item memory.

Materials and methods
Participants. We recruited thirty right-handed college students (mean age = 21.5 years; 14 of whom were 
male) from Xinxiang Medical University. The sample size was determined based on results of a power analysis 
run using G-Power  sofware32 (power > 0.8, α = 0.05), which indicated that a minimum sample size of n ≥ 18 
was required for that purpose. All participants had normal or corrected-to-normal vision and no history of 
neurological or psychiatric disorders. Three participants were excluded from the background test ERP analysis 
because they did not reach our ERP analysis criterion of at least 16 trials per condition (the three participants’ 
number of trials during the no-reward condition in the size-judgment task: 14 trials; 14 trials; 13 trials), result-
ing in a final sample of 27 participants (mean age = 20.9 years; 13 of whom were male). All participants provided 
written informed consent for their participation. This study was approved by the Xinxiang Medical University 
Human Research Committee, and all methods were performed in accordance with its relevant guidelines and 
regulations. The participants received monetary compensation after the experiment.

Materials. The target stimuli consisted of 640 color neutral images (320 background images, 320 object 
images) and were selected from the Chinese Affective Picture System (CAPS)33, the International Affective Pic-
ture System (IAPS)34 and the internet. All background images (688 × 510 pixels) and object images (433 × 310 
pixels) were uniform in size. Twenty-two college students (12 male) who did not attend the formal experi-
ment provided valence (1 = very not happy, 9 = very cheerful) and arousal (1 = very calm, 9 = very excited) ratings 
of these images. The average valence and arousal scores of the object images were 5.03 ± 0.46 and 4.07 ± 0.55, 
respectively, and those of the background images were 5.20 ± 0.47 and 4.33 ± 0.55, respectively. Of these images, 
160 object images and 160 background images were used as study (old) items, and another 160 object images 
and 160 background images were used as test (new) items. Study and test items were matched on valence ratings 
[object: old (5.03 ± 0.48) and new (5.02 ± 0.44); background: old (5.24 ± 0.44) and new (5.17 ± 0.50)] and arousal 
ratings [object: old (4.11 ± 0.54) and new (4.03 ± 0.55); background: old (4.32 ± 0.54) and new (4.34 ± 0.56)]. The 
object and background images were divided into four groups, each group containing 40 images; the four groups 
of object or background images were matched on valence and arousal (see Table 1).

In addition, 20 neutral object and 20 neutral background images were selected from IAPS as training materi-
als; the training images did not appear in the formal experiment.
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Procedures. The experimental program was compiled via Presentation. Before the formal experiment, the 
participants were familiarized with the experimental procedure and keystroke responses through practice. The 
participants were told that in the object test phase, they would obtain a monetary reward (RMB 0.20) for each 
correctly recognized and judged old object in the study phase; however, they would lose RMB 0.10 for each new 
object incorrectly marked as old. Unrewarded objects were not rewarded or punished for being correctly or 
incorrectly judged. In the background test phase, participants received RMB 0.20 if the original background of 
an old object was correctly selected in the reward condition; the cumulative cash payment was allocated at the 
end of the experiment.

The formal experiment included 4 blocks (2 congruity-judgment tasks, 2 size-judgment tasks), each con-
taining a study phase, an object test phase and a background test phase (see Fig. 1). In the study phase, each 
trial began with a cross fixation point for 1000–1500 ms, followed by a reward cue (¥ ¥ ¥) or nonreward cue 
(# # #) for 1000 ms, and then a blank screen was presented for 800–1000 ms. After that, a background image 
was presented for 1000 ms. Then, an object image was superimposed in the middle of the background image 
presented together for 2000 ms, during which the participants were asked to perform the corresponding task 
(congruity-judgment or size-judgment task). After the study, participants were asked to perform a distraction 
task concerning subtraction from an initial three-digit number (i.e., repeatedly subtracting 3 from each number) 
for 1 min. After that, the test phases (object and background) were carried out. In the object test phase, each 
trial began with a cross fixation point presented for 800–1000 ms, and then the object image was presented for 
2000 ms. Participants judged whether the object image was new or old. Next, in the background test phase, 
each trial began with a cross fixation point presented for 800–1000 ms, and then 4 images [the top image was 
an old object image, and the bottom images were three background images (original, reconstructed and new)] 
were presented for 3000 ms during which participants selected the background that matched the object from 
the three background images. The order of the trials was pseudorandom and sequential. All of the reaction keys 
were counterbalanced between the left and right hands across the participants. The order of the four blocks was 
also counterbalanced across participants.

ERP recordings and analysis. Electroencephalographic (EEG) data were recorded by a 64-channel Neu-
roscan system at a 500 Hz sampling rate with a 0.1–100 Hz bandpass filter. The reference electrode was placed on 
the left mastoid process, and the connection point was midway between FPz and Fz. These electrode locations 
conform to the extended international 10–20 system. Electrooculogram (EOG) was recorded with two pairs of 
electrodes, one pair placed above and below the left eye and another pair at the outer canthi of both eyes. All 
electrodes were referenced online to the left mastoid and rereferenced offline to the average of the right and left 

Table 1.  Average valence and arousal ratings of image groups in the study phase. The data after “ ± ” in the 
table are the standard errors of the mean.

Images type Group 1 (n = 40) Group 2 (n = 40) Group 3 (n = 40) Group 4 (n = 40) F(3, 156) p

Valence
Object 5.03 ± 0.08 5.13 ± 0.07 5.03 ± 0.06 4.94 ± 0.08 1.04 0.376

Background 5.29 ± 0.08 5.13 ± 0.07 5.26 ± 0.07 5.29 ± 0.06 1.26 0.291

Arousal
Object 4.23 ± 0.10 4.12 ± 0.08 3.99 ± 0.07 4.06 ± 0.09 1.41 0.242

Background 4.35 ± 0.08 4.27 ± 0.10 4.22 ± 0.09 4.45 ± 0.06 1.46 0.228

Figure 1.  Schematic representations of a trial in the study phase (left), object test phase (middle) and 
background test phase (right). See text for details. Due to copyright restrictions all original images have been 
replaced with images taken by the authors.
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mastoid recordings. EOG blink artifacts were corrected using a linear regression  estimate35–37. EEG/EOG signals 
(impedance < 5 kΩ) were digital bandpass filtered at 0.05–40 Hz and corrected to a 200 ms prestimulus baseline. 
Trials with a voltage exceeding ± 100 µV were excluded from the ERP analysis.

In this study, ERP data were used to analyze EEG changes in the three phases: the study, object test and 
background test phases. The time ranges of EEG analysis were 2000 ms (study phase) and 1000 ms (test phases). 
ERPs were analyzed from five representative midline electrodes (Fz, FCz, Cz, CPz, and Pz), where the effects of 
condition were most evident and aligned with the findings of previous  studies38 that used similar experimental 
designs and reported such effects. Intervals were selected for the study phase (500–700 ms, 700–1200 ms and 
1200–1700 ms), and the object test and the background test phases (300–500 ms and 500–700 ms). These intervals 
were selected based on visual inspection of grand-average ERPs, given that similar intervals have been used in 
prior  studies3,26,39 of related ERP phenomena (FN400, LPC and LPP).

The effective trials under the four conditions in the encoding phase: 37–40 trails, 33–40 trails, 35–40 trails, and 
31–40 trails; under the six conditions in the item retrieval phase: 21–40 trails, 19–40 trails, 54–79 trails, 19–37 
trails, 20–38 trails, and 60–79 trails; under the four conditions in the source retrieval phase: 25–38 trails, 24–36 
trails, 18–33 trails, and 17–28 trails. Repeated-measures ANOVAs were corrected using the Greenhouse–Geisser 
method. The alpha level was 0.05. Multiple comparisons and simple effect analyses were corrected using Bonfer-
roni correction. All data analyses were conducted with SPSS software.

Results
Behavioral data. A two-way, 2 (encoding task: congruity-judgment task vs. size-judgment task) × 2 (reward 
type: reward vs. no-reward) repeated-measures ANOVA was conducted on the accuracy (ACC) and response 
time (RT) of the test phases. Participants’ recognition performances in both item and source memory are given 
in Table 2 and Fig. 2.

Behavioral data in the object (item) test phase. ANOVA of the ACC revealed a significant main 
effect of reward type [F(1, 29) = 5.79, p = 0.023, ηp

2 = 0.17], no significant main effect of encoding task [F(1, 29) = 0.00, 
p = 1.000, ηp

2 = 0.00], and a significant reward type × encoding task interaction [F(1, 29) = 10.24, p = 0.003, ηp
2 = 0.26]. 

Further simple effect analysis found that the accuracy of rewarded items (M = 0.92, SD = 0.06) was significantly 
higher than unrewarded items (M = 0.8, SD = 0.13) (p = 0.001) in the congruity-judgment task, but there was no 
significant difference between rewarded (M = 0.88, SD = 0.08) and unrewarded items (M = 0.87, SD = 0.13) in the 
size-judgment task (p = 0.554).

ANOVA of the RT revealed significant main effects of reward type and encoding task [F(1, 29) = 6.17, p = 0.019, 
ηp

2 = 0.18; F(1, 29) = 7.26, p = 0.012, ηp
2 = 0.21] but no reward type × encoding task interaction [F(1, 29) = 0.40, 

p = 0.535, ηp
2 = 0.01]. The response times of rewarded items (M = 865.65, SD = 94.46) were faster than thode 

of unrewarded items (M = 883.46, SD = 98.07) (ps < 0.05), and the response time of the size-judgment task 
(M = 858.00, SD = 87.19) was faster than that of the congruity-judgment task (M = 891.11, SD = 102.68) (ps < 0.05).

Behavioral data in the background (source) test phase. ANOVA of the ACC revealed a signifi-
cant main effect of reward type and encoding task [F(1, 29) = 35.84, p < 0.001, ηp

2 = 0.55; F(1, 29) = 204.30, p < 0.001, 
ηp

2 = 0.88] and a significant reward type × encoding task interaction [F(1, 29) = 5.43, p = 0.027, ηp
2 = 0.16]. Further 

simple effect analysis showed that the accuracy of the congruity-judgment task (M = 0.84, SD = 0.08) was sig-
nificantly higher than that of the size-judgment task (M = 0.56, SD = 0.14) in both reward and no-reward condi-
tions (ps < 0.001); the accuracy of rewarded items (M = 0.74, SD = 0.16) was significantly higher than unrewarded 
items (M = 0.67, SD = 0.19) in both the congruity-judgment and size-judgment tasks (ps < 0.001). The reward 
difference (reward minus no reward) between the two encoding tasks was further calculated by a paired-samples 
t test, which showed that the reward difference of the size-judgment task was significantly greater than that of the 
congruity-judgment task [t(29) = − 2.35, p = 0.026].

ANOVA of the RT revealed significant main effects of reward type and encoding task [F(1, 29) = 33.55, p < 0.001, 
ηp

2 = 0.54; F(1, 29) = 179.72, p < 0.001, ηp
2 = 0.86], but no reward type × encoding task interaction [F(1, 29) = 3.54, 

p = 0.070, ηp
2 = 0.11]. Further multiple comparisons analysis indicated that the response time of rewarded items 

(M = 1767.65, SD = 297.29) was faster than unrewarded items (M = 1880.60, SD = 296.65) (ps < 0.001) and that 
the response time of the congruity-judgment task (M = 1600.58, SD = 199.73) was faster than the size-judgment 
task (M = 2047.68, SD = 203.30) (ps < 0.001).

Table 2.  Average ACC and RT of the test phases. The data after “ ± ” in the table are the standard errors of the 
mean.

Test type Dependent variable

Congruity-judgment task Size-judgment task

Reward Non-reward Reward Non-reward

Object test
ACC 0.92 ± 0.01 0.84 ± 0.02 0.88 ± 0.02 0.87 ± 0.02

RT (ms) 880.09 ± 18.43 902.13 ± 19.15 851.21 ± 15.84 864.80 ± 16.17

Background test
ACC 0.86 ± 0.02 0.82 ± 0.01 0.62 ± 0.02 0.51 ± 0.03

RT (ms) 1,528.39 ± 31.99 1,672.76 ± 36.37 2,006.91 ± 31.98 2,088.45 ± 40.81
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ERP data. ERPs in the study phase. Average amplitudes for each condition during each time window were 
analyzed by 2 (encoding task: congruity-judgment task vs. size-judgment task) × 2 (reward type: reward vs. no-
reward) × 5 (electrode location: Fz, FCz, Cz, CPz, and Pz) repeated-measures analyses of variance (ANOVAs). 
The amplitude distribution and topographic maps of ERPs in each phase are given in Fig. 3.

LPP (500–700 ms). ANOVA revealed significant main effects of reward type, encoding task and electrode loca-
tion [F(1, 29) = 13.69, p = 0.001, ηp

2 = 0.32; F(1, 29) = 13.55, p = 0.001, ηp
2 = 0.32; F(4, 26) = 26.55, p < 0.001, ηp

2 = 0.80] and 
a significant electrode location × encoding task interaction [F(4, 26) = 8.28, p < 0.001, ηp

2 = 0.56]. Further simple 
effect analysis found that the average amplitudes of the congruity-judgment task were more positive than those 
of the size-judgment task, but only at electrodes Fz, FCz and Pz (ps < 0.01).

LPP (700–1200 ms). ANOVA revealed significant main effects of reward type, encoding task and electrode 
location [F(1, 29) = 15.25, p = 0.001, ηp

2 = 0.35; F(1, 29) = 14.91, p = 0.001, ηp
2 = 0.34; F(4, 26) = 18.49, p < 0.001, ηp

2 = 0.74] 
and a significant three-way interaction among encoding task, reward type and electrode location [F(4, 26) = 4.39, 
p = 0.008, ηp

2 = 0.40]. Further simple effect analysis showed that the average amplitudes of the congruity-judg-
ment task were more positive than those of the size-judgment task at electrodes FCz and Pz in reward conditions 
(ps < 0.05).

LPP (1200–1700  ms). ANOVA revealed significant main effects of reward type, encoding task and elec-
trode location [F(1, 29) = 16.51, p < 0.001, ηp

2 = 0.36; F(1, 29) = 143.19, p < 0.001, ηp
2 = 0.83; F(4, 26) = 35.61, p < 0.001, 

ηp
2 = 0.85] and a significant reward type × encoding task interaction [F(4, 26) = 10.36, p = 0.003, ηp

2 = 0.26]. Further 
simple effect analysis found that the average amplitudes of the congruity-judgment task were more positive than 
those of the size-judgment task at all electrodes, but only in reward conditions (p < 0.001).

ERPs in the object (item) test phase. Average amplitudes for each condition during each time window were 
analyzed by 2 (encoding task: congruity-judgment task vs. size-judgment task) × 3 (image type: old images with 
reward, old images without reward and new images) × 5 (electrode location: Fz, FCz, Cz, CPz, and Pz) repeated-
measures ANOVAs. The amplitude distribution and topographic maps of ERPs in each phase are given in Fig. 4.

FN400 (300–500  ms). ANOVA revealed a significant main effect of image type [F(2, 28) = 86.53, p < 0.001, 
ηp

2 = 0.86] and a significant electrode location × image type interaction in the size-judgment task [F(8, 22) = 5.21, 
p = 0.013, ηp

2 = 0.54]. Further simple effect analysis showed that significant reward effects of FN400 in the con-
gruity judgment task at all five electrodes (Fz, FCz, Cz, CPz, and Pz) (ps < 0.001), and significant reward effects of 
FN400 in the size judgment task at electrodes Fz, CPz, and Pz (ps < 0.01). The results also revealed the significant 

Figure 2.  Behavioral performance across conditions for item memory and source memory. CJT, congruity-
judgment task; SJT, size-judgment task. *p < 0.05, **p < 0.01, ***p < 0.001.
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Figure 3.  Amplitude distribution and topographic maps of ERPs in the different conditions in the study phase. 
(a) Comparison of ERP amplitudes in the four conditions. (b) Topographic maps of encoding effects ERPs 
(congruity-judgment task minus size-judgment task) both in reward and no-reward conditions.

Figure 4.  Amplitude distribution and topographic maps of ERPs in the different conditions in the object 
test phase. (a) Amplitudes of the old-rewarded images, the old-unrewarded images and the new images were 
compared in the congruity-judgment and size-judgment tasks. (b) Topographic maps of reward-effect ERPs in 
the two encoding conditions. Note, CJT, congruity-judgment task; SJT, size-judgment task.
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FN400 old/new effects in the congruity judgment and size judgment tasks at all five electrodes (Fz, FCz, Cz, CPz, 
and Pz) (ps < 0.001).

LPC (500–700  ms). ANOVA revealed a significant main effect of image type [F(2, 28) = 43.08, p < 0.001, 
ηp

2 = 0.76], and a significant electrode location × image type interaction in the size-judgment task [F(8, 22) = 4.81, 
p = 0.030, ηp

2 = 0.55]. Further simple effect analysis showed that significant reward effects of LPC in the congruity 
judgment task at all five electrodes (Fz, FCz, Cz, CPz, and Pz) (ps < 0.001), and significant reward effects of LPC 
in the size judgment task at electrodes FCz, Cz, CPz, and Pz (ps < 0.01). The results also showed the significant 
LPC old/new effects in the congruity judgment and size judgment tasks at all five electrodes (Fz, FCz, Cz, CPz, 
and Pz) (ps < 0.001).

Reward difference waves (the average amplitudes in reward conditions minus the average amplitudes in 
nonreward conditions) were compared, since we found that the reward differences of the congruity-judgment 
task may be greater than those of the size-judgment task at 300–500 ms and 500–700 ms. The average amplitude 
differences for each condition during each time window were analyzed by 2 (encoding task: congruity-judgment 
task vs. size-judgment task) × 5 (electrode location: Fz, FCz, Cz, CPz, and Pz) repeated-measures ANOVAs. The 
results showed significant main effects of the encoding task at both 300–500 ms and 500–700 ms [F(1, 29) = 4.27, 
p = 0.045, ηp

2 = 0.13; F(1, 29) = 7.13, p = 0.011, ηp
2 = 0.20], which indicated that the amplitude differences of the 

reward effect (FN400 and LPC) in the congruity-judgment task were greater than those in the size-judgment 
task in the two windows at all electrodes (Fz, FCz, Cz, CPz, and Pz) (ps < 0.05).

ERPs in the background (source) test phase. Average amplitudes for each condition during each time window 
were analyzed by 2 (encoding task: congruity-judgment task vs. size-judgment task) × 2 (reward type: reward vs. 
no-reward) × 5 (electrode location: Fz, FCz, Cz, CPz, Pz) repeated-measures analyses of variance (ANOVAs). 
The amplitude distribution and topographic maps of ERPs in each phase are given in Fig. 5.

FN400 (300–500 ms). ANOVA showed significant main effects of encoding task and reward type [F(1, 26) = 8.19, 
p = 0.009, ηp

2 = 0.32; F(1, 26) = 26.21, p < 0.001, ηp
2 = 0.49] and a significant interaction between reward type and 

electrode location in the congruity judgment task [F(4, 23) = 3.76, p = 0.025, ηp
2 = 0.16]. Further simple effect analy-

sis showed significant reward effects of FN400 in the size judgment task at electrodes Fz, FCz, Cz, and CPz 
(ps < 0.001), and significant reward effects of FN400 in the congruity judgment task at electrodes Fz, FCz, and 
CPz (ps < 0.05).

LPC (500–700 ms). ANOVA showed significant main effects of encoding task and reward type [F(1, 26) = 5.25, 
p = 0.018, ηp

2 = 0.27; F(1, 26) = 13.65, p = 0.005, ηp
2 = 0.32] and a significant interaction between reward type and 

electrode location in the congruity judgment task [F(4, 23) = 3.85, p = 0.026, ηp
2 = 0.17]. Further simple effect 

Figure 5.  Amplitude distribution and topographic maps of ERPs in the different conditions in the background 
test phase. (a) Amplitudes of the rewarded images and the unrewarded images were compared in the congruity-
judgment and size-judgment tasks. (b) Topographic maps of reward-effect ERPs in the two encoding conditions. 
Note, CJT, congruity-judgment task; SJT, size-judgment task.
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analysis showed significant reward effects of LPC in the size judgment task at electrodes Fz, FCz, Cz, and CPz 
(ps < 0.001) and in the congruity judgment task at electrodes FCz, Cz, CPz, and Pz (ps < 0.01).

Reward difference waves were compared since we found that the reward differences of the size-judgment task 
may be greater than those of the congruity-judgment task at 300–500 ms and 500–700 ms. The average amplitude 
differences for each condition during each time window were analyzed by 2 (encoding task: congruity-judgment 
task vs. size-judgment task) × 5 (electrode location: Fz, FCz, Cz, CPz, and Pz) repeated-measures ANOVAs. 
The results showed a significant main effect of the encoding task [F(1, 29) = 3.23, p = 0.031, ηp

2 = 0.26] only at 
300–500 ms, which indicated that the amplitude differences of the reward effect (FN400) in the size-judgment 
task were greater than those in the congruity-judgment task at electrodes Fz, FCz, Cz, and CPz (p = 0.031).

Discussion
The current study explored the effects and neural mechanisms of encoding reward anticipation and encoding 
tasks in item and source memory using event-related potentials (ERPs). This study found that the reward effect 
of the congruity-judgment task was greater than that of the size-judgment task in item memory and that the 
reward effect of the size-judgment task was greater than that of the congruity-judgment task in source memory.

In the encoding phase, the ERP results showed that the average amplitudes of the congruity-judgment task 
were more positive than those of the size-judgment task at 500 ms (LPP). Marini et al3. reported that later LPP 
might reflect memory encoding, and the average amplitudes of items with deeper processing strategies were 
found to be more positive than those with shallower processing  strategies25. Accordingly, we suggest that the 
results indicate that the connections between items and backgrounds in the congruity-judgment task were 
deeper in the study phase; therefore, the congruity-judgment task trequired more cognitive resources and led to 
improved source memory  performance3.

In terms of item memory, the behavioral results showed that the accuracy of rewarded items was significantly 
higher than that of unrewarded items in the congruity-judgment task and there was also no significant difference 
in accuracy in the size-judgment task. The response time of the congruity-judgment task was also longer than 
that of the size-judgment task. Shigemune et al. showed that a reward-related enhancement of memory is found 
only when memory retrieval is difficult (corresponding to shallow encoding)13. Our behavioral results might 
indicate that item retrieval in the congruity-judgment task may be more difficult than that in the size-judgment 
task, likely due to increased task complexity. The congruity-judgment task required the participants to judge 
whether the object matched the background or not, while the size-judgment task asked the participants to judge 
the size of objects compared with that of the computer screen. We believe that the congruity-judgment task was 
more complex than the size-judgment task, thus reducing attentional resources to the objects and increasing the 
time to retrieve items in the congruity-judgment task. The ERP results further showed that the reward effects 
of FN400 (300–500 ms) and LPC (500–700 ms) in the congruity-judgment task were significantly greater than 
those in the size-judgment task from electrodes Fz to Pz. These findings support the idea that reward effects for 
difficult-to-retrieve items are larger than thode for easy-to-retrieve items, which is consistent with both previ-
ous  studies13–16 and the optimal level theory. In addition, we found the FN400 old/new effect (associated with 
familiarity) and the LPC old/new effect (associated with recollection) in item retrieval, which indicated that the 
participants possessed both familiarity and recollection during object recognition.

In terms of source memory, the behavioral results showed that the reward difference in the size-judgment task 
was significantly greater than that in the congruity-judgment task. Additionally, the response time of the size-
judgment task was longer than that of the congruity-judgment task, which suggested that the source retrieval of 
the size-judgment task was more complex and difficult. The ERP results of the encoding phase also confirmed this 
viewpoint, as the average amplitudes of the congruity-judgment task were more positive than those of the size-
judgment task; therefore, the connections between items and source in the congruity-judgment task were deeper, 
and source retrieval was easier. The ERP results further showed that the reward effects of FN400 (300–500 ms) 
and LPC (500–700 ms) in the size-judgment task were significantly greater than those in the congruity-judgment 
task from electrodes Fz to CPz. These source memory results revealed that the reward effects in the size-judgment 
task (at optimal difficulty) were larger than those in the congruity-judgment task.

Reward significantly improved item recognition accuracy in the congruity-judgment task, and reward played 
a greater role in the size-judgment task for source recognition accuracy. These results indicated that the reward 
effect was stronger when the difficulty of retrieval was more complex both in item memory and source memory, 
which was consistent with our expectations and the results of previous  studies14–16. Therefore, we believe that 
both item retrieval and source retrieval focus on rewarded items and occupy more cognitive resources when 
receiving rewards.

Conclusion
In the present ERP study, we investigated the effects and neural mechanisms of reward anticipation and encoding 
tasks during encoding on memory. These item memory results found that the reward effects of FN400 and LPC 
in the congruity-judgment task were significantly greater than those in the size-judgment task; source memory 
results found that the reward effect of FN400 and LPC in the size-judgment task were significantly greater than 
those in the congruity-judgment task. That is, encoding tasks moderated the reward effect at FN400 and LPC, 
and there was a greater reward effect on recognition tasks that were optimal to retrieve than too difficult or easy 
to retrieve both in item and source memory.

Data availability
The data from the current study are available from the corresponding author upon reasonable request.
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