
PEARLS

Staphylococcus epidermidis—Skin friend or

foe?

Morgan M. BrownID
1, Alexander R. HorswillID

1,2*

1 Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado,

United States of America, 2 Department of Veterans Affairs, Eastern Colorado Healthcare System, Aurora,

Colorado, United States of America

* alexander.horswill@cuanschutz.edu

Author summary

Our skin is our first line of defense against environmental and pathogenic challenges. It is

densely populated by a flora of bacteria, fungi, and viruses that normally interact with

each other and with our immune system to promote skin health and homeostasis. Staphy-
lococcus epidermidis is one of the most abundant bacterial colonizers of healthy human

skin. While the field has historically assumed that all S. epidermidis isolates behave simi-

larly, emerging evidence suggests that colonization by specific strains of S. epidermidis
can either help or hurt the skin barrier depending on the context. In this short review, we

discuss what is currently understood about S. epidermidis strain-level diversity and evalu-

ate costs and benefits of S. epidermidis skin colonization. We challenge the current

dogma that “all S. epidermidis strains behave equally” and posit that behavior is in fact

highly context and strain dependent. Finally, in light of current proposals to use skin

commensals as nonantibiotic treatments for acute or chronic skin diseases, we conclude

that more work is urgently needed to fully understand the pathogenic and protective

roles of commensals before we use them therapeutically.

The human skin microbiota: Composition and function in barrier

homeostasis

The human skin is a complex physiological barrier designed to maintain internal homeostasis

and protect the host from opportunistic pathogens. The epidermis is composed of 4 stratified

layers of terminally differentiating keratinocytes and studded with hair follicles and sebaceous

glands. Taking these appendages into account, the surface area of the skin is at least 30 m2,

which is even larger than the surface area of the gut [1]. The skin is densely populated by a

diverse resident commensal flora of bacteria, archaea, fungi, and viruses [2]. Both metage-

nomics sequencing surveys and traditional culture methods have demonstrated that coagulase

negative staphylococci (CoNS) are one of the most abundant colonizers of all skin sites [2].

The CoNS are a heterogeneous group of 38 species that are predominantly genetically and

functionally uncharacterized. Despite this lack of characterization, there is mounting evidence

that CoNS actively contribute to the maintenance of skin integrity and homeostasis by priming

cutaneous immunity, controlling other resident flora, and preventing colonization by opportu-

nistic pathogens (i.e., colonization resistance) [3]. Historically, the field has focused on the

ubiquitous skin commensal Staphylococcus epidermidis with the assumption that all S. epider-
midis strains or all CoNS behave similarly. In fact, current evidence suggests that S. epidermidis
skin colonization may be far more nuanced and that colonization by specific strains of S.
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epidermidis may either help or hurt the skin barrier. Here, we discuss S. epidermidis strain-

level diversity on skin, evaluate benefits and costs of S. epidermidis skin colonization, and com-

ment on future directions in skin microbiome research with a focus on understanding how

specific organisms, like S. epidermidis, contribute to skin health or disease.

S. epidermidis strain-level diversity underlies skin–microbe

interactions

S. epidermidis is by far the best studied member of the CoNS family and was historically used

as a commensal comparator to its more pathogenic cousin, Staphylococcus aureus [4]. S. epi-
dermidis can be been isolated from all skin microenvironments, including dry, moist, seba-

ceous, and foot regions [2]. However, the significant strain-level diversity among these

isolates, especially specific virulence or host modulatory factors, is only beginning to be appre-

ciated. Approximately 80% of the 2.5 Mb S. epidermidis genome is composed of core genes,

whereas the remaining 20% is variable, indicating that S. epidermidis has an open pan-genome

and a potentially unlimited genetic repertoire [5]. The observation that up to 20% of the

genome can be exchanged with a larger pool of genes suggests that S. epidermidis is well poised

to rapidly adapt to and thrive in all skin microenvironments. Indeed, a targeted metagenomics

study revealed that there is an incredibly high spatiotemporal diversity of healthy skin S. epi-
dermidis isolates between different skin microenvironments and between individuals [6]. Fur-

thermore, these specialized communities are under high selective pressure, undergoing

multiple horizontal gene transfer events via plasmid and phage to adapt to and persist in their

specific skin niche [6].

One mechanistic example of the significance of S. epidermidis strain-level diversity and its

implications for overall skin health is the accessory gene regulator (agr) quorum sensing sys-

tem. The agr locus (agrBDCA) is conserved across all staphylococci, including S. epidermidis.
The S. epidermidis agr regulon controls production of a small suite of potential virulence fac-

tors like proteases, lipases, and immunomodulatory phenol soluble modulins (PSMs), and

retention of the agr system is necessary for skin colonization [7]. Importantly, every S. epider-
midis strain is a single agr type (I–IV) determined by a hypervariable region spanning agrBDC
[6,7]. While most individuals are dominantly colonized by a single S. epidermidis agr type,

minor subpopulations of nondominant agr types in specific skin sites are also common [6].

Certain S. epidermidis agr types, as well as other CoNS species, make small peptides that inhibit

noncognate S. epidermidis agr signaling [7,8]. This observation suggests that agr heterogeneity

in concert with total CoNS diversity may be an important factor in promoting homeostatic S.

epidermidis skin colonization and suppressing virulence factor production [6–8]. As agr activ-

ity is controlled by bacterial density, low absolute numbers of S. epidermidis on the skin may

also contribute to low agr activity under homeostatic conditions [6,7]. Future work could

address these inter- and intraspecies agr interactions and their implications for skin health in

larger patient cohorts. Furthermore, S. epidermidis agr is only 1 example of how strain varia-

tion may have specific functional outcomes for skin health. Metagenomics analyses to reveal

which strains are present, coupled with mechanistic studies to understand strain-level func-

tionality, will likely uncover more intriguing links between S. epidermidis strain-level diversity

and skin health status.

Benefits of S. epidermidis skin colonization

Significant attention in the field has been given to S. epidermidis and its role as a beneficial

skin commensal (Fig 1). For example, S. epidermidis activated distinct innate immune signal-

ing pathways in human keratinocytes to augment antimicrobial peptide (AMP)-mediated
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killing of S. aureus, though the secreted factor necessary for this enhancement was not eluci-

dated [9]. S. epidermidis PSMs are small, amphipathic α-helical peptides that are abundantly

produced on normal epidermis and in hair follicles [10]. PSMs synergized with host AMPs to

enhance killing of the pathogen Streptococcus pyogenes [10]. In a mouse model of skin injury,

both S. epidermidis lipoteichoic acid [11] and the lipopeptide LP78 [12] attenuated the inflam-

matory response to accelerate wound healing in a Toll-like receptor (TLR)-3-dependent mech-

anism. Finally, some strains of S. epidermidis can dampen S. aureus–induced neutrophil

recruitment and pro-inflammatory cytokine production, which could potentially be protective

against more severe skin infection [13].

In addition to modulating the innate immune response to skin infection or damage, S. epi-
dermidis colonization contributes to the development and priming of the adaptive immune

system. Studies of gnotobiotic mice revealed that S. epidermidis skin colonization is necessary

for effector T cell development and function [14] as well as early localization and priming of

mucosal-associated invariant T cells (MAIT cells), which are an important component of non-

classical cutaneous immune signaling that mediates distinct patterns of host–commensal cross

talk [15]. The skin is also home to one of the largest reservoirs of effector T cell subsets, and

Fig 1. The ubiquitous skin commensal S. epidermidis positively and negatively impacts barrier homeostasis and integrity. (A) S.

epidermidis phenol soluble modulins PSMγ and PSMδ can synergize with keratinocyte-derived AMPs to kill opportunistic skin

pathogens like MRSA and Streptococcus pyogenes. S. epidermidis also makes anti-MRSA quorum sensing inhibitor peptides and a

variety of small antimicrobials known as lantibiotics to mediate skin colonization resistance. (B) S. epidermidis lipoteichoic acid and

some lipopeptides can dampen the inflammatory response to skin injury, accelerating wound healing. Early skin colonization with S.

epidermidis is crucial for development of immune cell subsets including effector T cells and MAIT cells, and long-term S. epidermidis
skin colonization may help the cutaneous immune system distinguish between commensal and pathogenic bacteria. (C) Certain S.

epidermidis strains can “bloom” and exacerbate AD or NS skin lesions through production of the EcpA protease. Inflammatory S.

epidermidis biofilms that occlude sweat glands have also been shown to exacerbate some AD lesions. AD, atopic dermatitis; AMPs,

antimicrobial peptides; MAIT cells, mucosal-associated invariant T cells; MRSA, methicillin-resistant Staphylococcus aureus; NS,

Netherton syndrome; PSM, phenol soluble modulins; QS, quorum sensing.

https://doi.org/10.1371/journal.ppat.1009026.g001
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there is growing appreciation of the depth and complexity of cross talk between these tissue-

resident lymphocytes and colonizers like S. epidermidis [16]. Taken together, S. epidermidis is

undoubtedly important for priming innate and adaptive defenses against pathogens and pro-

moting homeostasis. However, future work may reveal that other CoNS, in concert with S. epi-
dermidis, contribute more substantially to the full picture of skin development and health than

previously appreciated.

Costs of S. epidermidis skin colonization

While widely appreciated as an abundant skin symbiont, emerging evidence suggests that skin

colonization by specific strains of S. epidermidis may actually be detrimental to the host under

certain conditions. The intact skin is a formidable barrier to pathogens and commensals alike,

but disruption of this barrier, through either genetic mutation or physical disruption, can dra-

matically alter S. epidermidis behavior from benign to pathogenic (Fig 1). For example, murine

skin pretreated with S. epidermidis was only resistant to S. aureus challenge when the barrier

was intact, not when it was physically disrupted by tape stripping prior to bacterial inoculation

[17]. In atopic dermatitis (AD, i.e., eczema), patients are often highly colonized with S. aureus
at lesional sites, and this bacterial “bloom” positively correlates with disease severity [18]. Lon-

gitudinal metagenomics studies have shown that some AD patients can be highly colonized by

S. epidermidis rather than S. aureus at lesional sites. It has been postulated that such outgrowth

may similarly correlate with disease severity; however, there have been few investigations of

the mechanistic basis of S. epidermidis–mediated AD barrier exacerbation [19,20].

Recently, the cysteine protease EcpA was identified as a key mediator of S. epidermidis–
induced AD barrier degradation [8,21]. Underscoring the importance of strain-level diversity,

EcpA is present in all S. epidermidis strains but only seems to be expressed by a subset [8].

EcpA has significant sequence similarity and protein homology to the well-characterized S.

aureus staphopains A and B, which can digest the AMP LL-37 to enhance S. aureus biofilm

growth in AD lesions [21,22]. EcpA degraded multiple components of the skin barrier, includ-

ing LL-37 as well as desmoglein-1, and significantly contributed to increased inflammation

and barrier dysfunction in mouse models of AD [8]. Aside from AD, S. epidermidis overexpan-

sion and EcpA production are also linked to exacerbation of Netherton syndrome (NS), a skin

disorder characterized by high levels of serine protease activity caused by a mutation in the

gene SPINK5 [21]. Importantly, EcpA production is regulated by the S. epidermidis agr quo-

rum sensing system [7]. These observations suggest a possible mechanism of S. epidermidis
exacerbation of AD and NS, where there is some initial dysbiosis of inhibitory S. epidermidis
or CoNS strains, followed by deinhibition of S. epidermidis agr signaling. This would facilitate

the outgrowth of 1 S. epidermidis agr type (most commonly agr-I) [23] and the up-regulation

of virulence factors like EcpA [8]. Such enhanced expression of EcpA and other virulence fac-

tors, combined with genetic or environmental barrier disruption in both skin diseases, would

provide an ideal environment for S. epidermidis expansion and exacerbation. Finally, the pro-

pensity of S. epidermidis to form biofilms may also exacerbate AD, as inflammatory biofilm

communities of both S. aureus and S. epidermidis have been documented in some sweat glands

at AD lesional sites [24]. However, it is still unclear to what extent S. epidermidis biofilms form

on normal or diseased skin, and more work is needed to fully understand the impact of bio-

films in AD or other skin diseases.

Concluding remarks and future directions

Together, these findings demonstrate the variable physiology and contextual control of S. epi-
dermidis on skin and underscore the potential duality of the S. epidermidis lifestyle as colonizer
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or pathogen. Future work should continue to evaluate (with strain-level resolution) how this

complex organism fits into the larger context of skin health. While the field has rapidly shifted

to metagenomics analysis of “who’s there” on skin during health or disease, it is imperative to

continue to define and understand the specific mechanisms that regulate commensal coloniza-

tion as well as pathogenicity. This is especially true for the growing demands to utilize com-

mensal bacteria as nonantibiotic treatments for skin diseases such as AD. While there is some

successful precedence for using CoNS as an anti-methicillin–resistant S. aureus (MRSA) topi-

cal treatment [25], it is imperative to fully appreciate and regulate an organism’s potential for

pathogenicity (i.e., S. epidermidis EcpA production) before widespread use as a therapeutic. As

for other skin-dominant CoNS like Staphylococcus warneri, Staphylococcus hominis, and

Staphylococcus capitis, their roles in colonization resistance or their potential for pathogenicity

are even less well defined than S. epidermidis. These highly abundant yet understudied CoNS

species, in addition to non-staphylococcal members of the microbiota like Corynebacterium
spp. or Cutibacterium spp., represent a potential wealth of mechanistic information on interac-

tions between the microbiota, host epithelia, and opportunistic pathogens that remain to be

discovered. In conclusion, we posit that this high-resolution understanding of skin commen-

sals, with an emphasis on benefits and costs of colonization, will fundamentally alter how we

manage or treat our skin health.
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