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Abstract
Radiation therapy can be an effective way to kill cancer cells using ionizing radiation, but

some tumors are resistant to radiation therapy and the underlying mechanism still remains

elusive. It is therefore necessary to establish an appropriate working model to study and

monitor radiation-mediated cancer therapy. In response to cellular stress, the metabolome

is the integrated profiling of changes in all metabolites in cells, which can be used to inves-

tigate radiation tolerance mechanisms and identify targets for cancer radiation sensibiliza-

tion. In this study, using 1H nuclear magnetic resonance for untargeted metabolic profiling

in radiation-tolerant mouse melanoma cell line B16, we comprehensively investigated

changes in metabolites and metabolic network in B16 cells in response to radiation. Princi-

pal component analysis and partial least squares discriminant analysis indicated the

difference in cellular metabolites between the untreated cells and X-ray radiated cells. In

radiated cells, the content of alanine, glutamate, glycine and choline was increased, while

the content of leucine, lactate, creatine and creatine phosphate was decreased. Enrich-

ment analysis of metabolic pathway showed that the changes in metabolites were related

to multiple metabolic pathways including the metabolism of glycine, arginine, taurine, gly-

colysis, and gluconeogenesis. Taken together, with cellular metabolome study followed by

bioinformatic analysis to profile specific metabolic pathways in response to radiation, we

deepened our understanding of radiation-resistant mechanisms and radiation sensibiliza-

tion in cancer, which may further provide a theoretical and practical basis for personalized

cancer therapy.

Introduction
Ionizing radiation is the main cause of death for cancer cells in radiation therapy, but many
cancers for example melanoma are not sensitive to radiation therapy, resulting in poor clinic
effects [1, 2]. Radiotherapy is one of the most important methods of cancer treatment along
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with surgery and chemotherapy. Radiotherapy was administered to shrink tumor in advanced
melanoma, or prevent tumor relapse after surgical treatment [3, 4].

In addition to killing cancer cells, radiation therapy also leads to damage of normal cells and
tissues. It is therefore an urgent medical concern to protect the normal cells in addition to kill-
ing cancer cells as many as possible. To this end, studies on radiosensitization are receiving
more and more attention in radiobiology [5, 6]. As a comprehensively used reagent, a radiosen-
sitizer can facilitate the sensitivity of cancer cells in response to radiation, which accordingly
promotes the effects of therapy by increasing radiation-mediated cancer cell death [7, 8]. Ini-
tially, radiosensitizers were used in radiation-resistant anaerobic cells in solid tumors, but this
application has now extended to other cell types in cancers [9]. Though a radiosensitizer is
effective in increasing the effectiveness of radiation therapy for cancer, most radiosensitizers
are chemotherapy drugs, with unavoidable toxicity for normal cells. Therefore, the search for
low-toxic and highly effective radiosensitization is an urgent need in tumor radiation therapy.

The nuclear magnetic resonance (NMR) spectrum–based cellular metabolome analysis is a
novel method to assist radiosensitization study in tumor radiation therapy. 1H NMR analysis is
an ideal high throughput method to detect small-metabolites in biological samples [10, 11].
With pattern recognition, 1H-NMR-based metabolome analysis screens differentially
expressed metabolites between different samples [12]. Followed by bioinformatics analysis on
the basis of a public database, the changed metabolic pathways can be further identified.

In this study, using radiation-tolerant mouse melanoma cell line B16 as research model
[13], cells were first radiated with sublethal doses of X-ray radiation; then cellular metabolites
were collected, which were further analyzed by 600 MHz 1H NMR to screen differentially
expressed metabolites. Following bioinformatic analysis for those quantified metabolites,
potential targets of disturbed metabolic pathway can be used for radiosensitization study to dis-
cover high efficacy drugs for sensitization in radiotherapy. The underlying mechanism of meta-
bolome changes and radiation resistance in B16 cells was discussed.

Experimental Procedures

Cell line and cell culture
Mouse melanoma cell line B16 (obtained from China Center for Type Culture Collection,
Wuhan University, Wuhan, China) was maintained in a complete RPMI-1640 medium supple-
mented with 10% fetal bovine serum and 1% Penicillin-Streptomycin. After a sublethal dose of
X-ray radiation (18 Gy) using RS2000 X-ray irradiator (Rad Source Technologies Inc., GA, U.
S.), 1×106 cells were subcultured in 25 cm2 plates in 5% CO2 at 37°C. Untreated cells cultured
in the same conditions were used as control cells. Cells were harvested after 48 h culture for fur-
ther experiments. The experiment was repeated 3 times.

Cellular metabolites collection
One-step quenching and extraction were applied as previously described to cell samples [14,
15]. Briefly, after the removal of cell culture medium, the cells were washed twice with ice-cold
PBS, and then the pellets were quenched by 2 mL −20°C methanol (HPLC grade, Kermel
Chemical Reagent, Tianjin, China). Afterwards, the cells were scraped and transferred into a
15-mL centrifugation tube, followed by adding 2 mL −20°C chloroform and ice-cold ddH2O
(V/V/V 1:1:0.7). Cell lysates were mixed by vortex for 5mins and left stand for 15 mins, and
then centrifuged with 14,000 g for 30 min at 4°C, generating two-phase extraction. The aque-
ous phase was lyophilized and then dissolved into 450 μL D2O with 50 μL buffer (1.5 M
K2HPO4, 0.375 M NaH2PO4, 0.1% TSP, 0.2% NaN3, pH 7.4) [16]. After being mixed with
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vortex, undissolved substances were removed by 14,000 × g centrifugation for 5 mins at 4°C
and the supernatant was transferred into a 5-mm nuclear magnetic tube for NMR analysis.

1H Nuclear magnetic spectra collection
1H NMR analysis was performed by a Bruker AVANCE III 600 MHz NMR spectrometer at
298.15K. The samples were analyzed by pre-saturated pressed water peak pulse sequence noe-
sypr1d ([RD-90°-t1-90°-tM-90°-ACQ]). Relaxation delay was set as 3 s, t1 4 μs, tM 120 ms,
sampling time 1.64 s. Two hundred fifty-six free induction decays (FIDs) were collected by
TOPSPIN software. The data point at 32 K was kept and adjusted to 64 K with spectral width
10 kHz. Spectral data were acquired from Fourier transform, by a window from all FIDs multi-
plying exponential function of line width 1 Hz.

Spectral data preprocessing
Phase and baseline of all NMR spectra were adjusted by MestReNova software, and the TMSP
(Trimethylsilylpropanoic acid) peak was set as 0 ppm. The text was derived after calculating
piecewise integration, with 0.002 ppm as the interval. Data preprocessing was performed with
self-prepared MATLAB script. Data points within 0.6–9.5 ppm were kept and the peak water
interval (4.5–5.2 ppm) was removed. For each spectrum, 4450 bins were kept. To reduce the
difference due to different sample concentration, the dilution factor of each sample was calcu-
lated according to a control spectrum after probabilistic quotient normalization (PQN) [17]

Pseudo two-dimensional spectra were drawn, based on preprocessing the data of statistical
total correlation spectroscopy (STOCSY), which indicated correlation factors among each
chemical shift [18]. To reduce the ratio of false positives, the threshold of the correlation factor
r was calculated by an adjusted p value and number of varieties by Bonferroni.

Dimensionality reduction and pattern recognition analysis
Dimensionality reduction and pattern recognition analysis was carried out by imputing pre-
processed data into the software SIMCA-P+ (Ver. 12.0, Umetrics, Umeå, Sweden). To reduce
the difference due to different sample concentrations, data were converted by Pareto [19].

Firstly, principal component analysis (PCA) was applied to perform data-dimensionality
reduction and get a data preview [20]. Afterwards, we use partial least squares discriminant
analysis (PLS-DA), a supervised pattern recognition method, to determine the modeling that
generated the greatest difference between radiated sample and untreated sample. Grouping
information used as response variable Y in calculating PLS-DA model. Q2 and R2were gener-
ated by software calculation to evaluate the degree of fit and forecasting ability of model. To
avoid over-fitting, 7-fold cross-validation was performed for 400 repeats [21–23].

The validated model was formally established by orthogonal projections to latent structures
discriminant analysis (OPLS-DA), significant components were separated into one predictive
component, t1, to describe the differences and one or more orthogonal components to filtering
the irrelevant noise, the two datasets may be the most distinguished on score chart [24]. After
exporting the model correlation factor p(corr) and variable importance projection (VIP) as
well as the load value, the loading diagram was drawn after backtracking transformation, and
then differential metabolites were identified.

Univariate analysis
Univariate analysis was performed on those differential metabolites identified by pattern rec-
ognition and substances identified by STOCSY. The relative concentration of differential
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metabolites was acquired by calculating the integration of spectra peaks. According to the p
value calculated by the Mann–Whitney test in GraphPad Prism 6 (Ver. 6.01, GraphPad Soft-
ware, Inc., CA, U.S.), the statistical significance of the differential metabolite was further
verified.

Pathway enrichment analysis
The names of the metabolites and their KEGG IDs were matched using MetaboAnalyst (http://
www.metaboanalyst.ca/) [25]. Pathway enrichment analysis was performed using MBRole
[26]. The relevant pathways were acquired by inputting metabolite KEGG ID and running a
Hypergeometric Test. The metabolic pathway illustration was generated by Cytoscape and
MetScape [27].

Results

Radiation changed the metabolic profiling of B16 cells
To identify the representative metabolites in B16 cells in response to radiation, we firstly com-
pared 1H NMR spectra from X-ray radiated B16 cells and untreated control cells. The represen-
tative spectrum of cellular soluble metabolite from X-ray radiated B16 cells and untreated
control cells was indicated in Fig 1A and 1B, where the spectrum peak with δ0.5–8.6 ppm
chemical shift was kept and water peak was removed. With ChenomxNMR Suite software anal-
ysis and statistical total correlation spectroscopy (STOCSY), major metabolites in the spectrum
were confirmed. Chemical shifts and corresponding groups were summarized in Table 1.

Principal component analysis (PCA) is an unsupervised pattern recognition algorithm,
which is able to effectively eliminate the interference of artificial factors and indicates the sam-
ple distribution in principal component space. Taking advantage of this, all data were analyzed
by PCA. A score plot of the first two principal components are shown in Fig 2A, radiated B16
cells and untreated B16 cells can be distinguished by first two principal components (PC1 and
PC2), suggesting a metabolic profiling difference between radiated B16 cells and untreated B16
cells.

Next, a supervised pattern recognition algorithm was applied using PLS-DA. As shown in
Fig 2B, radiated and untreated cells were able to be distinguished in the principal component
in the score chart. After 400 cross-validations, little over-fitting was observed and the data pre-
sented good predictive feature in the model (Fig 2C). On the basis of a reliable PLS-DA model,
orthogonal partial least squares discriminant analysis (OPLS-DA) model was established by
rotated principal–component projection to filter irrelevant information, and the predication of
principal components in the samples of two individual groups showed the greatest distinction
(Fig 2D). Furthermore, differentially expressed metabolites between the two group samples
were distinguished by analyzing the VIP of each variety, the correlation coefficient r, and the
loading value. According to VIP and the correlation coefficient r, a metabogram was presented
that clearly indicated changes in metabolites in different treatments. In summary, in response
to radiation, the contents of leucine, lactate, acetate, creatine, creatine phosphate, methanol,
ethylene glycol, UDP-glucose, ATP, and formate were decreased in cells, while the contents of
alanine, glutamate, taurine, choline, glycerol, and glycine were increased in cells.

Radiation induced the content change in metabolites in B16 cells
By calculating the spectra peaks of corresponding metabolites, the relative concentration of
metabolites was acquired. Single-variable analysis was performed to validate the statistical dif-
ference. For each metabolite, 1 or 2 non-overlapping or little-overlapping spectrum peaks were
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selected as specific spectrum peaks to calculate the integral area by which the relative concen-
tration of each metabolite was acquired (Table 1). The relative concentration of differentially
expressed metabolites was performed in a non-parametric statistical test of single variable to
generate a p value by the Mann–Whitney test, and the differentially expressed metabolites with
statistical significance were indicated in Fig 3 (� p< 0.05, �� p< 0.01). Consistent with the
results of multivariable analysis, in response to radiation, the contents of alanine, glutamate,
choline and glycine were increased, while the content of leucine, lactate, acetate, creatine, crea-
tine phosphate, methanol, UDP-glucose, and ATP were decreased.

Radiation changed the metabolic pathways and network in B16 cells
Through pattern recognition analysis and single variable analysis, in total 12 differentially
expressed metabolites in B16 cells were identified upon radiation, including 4 content increased
metabolites (alanine, glutamate, choline, and glycine) and 8 content-decreased metabolites (leu-
cine, lactate, acetate, creatine, creatine phosphate, methanol, UDP-glucose and ATP). Corre-
spondingly, for those content-changeable metabolites, their KEGG IDs and changes were listed
in Table 2.

In MBRole, pathway enrichment analysis indicated that differentially expressed metabolites
were involved in multiple metabolic pathways, including the metabolism of glycine, taurine,
arginine and alanine (Table 3). Using MetScape, metabolic network illustration shows the con-
nection of these metabolites (Fig 4), where hexagons represente metabolites, red frames indi-
cate the decreased metabolites, green frames indicate increased metabolites, squares indicate
KEGG ID, rounded rectangles represent enzymes, and blue represents regulative genes.

From metabolic pathway and network analysis, we observed that glutamate and pyruvate
were converted into alanine and α-ketoglutarate by catalysis of alanine aminotransferase

Fig 1. Representative spectra and peak assignment. A:NMR spectra of irradiated B16 cells;B: NMR spectra of untreated B16 cells.
Spectrum peak with chemical shift δ 0.5–8.6 ppm was kept and water peak as removed. The main metabolites indicated in the spectra were
identified by Chenomx NMR Suite software and statistical total correlation spectroscopy (STOCSY).

doi:10.1371/journal.pone.0162917.g001
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(ALT); Alanine and glyoxalic acid were converted into glycine and pyruvate by catalysis of Ala-
nine-glyoxylate transaminase (AGT) (Fig 5). For those catalytic reactions, key enzymes and the
EC number were listed in Table 4.

Discussion
To investigate the impacts of radiation, the response of the metabolome in B16 cells to radia-
tion were analyzed. Though metabolome analysis was performed in many clinic tissues or

Table 1. Peak assignments and integral regions.

Metabolite Assignment δ (ppm) Untreated Irradiated

From To Mean SD Mean SD

Acetate α-CH3 (d) 1.93 1.91 448.79 50.31 341.49 61.04

Ala β-CH3 (d) 1.50 1.47 155.38 27.86 177.45 7.02

Asp α-CH (dd) 2.69 2.64 146.49 17.89 141.64 20.93

β-CH2 (dd) 2.71 2.69 40.42 12.33 37.25 10.26

β-CH2 (dd) 2.84 2.79 49.80 7.61 47.41 3.81

ATP 5’-CH2 (m) 4.44 4.40 284.96 30.21 207.76 16.93

1’-CH (d) 6.17 6.14 205.79 9.59 170.23 18.21

2-CH (s) 8.29 8.27 143.62 14.75 117.74 9.66

Choline N-CH3 (s) 3.23 3.22 100.98 9.95 203.64 9.29

Creatine N-CH3 (s) 3.04 3.03 503.70 37.06 435.52 58.59

α-CH2 (s) 3.94 3.92 387.04 17.13 312.79 25.32

CP N-CH3 (s) 3.06 3.04 927.33 103.48 740.98 68.27

α-CH2 (s) 3.97 3.94 624.26 33.22 509.38 41.90

Formate H (s) 8.47 8.45 113.10 17.25 96.75 16.06

Glu β-CH2 (m) 2.10 2.02 329.62 43.42 327.81 37.01

γ-CH2 (m) 2.38 2.32 402.98 14.69 429.76 22.17

Glucose 1-CH (d) 5.25 5.23 28.29 9.19 11.23 9.49

Glutamine γ-CH2 (m) 2.48 2.43 150.35 21.21 148.91 20.88

Glutathione Glu-γ-CH2 (m) 2.59 2.54 220.70 33.58 214.76 28.23

Cys-β-CH2 (m) 3.01 2.95 104.20 22.41 115.49 26.55

Glycerol CH2 (m) 3.56 3.54 121.56 19.39 139.28 29.26

CH2 (m) 3.59 3.57 124.95 5.70 144.05 24.38

CH2 (m) 3.67 3.64 337.51 44.32 394.20 32.42

Glycine α-CH2 (s) 3.57 3.56 135.84 3.69 240.80 11.82

Ile β-CH3 (d) 1.03 1.00 43.81 8.75 36.68 13.68

Lactate CH3 (d) 1.35 1.31 2737.81 98.25 1950.38 238.82

CH (q) 4.14 4.09 527.75 36.47 390.44 49.93

Leu γ-CH3 (dd) 0.98 0.95 176.43 9.18 105.66 9.56

CH2 and CH (m) 1.77 1.71 149.40 20.52 54.86 27.83

Methanol CH3 (s) 3.37 3.35 262.02 145.77 92.50 28.61

Pyruvate CH3 (s) 2.40 2.39 95.97 14.72 84.79 14.17

Succinate 2 × CH2 (s) 2.41 2.40 43.69 10.14 40.02 5.73

Taurine N-CH2 (t) 3.29 3.25 844.63 35.21 851.09 33.52

S-CH2 (t) 3.44 3.41 842.21 26.76 828.75 35.74

UDP-glucose Glucose 4-CH (m) 3.50 3.45 127.82 33.61 73.28 19.22

Glucose 6-CH2 (m) 3.90 3.88 46.02 13.02 42.22 9.58

(s) singlet, (d) doublet, (t) triplet, (q) quartet, (dd) doublet of doublet, (m) multiplet

doi:10.1371/journal.pone.0162917.t001
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Fig 2. Multivariate analysis and back-scaled loading plot. Differential “metabogram” plotted according to correlation
coefficient and VIP value.A:Radiated and untreated B16 cells were distinguished in principal component score chart,
which indicated that the metabolic profiling of radiated B16 cells was different with that of untreated cells, t[1] and t[2] are
scores on PC1 and PC2, respectively. B: Score chart of partial least squares discriminant analysis model distinguished
radiated B16 cells and untreated B16 cells.C: 400 cross validations indicated little over-fitting and a reliable model.D:
OPLS-DAmodel distinguished radiated and untreated B16 cells. E: Differential metabolites were distinguished in radiated
and untreated cells according to VIP, relevant index r and loading value.

doi:10.1371/journal.pone.0162917.g002
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biofluids [28, 29], using cultured cell samples as a metabolic research model has multiple
advantages, as not only can one exclude individual differences in clinic samples and tumor tis-
sue heterogeneity, but also they are stable and have a high controllability; therefore, cell sam-
ples are appropriate for preliminary studies [30].

Fig 3. Relative concentration determined by the area under the peaks. Leu, Leucine; Ala, Alanine; CP, Creatine phosphate; Chol,
Choline; MeOH, Methanol. Calculation ofp values were done by the Mann–Whitney test, * p < 0.05, ** p < 0.01.

doi:10.1371/journal.pone.0162917.g003

Table 2. Radiation related metabolites in B16 cells.

Match KEGG Change direction

L-Alanine C00041 ▲
L-Glutamate C00025 ▲
Choline C00114 ▲
Glycine C00037 ▲
L-Leucine C00123 ▼
L-Lactic acid C00186 ▼
Acetic acid C00033 ▼
Phosphocreatine C02305 ▼
Creatine C00300 ▼
Methanol C00132 ▼
Uridinediphosphate glucose C00029 ▼
Adenosine triphosphate C00002 ▼

doi:10.1371/journal.pone.0162917.t002
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Table 3. Influenced pathways generated fromMBRole by enrichment analysis (adjusted p values< 0.05).

id label pval adj. pval in bckgnd in set %

mmu02010 ABC transporters 6.16E-06 3.26E-04 90 5 41.7

mmu01100 Metabolic pathways 1.95E-05 5.17E-04 1455 12 100

mmu00970 Aminoacyl-tRNA biosynthesis 7.71E-05 1.36E-03 75 4 33.3

mmu00260 Glycine, serine and threonine metabolism 4.85E-04 6.42E-03 49 3 25

mmu00430 Taurine and hypotaurine metabolism 1.89E-03 1.93E-02 20 2 16.7

mmu00330 Arginine and proline metabolism 2.19E-03 1.93E-02 82 3 25

mmu00250 Alanine, aspartate and glutamate metabolism 2.72E-03 2.06E-02 24 2 16.7

mmu00910 Nitrogen metabolism 3.19E-03 2.12E-02 26 2 16.7

mmu00450 Selenoamino acid metabolism 4.24E-03 2.32E-02 30 2 16.7

mmu00010 Glycolysis / Gluconeogenesis 4.53E-03 2.32E-02 31 2 16.7

mmu00620 Pyruvate metabolism 4.82E-03 2.32E-02 32 2 16.7

mmu00680 Methane metabolism 5.43E-03 2.40E-02 34 2 16.7

mmu00480 Glutathione metabolism 6.76E-03 2.76E-02 38 2 16.7

mmu04080 Neuroactive ligand-receptor interaction 7.73E-03 2.93E-02 128 3 25

mmu01110 Biosynthesis of secondary metabolites 2.94E-02 1.04E-01 1023 7 58.3

mmu00230 Purine metabolism 3.64E-02 1.21E-01 92 2 16.7

doi:10.1371/journal.pone.0162917.t003

Fig 4. Radiation-associatedmetabolic network generated by MetScape. Red frames indicate increased metabolites in radiated B16
cells and green frames indicate decreased ones.

doi:10.1371/journal.pone.0162917.g004
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Radiation therapy can generate free radicals and reactive oxygen species (ROS) from X-ray
radiation, which induces DNA damage in M-phase and G2-phase cells and subsequently
blocks cells in the G2/M phase. By inducing cell cycle arrest–mediated apoptosis, cancer cells
are killed with radiation therapy [31–33]. Nevertheless, it has been shown that multiple mecha-
nisms lead to cancer tolerance of radiation therapy (e.g., anti-apoptosis [34], DNA damage
repair [35], cell cycle regulation [36]). Previous studies indicated that radiation had little
impact on the B16 cell cycle, and the observation of γH2AX foci showed that the ratio of DNA
double strand break in radiated B16 cells was higher than that of untreated cells [37]. Impaired

Fig 5. Altered pathways in radiated B16 cells. PC, Phosphatidylcholines; PS, Phosphatidylserine; MTHF,
5,10-methylenetetrahydrofolate; THF, Tetrahydrofolate; GAc, Guanidinoacetate; Arg, Arginine; α-KG, α-ketoglutarate, also
known as oxoglutarate; Asp, aspartate; OA, Oxaloacetate; TAC, tricarboxylic acid cycle, also known as citrate cycle. Red
represents increased metabolites and green represents decreased metabolites in response to radiation.

doi:10.1371/journal.pone.0162917.g005

Table 4. Key enzymes in altered pathways.

Reaction Enzyme Abbr. EC

R00703 L-lactate dehydrogenase LDH 1.1.1.27

R00196 L-lactate dehydrogenase (cytochrome) 1.1.2.3

R01883 Guanidinoacetate N-methyltransferase GAMT 2.1.1.2

R00945 Glycine hydroxymethyltransferase 2.1.2.1

R00565 Glycine amidinotransferase AGAT 2.1.4.1

R00355 Aspartate transaminase AST 2.6.1.1

R00258 Alanine transaminase ALT 2.6.1.2

R00369 Alanine-glyoxylate transaminase AGT 2.6.1.44

R01881 Creatine kinase CK 2.7.3.2

R07377 Phosphatidylserine synthase 1 2.7.8.-

R00362 Citrate (pro-3S)-lyase 4.1.3.6

doi:10.1371/journal.pone.0162917.t004
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DNA double-strand break repair by chemical castration in prostate cancer had an improved
response to radiotherapy [38]. In this study, the content of glycine in radiated B16 cells was
increased. It is known that glycine can react with 5,10-methylenetetrahydrofolate by catalysis
of glycine hydroxymethyltransferase to generate serine and tetrahydrofolic acid, and the latter
is an important coenzyme of DNA synthesis process. This conclusion suggested that radiation
tolerance in B16 cells may arise from DNA damage repair. Accordingly, by activating specific
metabolic pathways to block DNA damage repair, radiation-tolerant cancer cells can be killed,
which may possibly be an effective way of radiotherapy sensitization.

In response to radiation in B16 cells, the contents of glutamate, alanine, glycine, and choline
were increased, which indicated that the activity of aspartate transaminase (AST), alanine
transaminase (ALT), and alanine-glyoxylate transaminase (AGT) was elevated. Therefore, we
speculate that, with a series of biochemical reactions upon the catalysis of those enzymes, more
glycine may be synthesized to participate in DNA damage repair. On the other hand, with the
catalysis of phosphatidylcholine (PC) synthase, serine can react with PC to generate choline
and phosphatidylserine (PS). Though we did not observe PC and PS in cellular soluble metabo-
lites upon radiation, due to their poor water solubility (no corresponding signal was observed
in the hydrogen spectrum), the elevated content of choline in response to radiation indicated
that the catalytic reaction occurred.

Though it has been reported that cancer cells, specially cancer stem cells, can synthesize
antioxidant substances and reduce the generation of ROS to acquire radiation tolerance [39,
40], in this study, the content of the two antioxidant substances taurine and glutathione did
not increase significantly in response to radiation, suggesting that radiation tolerance in B16
cells may have different mechanisms.

Conclusions
With NMR analysis, we observed a series of change in metabolites in response to radiation in
B16 cells. Based on previous studies, we concluded that these metabolites are involved in radia-
tion tolerance in B16 cells. Taken together, our results suggested that radiation tolerance in
B16 cells may result from the repair of radiation induced DNA damage.

With intensive bioinformatic analysis, NMR based metabolome analysis can be used to
identify the specific metabolic pathways in response to radiation, which may provide potential
targets for radiotherapy sensitization and furthermore offers technical support and theoretical
evidence for personalized radiation therapy.
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