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Abstract

Background: Recently, a number of studies have performed genome or exome sequencing of hepatocellular carcinoma
(HCC) and identified hundreds or even thousands of mutations in protein-coding genes. However, these studies have only
focused on a limited number of candidate genes, and many important mutation resources remain to be explored.

Principal Findings: In this study, we integrated mutation data obtained from various sources and performed pathway and
network analysis. We identified 113 pathways that were significantly mutated in HCC samples and found that the mutated
genes included in these pathways contained high percentages of known cancer genes, and damaging genes and also
demonstrated high conservation scores, indicating their important roles in liver tumorigenesis. Five classes of pathways that
were mutated most frequently included (a) proliferation and apoptosis related pathways, (b) tumor microenvironment
related pathways, (c) neural signaling related pathways, (d) metabolic related pathways, and (e) circadian related pathways.
Network analysis further revealed that the mutated genes with the highest betweenness coefficients, such as the well-
known cancer genes TP53, CTNNB1 and recently identified novel mutated genes GNAL and the ADCY family, may play key
roles in these significantly mutated pathways. Finally, we highlight several key genes (e.g., RPS6KA3 and PCLO) and
pathways (e.g., axon guidance) in which the mutations were associated with clinical features.

Conclusions: Our workflow illustrates the increased statistical power of integrating multiple studies of the same subject,
which can provide biological insights that would otherwise be masked under individual sample sets. This type of
bioinformatics approach is consistent with the necessity of making the best use of the ever increasing data provided in
valuable databases, such as TCGA, to enhance the speed of deciphering human cancers.

Citation: Zhang Y, Qiu Z, Wei L, Tang R, Lian B, et al. (2014) Integrated Analysis of Mutation Data from Various Sources Identifies Key Genes and Signaling
Pathways in Hepatocellular Carcinoma. PLoS ONE 9(7): e100854. doi:10.1371/journal.pone.0100854

Editor: Nathalie Wong, Chinese University of Hong Kong, China

Received March 19, 2014; Accepted May 28, 2014; Published July 2, 2014

Copyright: � 2014 Zhang et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability: The authors confirm that all data underlying the findings are fully available without restriction. Mutation data of HCC used in this work can be
obtained from ICGC (http://dcc.icgc.org/repository/current), Z Kan et al (ERP001196 or www.ingenuity.com/acrg2012), M Li et al (http://www.nature.com/ng/
journal/v43/n9/abs/ng.903.html#supplementary-information; Supplementary Table 3) and J Huang et al (SRA053063).

Funding: This work was supported by grants obtained from the National 973 Key Basic Research Program (2013CB910504); National Natural Science Foundation
of China (81125016); Key Infectious Disease Project (2012ZX10002-009013); and State Key Laboratory of Oncogenes and Related Genes (90-13-01). The funders
had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* Email: xhhe@shsci.org (XH); xielu@scbit.org (LX)

. These authors contributed equally to this work.

Introduction

Hepatocellular carcinoma (HCC) is the third most frequent

cause of cancer-related mortality worldwide and is usually

associated with specific risk factors, including hepatitis B or C

infection, high alcohol intake, hemochromatosis or nonalcoholic

fatty liver disease caused by obesity and insulin resistance [1].

Despite its global importance, our knowledge of the genomic

alterations implicated in HCC initiation and progression is still

fragmentary and the key drivers of tumorigenesis remain poorly

understood, which limit the development of targeted therapy for

HCC [2,3]. To complete the mutation landscape of HCC, a

number of studies have recently performed genome or exome

sequencing of HCC and identified hundreds or even thousands of

mutations in protein-coding genes [1,4,5,6,7]. These studies have

confirmed some important alterations (e.g., mutations in

CTNNB1, AXIN1, TP53, CDKN2A, etc.) and more importantly,

revealed novel alterations (e.g., mutations in ARID2, ARID1A,

NRF2, etc.) that have refined our knowledge of the mutational

landscape and the related signaling pathways involved in liver

carcinogenesis.

However, although these studies demonstrated the high

complexity and heterogeneity of HCC genomes, each study has

only focused on a limited number of candidate mutated genes;

thus, a large amount of important mutation resources remain to be
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explored. In addition, the number of HCC samples of each study

is limited. Thus, integrating these data sources may increase the

statistical power to depict the HCC mutation landscape and to

pinpoint novel dominant cancer genes and signaling pathways in

HCC pathogenesis. It is becoming clear that individual tumors of

the same histopathological subtype may show distinct genetic

alterations, but the affected pathways in different tumors are

similar [8]. This phenomenon can also be described as ‘‘univer-

sality in module, diversity on the genetic level’’ [9]. Thus,

elucidating genetic alterations at the pathway level may reveal

common features of different individuals. Thus, with the

emergence of abundant mutation data sources of HCC, it is

rational to systemically evaluate these mutated genes and the

related signaling pathways involved in liver carcinogenesis.

In this study, we first compared four sets of mutated genes from

different sources, and found that although only a minority (32%–

37%) of mutated genes from the lesser samples (,10) reoccur in

the larger samples (,90), a majority (67%–100%) of the

significantly mutated pathways from the lesser samples reoccurred

in the larger samples. Next, we integrated these mutated genes and

identified 113 significantly mutated pathways. Several lines of

evidence indicate that the mutated genes included in these

significantly mutated pathways were more likely to be cancer

genes. Network analysis further revealed that the mutated genes

with the highest betweenness coefficients may play a key role in

these signaling pathways. Finally, we evaluated the clinical

significance of key genes and pathways.

Results

Comparing four sets of mutated genes from different
sources

We collected four sets of mutation data from the International

Cancer Genome Consortium (ICGC) [10], Kan et al. [11], Li et

al. [6] and Huang et al. [5], which surveyed 99, 88, 10 and 10

HCC samples, respectively. Data obtained from the ICGC and

Kan et al. with larger samples detected 4376 and 3702 mutated

genes, respectively, whereas data obtained from Li et al. and

Huang et al. contained smaller samples that detected 398 and 347

mutated genes, respectively. By comparing the four sets of mutated

genes, we found that approximately 35% of the mutated genes

identified from the smaller samples were also detected in the larger

samples, while only 3% of the mutated genes identified from the

larger samples were also detected in the smaller samples (Table 1).

This result indicated the diversity of mutated genes among distinct

tumor samples and also revealed that larger samples provide better

coverage for the detection of potentially mutated genes in a tumor

type.

To compare the biological pathways of these four sets of

mutated genes, we analyzed these mutated genes using two

popular methods—the pathway coverage method [1,12,13] and

the hypergeometric distribution model [14] (see Materials and

Methods for more information). The results obtained using the

pathway coverage method showed that with a 5% false discovery

rate (FDR) control, 99 and 75 significantly mutated pathways were

identified from data obtained from the ICGC and Kan et al., while

only 36 and 3 significantly mutated pathways were identified from

data obtained from Li et al. and Huang et al., respectively. By

comparing these four sets of pathways, we found that 67%–100%

of significantly mutated pathways identified from the smaller

samples were also detected in the larger samples, while only 3%–

41% of significantly mutated pathways identified from the larger

samples were also detected in the smaller samples (Table 2).

Similar results were obtained using the hypergeometric distribu-

tion model (Table S1). These results demonstrated that most of the

significantly mutated pathways from the smaller samples reoc-

curred in the larger samples, indicating that common features can

be characterized across different tumors at the pathway level

despite the high heterogeneity at the gene level. Given that the

results drawn from larger samples may reflect the overall trend, we

integrated four sets of mutated genes in the following analyses.

Integrative analysis identified key genes and pathways
We integrated these four mutation profiles and obtained 7017

mutated genes (Table S2), among which 28 genes were mutated in

no less than 10 samples (Figure 1).

Next, we analyzed the integrated mutated genes using the

pathway coverage method and hypergeometric distribution model

and compared the results obtained using these two methods. We

found that with a 5% FDR control, 113 and 156 significantly

mutated pathways were identified using the pathway coverage

method and hypergeometric distribution model, respectively, and

112 pathways overlapped. Importantly, mutations of 156 path-

ways identified using the hypergeometric distribution model

covered an average of 23% of the HCC tumor samples, whereas

mutations of 113 pathways identified using the pathway coverage

method covered an average of 29% of the HCC tumor samples.

This result showed that the mutated genes included using the

pathway coverage method better represented the tumor sample

coverage. Thus, we only adopted the results obtained using the

pathway coverage method for subsequent analyses.

Among the 113 significantly mutated pathways identified using

the pathway coverage method (Table S3), the top 30 pathways

were mainly classified into five groups (Figure 2): (a) proliferation

and apoptosis related pathways, (b) tumor microenvironment

related pathways, (c) neural signaling related pathways, (d)

metabolic related pathways, and (e) circadian related pathways.

From the total mutated genes, 2139 genes were included in 113

significantly mutated pathways (Table S4), and 4878 genes were

not included. We speculated that the mutated genes implicated in

Table 1. Overlap of four sets of mutated genes.

ICGC Kan et al. Li et al. Huang et al.

ICGC 4376 0.32 0.03 0.03

Kan et al. 0.38 3702 0.04 0.03

Li et al. 0.37 0.35 398 0.05

Huang et al. 0.33 0.32 0.05 347

Note: The diagonal is the number of mutated genes from four sources. The percentages above (or below) the diagonal represent the number of overlapping genes
divided by the number of the longer (or shorter) set of mutated genes. The values in bold font are the comparison results between the larger and smaller sample sizes.
doi:10.1371/journal.pone.0100854.t001

Integrated Analysis of Mutation Data in HCC

PLOS ONE | www.plosone.org 2 July 2014 | Volume 9 | Issue 7 | e100854



these pathways were more likely to be candidate cancer genes.

Thus, we compared the two sets of mutated genes (2139 vs. 4878)

and found significant differences observed from three aspects, in

support of our speculation (Figure 2): (1) the percentage of known

cancer genes in the former was significantly higher compared to

the latter (p,2.20610216); (2) the percentage of damaging genes,

which contained at least one mutation predicted to affect protein

function by PolyPhen, in the former was significantly higher

compared to the latter (p = 1.0961024); and (3) the conservation

scores of the former set of genes were significantly higher

compared to those of the latter (p = 4.7261024).

To further reveal the key mutated genes implicated in the

significantly mutated pathways, we extracted the regulatory

relationships of these pathways and generated an integrative

signal transduction network (see Materials and Methods; Figure 3).

A total of 896 mutated genes and 3108 edges in the integrative

signal transduction network were obtained (Table S5). On the

basis of network topology knowledge, a high betweenness

coefficient or high clustering coefficient of a gene indicates its

pivotal role in the network. Thus, we first ranked the mutated

genes according to their betweenness coefficients and defined

genes whose betweenness coefficients were zero as control genes.

Next, we compared the five groups of mutated genes ranked in the

top 50, 100, 150, 200 and 250 with the control genes. Our results

indicated that the mutated genes with higher betweenness

coefficients were more likely to play a key role in HCC on the

basis of the following observations (Figure 4): (1) the percentage of

known cancer genes in the five groups of mutated genes was

significantly higher compared to the control genes (P-values of

3.2461026, 5.0261027, 1.3361025, 8.6961026, and 2.1261024

for the top 50, 100, 150, 200 and 250 genes, respectively); (2) the

percentage of damaging genes in the five groups of mutated genes

was significantly higher compared to the control genes (P-values of

1.5761024, 9.4161024, 0.005, 0.023, and 0.050, respectively, for

the top 50, 100, 150, 200 and 250 genes); and (3) the conservation

scores of the five groups of mutated genes were higher compared

to the control genes. We also compared the top genes ranked by

the clustering coefficient with the control genes, but no obvious

trend was observed (data not shown).

Clinical relevance of key mutated genes and significantly
mutated pathways

To study the clinical relevance of the mutated genes significantly

enriched in pathways, we calculated the correlations between the

mutated genes and different clinical features of HCC patients. We

found that at a significant P-value of 5%, mutations of four genes

were correlated with cancer cell differentiation, mutations of four

genes were correlated with metastasis, mutations of four genes

were correlated with a lack of cirrhosis, and mutations of three

genes were correlated with HBV infection. In addition, we found

eight genes with mutations that might be associated with poorer

overall survival rate of HCC patients (P#0.1).

As shown in Figure 5, poorly differentiated HCC demonstrated

a significantly higher rate of RPS6KA3, ARAP2 and MMACHC

mutations (10% vs. 2%, 6% vs. 0%, 6% vs. 0%; p = 0.031,

p = 0.018, p = 0.018, respectively) and a significantly lower rate of

Table 2. Overlap of four sets of significant pathways obtained using the pathway coverage method.

ICGC Kan et al. Li et al. Huang et al.

ICGC 99 0.71 0.31 0.03

Kan et al. 0.93 75 0.41 0.03

Li et al. 0.86 0.86 36 0

Huang et al. 1 0.67 0 3

Note: The diagonal is the number of significant pathways. The percentages above (or below) the diagonal represent the number of the overlapping pathways divided
by the number of the longer (or shorter) set of pathways. The values in bold font are the comparison result between the larger and smaller sample sizes.
doi:10.1371/journal.pone.0100854.t002

Figure 1. Overview of genes with mutations in at least 10 of 207 patient samples. The heatmap shows genes (rows) and tumors (columns)
with mutations (blue). The number of events per gene is indicated to the left.
doi:10.1371/journal.pone.0100854.g001
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PCLO mutations (0% vs. 10%, p = 0.023). There was also a trend

toward higher rates of metastasis in HCC with ATM, ATR,

MDN1 and RELN gene mutations (12% vs. 0%, 12% vs. 1%,

12% vs. 1%, 12% vs. 1%; p = 0.015, p = 0.049, p = 0.049,

p = 0.049, respectively). In addition, KIF5C, MYH8, SETD2

and UNC13C mutations were only found in HCC patients in the

absence of cirrhosis (0% vs. 11%, p = 0.036 for all four genes).

HCC derived from hepatitis B infection demonstrated a signifi-

cantly higher rate of OR8K3, PRL and RYR2 mutations (22% vs.

0%, 22% vs. 1%, 22% vs. 2%; p = 0.008, p = 0.022, p = 0.041,

respectively). Moreover, patients with CACNA1I, COL5A1,

CUL1, GRIA1, HERC1, MAGI1, NNT and OGT mutations

tend to have poorer overall survival (median OS: 15 vs. 39 months,

p = 0.084 for all eight genes), which requires further validation in a

larger cohort of samples.

To study the clinical relevance of the significantly mutated

pathways, we calculated the correlations between the pathway

mutations and different clinical features of HCC patients. We

found that at a significant P-value of 5%, two pathway mutations

were correlated with cancer cell differentiation, six pathway

mutations were correlated with metastasis, six pathway mutations

were correlated with a lack of cirrhosis, and two pathway

mutations were correlated with HBV infection. In addition, we

found five pathways with mutations that might be correlated with

an overall survival of HCC patients (three for poorer, two for

better) (P#0.1).

As shown in Figure 6, mutations in ABC transporters and

mRNA surveillance pathway were associated with a trend toward

better differentiation (15% vs. 36%, 10% vs. 25%; p = 0.010,

0.040, respectively). There was also a trend toward higher rates of

metastasis in HCC with mutations of six pathways, including the

p53 signaling pathway, PI3K-Akt signaling pathway, axon

guidance, NF-kappa B signaling pathway, lysine degradation

and carbohydrate digestion and absorption (60% vs. 30%, 92% vs.

68%, 64% vs. 31%, 48% vs. 20%, 36% vs. 12%, 36% vs. 14%;

p = 0.014, p = 0.018, p = 0.007, p = 0.015, p = 0.018, p = 0.030,

respectively). HCC that developed in the absence of cirrhosis

demonstrated a significantly higher rate of mutation of six

pathways, including tyrosine metabolism, glycerolipid metabolism,

synaptic vesicle cycle, RNA transport, spliceosome and taste

transduction (2% vs. 18%, 9% vs. 29%, 7% vs. 32%, 18% vs.

54%, 18% vs. 46%, 11% vs. 36%; p = 0.015, p = 0.028, p = 0.008,

p = 0.002, p = 0.014, p = 0.016, respectively). Mutations in tyrosine

metabolism and arginine and proline metabolism were associated

with HCC derived from hepatitis B infection (8% vs. 33%, 10% vs.

44%; p = 0.047, p = 0.017, respectively). In addition, there was a

slight tendency toward decreased overall survival status among

tumors harboring mutations in the Notch signaling pathway,

TGF-beta signaling pathway, and non-homologous end-joining

(median OS: 15 vs. 40 months, 15 vs. 40 months, 15 vs. 39

months, p = 0.055, p = 0.059, p = 0.084, respectively) and in-

creased overall survival status among tumors harboring mutations

in the chemokine signaling pathway and pancreatic secretion

(median OS: 51.5 vs. 20 months, 40 vs. 21 months, p = 0.090,

p = 0.099, respectively). Such an association requires further

validation in a larger cohort of samples.

Discussion

We collected mutation data of HCC from four sources and

integrated these data to increase the statistical power to pinpoint

novel dominant cancer genes. We obtained a total of 7017

mutated genes, among which 28 genes were mutated in no less

than 10 samples. In addition to six well-known and emerging

cancer genes (TP53, CTNNB1, ARID1A, ARID2, AXIN1 and

MLL3) in HCC [1,2,4,6,15], five genes (LRP1B, USH2A, ALB,

Figure 2. Significantly mutated pathways. A, Top 30 of 113 significantly mutated pathways and the difference in B, the percentage of known
cancer genes or damaging genes and C, the conservative score between mutated genes in significantly mutated pathways (In SMP) and those not in
significantly mutated pathways (Not In SMP). Coverage represents the fraction of tumors with at least one mutated gene in the specified pathway.
Known cancer genes were obtained from the F-census database, and damaging genes were predicted using PolyPhen.
doi:10.1371/journal.pone.0100854.g002
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GPR98 and COL11A1) were significantly mutated in HCC in the

original mutation datasets analyzed in this study [4,11] and our

integrated results confirmed their high mutation frequencies.

Importantly, our integrated results revealed 17 novel genes with

mutational evidence to warrant experimental investigation.

Among these 17 genes, previous studies have shown that five

genes (MUC16, LAMA2, AHNAK, HMCN1 and FAT3) played a

role in other cancer types [16,17,18,19,20]. For example, Rump

and colleagues showed that binding of MUC16 to membrane-

bound mesothelin mediated cancer cell adhesion in ovarian cancer

and that the mesothelin-MUC16 interaction might result in the

intraperitoneal dissemination of tumors [16]. Specifically, a novel

nonsense mutation in exon 26 of APOB (p.K2240X) was

responsible for low cholesterol and fatty liver in a large kindred,

which might also be responsible for cirrhosis and liver cancer in

this family [21]. However, the functional role of APOB in sporadic

liver cancer is unknown. In addition, few studies have addressed

the functional roles of the remaining 11 mutated genes (TTN,

XIRP2, PCLO, CSMD3, FBN2, SYNE1, ABCA13, CUBN,

DNAH3, DNAH8, and FSIP2) in cancer, which requires further

investigation.

Next, we performed pathway analysis on the integrated mutated

genes and identified 113 significantly mutated pathways. We

showed that the mutated genes included in these pathways

contained higher percentages of known cancer genes and

damaging genes and also exhibited higher conservation scores,

which indicate their important roles in HCC pathogenesis. The

top 30 most significantly mutated pathways were mainly classified

into five groups: (a) proliferation and apoptosis related pathways,

(b) tumor microenvironment related pathways, (c) neural signaling

related pathways, (d) metabolic related pathways, and (e) circadian

related pathways.

For eight of the proliferation and apoptosis related pathways

that were identified, it is well known that mutations of six

pathways, including the cell cycle, p53 signaling pathway,

apoptosis, Wnt signaling pathway, MAPK signaling pathway

Figure 3. Biological network of mutated genes from significantly mutated pathways. The node size increases are proportionate to the
increases in the betweenness coefficient.
doi:10.1371/journal.pone.0100854.g003
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and PI3K-Akt signaling pathway, contribute to liver tumorigenesis

[1,2,15]. In addition, we found that mutations of the calcium

signaling pathway and Hippo signaling pathway covered 54% and

42% HCC tumors, respectively, thereby indicating that mutations

in these pathways might significantly contribute to liver tumori-

genesis. Indeed, it was reported that deregulation of the Hippo

pathway can induce tumors in a broad range of human

carcinomas, including lung, colorectal, ovarian and liver cancer,

but mutations in Hippo pathway genes were rare [19]. For the

calcium signaling pathway, increases in intracellular Ca2+
concentration organized in space, time and amplitude have been

shown to be important in cell migration [22].

For the tumor microenvironment related pathways in which

alterations play a role in the pathogenesis of HCC, most of the

Figure 4. The difference in A, the percentage of known cancer genes or damaging genes and B, the conservative score between five
groups of mutated genes and control genes. Five groups of mutated genes were ranked in the top 50, 100, 150, 200 and 250 by betweenness
coefficient of the network. Control genes are mutated genes with a betweenness coefficient of zero. The horizontal line parallel to the x axis
represents the longitudinal coordinates of the control genes. * represents a significant difference (p,0.05).
doi:10.1371/journal.pone.0100854.g004

Figure 5. Overview of gene mutations and major associated clinical features, including A, Cell differentiation; B, Metastasis; C,
Cirrhosis; and D, HBS-AG. The lower heatmap shows genes (rows) and tumors (columns) with mutations (blue). The purple (or yellow) boxes
above the heatmap represent poor differentiation (or good differentiation), metastasis (or non-metastasis), cirrhosis (or non-cirrhosis) and HBS-AG
positive (or HBS-AG negative), respectively. The P-value of each gene is indicated to the left. *n is the number of HCC patients with available clinical
information.
doi:10.1371/journal.pone.0100854.g005
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evidence was collected from transcriptional level experiments, but

few studies have reported mutations in these pathways [23,24].

Our analyses showed that, on average, mutations of eight tumor

microenvironment related pathways covered 47% of HCC

tumors. The eight pathways involved focal adhesion, ECM-

receptor interaction, adherens junction, tight junction, leukocyte

transendothelial migration, protein digestion and absorption,

phosphatidylinositol signaling system and regulation of actin

cytoskeleton; these are the mutations that are worthy of further

study.

Interestingly, we also identified three groups of pathways,

namely neural signaling, metabolic and circadian related path-

ways, in which their roles in liver tumorigenesis have not been

addressed. Specifically, mutations in six neural signaling related

pathways, including the neurotrophin signaling pathway, gluta-

matergic synapse, axon guidance, cholinergic synapse, dopami-

nergic synapse, and neuroactive ligand-receptor interaction, on

average covered 44% of HCC tumors. It has been recognized that

NGF and other neurotrophins regulate cell proliferation and

invasion as well as cell death and survival, whereas dysregulation

of neurotrophin signaling plays an important role in the

pathogenesis of many tumors, such as breast and prostate cancer

[25]. Moreover, mutations of two metabolic related pathways

(metabolic pathways and protein digestion and absorption) and

one circadian related pathway covered 59% and 41% HCC

tumors, respectively. Recently, reprogrammed energy metabolism

has been proposed as an emerging hallmark of cancer cells [26],

and accumulating epidemiological and genetic evidence indicates

that disruption of circadian rhythms might be directly linked to

cancer [27]. Thus, the role of these mutations in neural signaling,

metabolic and circadian related pathways in liver tumorigenesis

merits further investigation.

Furthermore, we generated a signaling transduction network by

extracting the mutated genes and the regulatory relationships of

significantly mutated pathways and revealed that the mutated

genes with the highest betweenness coefficients in the network

might play key roles in these signaling pathways. Specifically,

among the top 50 mutated genes with the highest betweenness

coefficients, 11 well-known and emerging cancer genes (TP53,

CTNNB1, PIK3CA, EGFR, IGF1R, JAK2, STAT1, NFKB1,

LEPR, SOCS3, and HRAS) were observed in HCC

[2,15,28,29,30]. For the remaining 12 genes (RAF1, TRAF6,

PPARA, MAPK8, MAPK9, RHOA, MDM2, GNAS, PTK2,

PLAU, VEGFB, and CCL5), there is some but not sufficient

evidence to support their roles in liver tumorigenesis

[31,32,33,34,35,36,37,38,39,40,41], which warrants further inves-

tigation. Importantly, our analyses revealed 27 novel genes with

mutational evidence to warrant experimental investigation.

Among the 27 genes, previous studies have reported that 19

genes (PLCG1, PRKACA, PRKACB, PRKACG, PRKCB,

PIK3CD, PIK3CG, PIK3R1, C3, IRS4, EP300, CBL, CREBBP,

GNAI2, THBS1, CBLB, SERPINE1, PPP3CB, and RASGRF1)

Figure 6. Overview of pathway mutations and major associated clinical features, including A, Cell differentiation; B, Metastasis; C,
Cirrhosis; and D, HBS-AG. The lower heatmap shows pathways (rows) and tumors (columns) with mutations (blue). The purple (or yellow) boxes
above the heatmap represent poor differentiation (or good differentiation), metastasis (or non-metastasis), cirrhosis (or non-cirrhosis) and HBS-AG
positive (or HBS-AG negative), respectively. The P-value of each pathway is indicated to the left. *n is the number of HCC patients with available
clinical information.
doi:10.1371/journal.pone.0100854.g006
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play roles in cancer [42,43], but few studies have addressed the

functional roles of the remaining eight mutated genes (PLG,

CALML3, PPP3CC, GNAL, ADCY3, ADCY8, ADCY2, and

ADCY9).

Finally, we showed that mutations in 23 genes were correlated

with the clinical features of HCC patients. The precise mechanism

is unknown, but there are some clues. It has been reported that

RPS6KA3 can control cell differentiation [44], which is consistent

with our finding that RPS6KA3 tends to be mutated in poorly

differentiated HCC. In addition, RPS6KA3 was included in the

top 250 mutated genes with the highest betweenness coefficients in

the signaling transduction network, and there are eight HCC

samples that harbor RPS6KA3 mutations in our integrated

mutation profile. Taken together, this evidence suggests that

RPS6KA3 might play an important role in HCC pathogenesis.

Furthermore, RELN has been suggested to be involved in ECM-

receptor interaction and focal adhesion [45], which might be the

mechanism underlying the high metastasis rate of HCC with

RELN mutations. PRL is a growth regulator for cells of the

immune system [46], and we showed that PRL mutations were

associated with hepatitis B infection, suggesting that PRL might be

implicated in the production of HBs-Ag. Furthermore, previous

studies have shown that downregulation of MAGI1 is associated

with poor prognosis of HCC [47] and that overexpression of

CUL1 is associated with poor prognosis of patients with gastric

cancer [48]. Our analysis demonstrated that mutations in MAGI1

and CUL1 were correlated with an overall survival status of HCC

patients, indicating that these two genes might be prognostic

markers in HCC. Importantly, we found that PCLO tended to be

mutated in poorly differentiated HCC and that there were 14

HCC samples harboring PCLO mutations in our integrated

mutation profile. Thus, the role of PCLO in HCC pathogenesis

warrants further study.

At the pathway level, we identified 21 pathways in which the

mutations were correlated with clinical features of HCC patients.

For three of the six pathways (p53 signaling pathway, PI3K-Akt

signaling pathway and NF-kappa B signaling pathway) relevant to

metastasis rate, previous studies have shown that these pathways

play important roles in HCC metastasis [49,50]. As for the six

pathways associated with the survival status of HCC patients

(TGF-beta signaling pathway, Notch signaling pathway, non-

homologous end-joining, etc.), the TGF-beta signaling pathway is

well known to be activated in poor-prognosis HCC tumors [49]

and downregulation of the Notch signaling pathway inhibits HCC

cell invasion [51]. Interestingly, most evidence in previous studies

was obtained from gene expression data; however, our results were

based on mutation data. Importantly, we revealed 16 novel

pathways, such as axon guidance and ABC transporters,

associated with metastasis rate and cell differentiation of HCC

patients, respectively. Specifically, axon guidance, a neural

signaling related pathway, is one of the top 30 most significantly

mutated pathways. It has been reported that an axon guidance

molecule can enhance the invasion and metastasis of human

gastric cancer [52], but the role of axon guidance in HCC invasion

and metastasis has not been addressed, which requires further

investigation.

In summary, we integrated mutation data of HCC from various

sources, from which we identified that many of the signaling

pathways were mutated in a significantly high percentage of HCC

samples and primarily demonstrated that genes implicated in these

pathways might play roles in HCC. We also generated a signal

transduction network using mutated genes annotated in signifi-

cantly mutated pathways and ranked these mutated genes

according to their positions in the network, providing a reference

for subsequent experiments. Finally, we showed that mutations of

several key genes and pathways were associated with major clinical

features. Our workflow illustrated the increased statistical power of

integrating multiple studies of the same subject, which can provide

biological insights that would otherwise be masked under

individual sample sets. This type of bioinformatics approach is

consistent with the necessity of making the best use of ever

increasing data provided in valuable databases such as TCGA to

enhance the speed of deciphering human cancers.

Materials and Methods

Datasets
The HCC mutation data were downloaded from ICGC (http://

dcc.icgc.org/repository/current), Kan et al. (ERP001196 or www.

ingenuity.com/acrg2012), Li et al. (http://www.nature.com/ng/

journal/v43/n9/abs/ng.903.html#supplementary-information;

Table S3) and Huang et al. (SRA053063), which detected 99, 88, 10

and 10 cancer samples, respectively. For each dataset, we first

extracted non-synonymous point mutations, small insertions and

deletions, filtering mutations in the non-coding region and

synonymous point mutations. Next, we generated a mutation

profile {Xij}: Xij is 1 (true) if any mutation occurs in gene i in cancer

sample j; otherwise, the element is 0 (false). We defined that the

altered gene i covers the cancer sample j if Xij is 1. In total, four

mutation profiles were obtained for comparison analysis. Next, we

pooled the four mutation profiles and obtained an integrated

mutation profile, which consisted of 7017 genes across 207 HCC

samples. Detailed clinical information of 207 patients (if available),

including gender, age at diagnosis, tumor stage and grade, HBsAg,

liver pathology and OS time, is listed in Table S6. These samples

demonstrate typical Chinese HCC characteristics such as a high

HBV infection rate and high rate of cirrhosis, among other factors.

In addition, 1654 known cancer genes were obtained from the

F-census database [43], which is a collection of cancer genes from

various data sources, including the Cancer Gene Census dataset

[42] and Tumor Suppressor Gene database [53]. The effects of

non-synonymous mutations on protein function were predicted

using PolyPhen version 2 with default parameters [54,55]. A gene

with at least one damaging mutation, i.e., that is supposed to affect

protein function, was referred as a damaging gene in this study.

The conservation score of each mutation position was calculated

using GERP++ with default parameters [56].

Pathway data were downloaded from KEGG [45]. Seven

classes of pathways were collected in KEGG: metabolism, genetic

information processing, environmental information processing,

cellular processes, organismal systems, human diseases and drug

development. We only adopted the former five classes, as the latter

two classes were assembled pathways.

Pathway analysis
Significant pathways that might be important in liver tumor-

igenesis were identified using the pathway coverage method and

hypergeometric distribution model. We performed these two

methods on five mutation profiles: four individual mutation

profiles from different sources and the integrated mutation profile

of the four profiles. The P-values for each analysis were adjusted

using the Benjamini and Hochberg method for multiple-testing

correction [57].

The pathway coverage method: A few studies have attempted to

define a selected pathway as being significantly mutated if this

mutated pathway (containing at least one mutated gene) covers a

statistically significant percentage of all detected cancer samples

[1,12,13]. We termed this method as ‘‘pathway coverage method’’
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in this study. Briefly, a matrix {Yij} was first built: Yij is 1 (true) if

cancer sample j contains at least one mutated gene annotated in

pathway i; otherwise, the element is 0 (false). We defined that the

altered pathway i covers the cancer sample j if Yij is 1. The

coverage (or alteration frequency) of a pathway is the number of

cancer samples mutated divided by the number of all cancer

samples. Considering that the coverage of a pathway is dependent

on the number of genes annotated in this pathway, we assessed the

empirical significance of the coverage of a pathway using

simulations. For pathway i with v genes, we computed Zi, which

is the number of cancer samples that pathway i covers. Each

simulation sampled v genes without replacement from all genes on

human genome and collected mutation statistics based on the

mutation profile. The P-value of a pathway covering k samples is

derived as the proportion of 10,000 simulations with Zi$k.

The hypergeometric distribution model: According to the

hypergeometric distribution model [14], a pathway is defined as

being significantly mutated if this mutated pathway (containing at

least one mutated gene) contains a statistically significant

percentage of all detected mutated genes. Hypothetically, suppose

a KEGG pathway contains M genes, k of which are genes mutated

in at least one HCC patient for each dataset, then the probability

of observing at least k mutated genes in this pathway by random

chance is:

p~1{
Xk{1

i~0

Ci
nCM{i

N{n

CM
N

where N is the number of all genes and n is the number of all

mutated genes annotated in the five classes of KEGG pathways.

Network analysis
Network data were extracted from the KEGG database [45].

Nodes are genes, and edges represent nine regulatory relation-

ships, including activation, inhibition, expression, repression,

phosphorylation, dephosphorylation, methylation and ubiquitina-

tion. We mapped all mutated genes (2139) from significantly

mutated pathways to these networks and generated an integrative

signal transduction network. There were a total of 896 mutated

genes and 3108 edges in the integrative signal transduction

network (Table S5). Next, we calculated the betweenness

coefficient and clustering coefficient of each gene in the network.

Statistical analysis
The differences in the percentages of known cancer genes and

damaging genes between two sets of mutated genes were

calculated using Fisher’s Exact test. The differences in the

conservation scores between two sets of mutated genes were

calculated using Student’s t-test. Associations of the gene or

pathway mutations and overall survival were identified using Cox

proportional hazards regression models (log-rank test) with the R

survival library. The association of gene or pathway mutations

with other clinical factors was performed using the X-squared test

(group size of .5) with Yates’ continuity correction or Fisher’s

Exact test (group size of #5). All reported P-values were two tailed,

and differences were considered significant when the P-value was

less than 0.05.
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