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Recent experimental studies show cortical circuit responses to external

stimuli display varied dynamical properties. These include stimulus

strength-dependent population response patterns, a shift from synchronous

to asynchronous states and a decline in neural variability. To elucidate the

mechanisms underlying these response properties and explore how they

are mechanistically related, we develop a neural circuit model that incorpor-

ates two essential features widely observed in the cerebral cortex. The first

feature is a balance between excitatory and inhibitory inputs to individual

neurons; the second feature is distance-dependent connectivity. We show

that applying a weak external stimulus to the model evokes a wave pattern

propagating along lateral connections, but a strong external stimulus triggers

a localized pattern; these stimulus strength-dependent population response

patterns are quantitatively comparable with those measured in experimental

studies. We identify network mechanisms underlying this population

response, and demonstrate that the dynamics of population-level response

patterns can explain a range of prominent features in neural responses,

including changes to the dynamics of neurons’ membrane potentials and

synaptic inputs that characterize the shift of cortical states, and the stimulus-

evoked decline in neuron response variability. Our study provides a unified

population activity pattern-based view of diverse cortical response properties,

thus shedding new insights into cortical processing.
1. Introduction
Understanding how cortical circuits respond to sensory stimulation is of funda-

mental importance in elucidating the mechanisms of cortical processing [1].

Extracellular recordings have shown that trial-to-trial rate variability declines

after stimulus onset, whereas spike time variability is retained [2]. Recent

whole-cell recordings have also revealed that sensory stimulation can shift cor-

tical neurons from synchronous to asynchronous states, as characterized by the

dynamics of membrane potentials [3,4]. Seemingly unrelated to these response

properties measured at the level of individual neurons, it has been found that

there exist distinct spatio-temporal patterns in neural population response

activity, depending on the strength of feed-forward thalamic input signals

[5]. In one response pattern, a stimulus with low contrast triggers a wave that

propagates across cortical circuits; in another response pattern, a stimulus

with high contrast evokes a neural response that remains spatially localized

and does not propagate to neighbouring areas. To deepen our understanding

of cortical processing, it is important to unravel the mechanistic links between

these response properties of cortical circuits across different levels, and account

for them in a unified way.

Randomly coupled networks with balanced excitation and inhibition (E/I

balance) are the standard model used to account for spike time variability; in
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these networks, the firing rates of excitatory and inhibitory

neurons adjust dynamically, resulting in an asynchronous

state in which different neurons emit spikes in an irregular

and asynchronous way [6,7]. To account for the variability of

firing rates and its decline, as observed in [2], balanced

networks have been extended to incorporate clustered connec-

tions [8]. Consistent with these studies, various experimental

studies have shown that in cortical circuits, excitation is often

balanced by inhibition [9–12]. However, these existing studies

of cortical networks with balanced E/I do not capture the infre-

quent, large excursions of membrane potential observed during

spontaneous activity [4]. Furthermore, explaining the shift from

synchronous to asynchronous states and stimulus strength-

dependent population response patterns in cortical circuits

with E/I balance, remains an open question.

In this study, we unravel the dynamical mechanisms of

the essential response properties by exploring a qualitatively

different model of balanced cortical circuits, which incorpor-

ates the widely observed distance-dependence of synaptic

connectivity [13,14]. We show that in this spatially extended

network, population-level response patterns are dependent

on the strength of external stimuli: weak stimuli evoke propa-

gating waves but strong stimuli evoke localized activity

patterns without propagation. These stimulus strength-

dependent population response patterns are quantitatively

comparable with those reported in [5].

We illustrate that propagating waves during spontaneous

activity or weak stimulation, when passing a neuron, produce

transient, synchronized synaptic inputs to the neuron, and

can thus account for infrequent yet large fluctuations of mem-

brane potential with non-Gaussian dynamics, as observed in

the synchronous state [4,15]. In this state, neural spiking

dynamics in our circuit model have both variability of spike

timing and slow fluctuations of firing rates, as found in [2].

However, localized activity patterns evoked by strong stimuli

have irregular spiking configurations, generating synaptic

inputs with nearly Gaussian dynamics to individual neurons.

These uncorrelated inputs cause neurons to be continuously

depolarized, emitting spikes in an asynchronous way, but

without firing rate fluctuations. The changes in the dynamics

of the population-level response patterns evoked by strong

stimuli can, therefore, explain the shift from the synchronous

to the asynchronous states [4] and the decline in trial-to-trial

firing rate variability [2]. Our study thus unravels the

dynamic mechanism underlying the cortical response proper-

ties, significantly advancing our understanding of cortical

processing.
2. Material and methods
2.1. Spiking circuit model
We consider a two-dimensional network of N � N coupled, con-

ductance-based leaky integrate-and-fire (LIF) neurons (N ¼ 300

in this study). We denote the membrane potential of a neuron

at integer coordinates r ¼ (x, y) and time t as Vr(t), whose

dynamics are described by

C
d

dt
Vr(t) ¼ �gL[Vr(t)� VL]� gE

r (t)[Vr(t)� VE]

� gI
r(t)[Vr(t)� VI]þ Ir(t), ð2:1Þ

where gL ¼ 25 nS is the leak conductance, C ¼ 0.5 nF is the

capacitance, and VL ¼ 2 70 mV, VE ¼ 0 m and VI ¼ 2 80 mV
are the leak, excitatory and inhibitory reversal potentials, respect-

ively. The network consists of 75% excitatory and 25% inhibitory

neurons, arranged in an evenly spaced lattice, with the inhibitory

neurons at gridpoints where both x and y are odd. If Vr(t) reaches

the spike threshold Vth ¼ 2 55 mV, the neuron at r generates a

spike and its membrane potential resets to VR ¼ 2 70 mV for a

refractory period tref ¼ 5 ms [16]. The synaptic conductances

are denoted by gz
r(t) where z ¼ E, I indicates excitatory and

inhibitory conductances, respectively. Their dynamics are

described by

d

dt
gzr (t) ¼ � 1

tz
gz

r (t)þ
X

r0
[Kz

r,r0d(t� Tr0 )], ð2:2Þ

where Tr0 is the time of the spikes emitted by the afferent neuron

located at r0 ¼ (x0, y0), dr(t) is the Dirac delta function, and tE ¼ 2 ms

and tI ¼ 2 ms are the characteristic decay times for excitatory

and inhibitory conductances, respectively. Spiking excitatory

neurons contribute to gE
r (t) and spiking inhibitory neurons

contribute to gI
r(t).

The average distance between a neuron and its nearest neigh-

bour is approximately 30–40 mm [17,18]. For consistency, we

assume a distance of 40 mm. Both excitatory and inhibitory

connections are constrained to djr, r0j� dmax, where dmax ¼ 30

neurons ¼ 1200 mm, the same order of magnitude as long-

range connections [19]. Using this maximum range, each

neuron in our model receives 2820 afferent connections.

The coupling strength Kz
r,r0 between afferent pairs of neurons

located at r ¼ (x, y) and r0 ¼ (x0, y0) is described by

Kz
r,r0 ¼

WE exp �jr�r0 j2
2s2

E

� �
if z ¼ E,

WI if z ¼ I:

(
ð2:3Þ

The Gaussian profile for KE
r,r0, with amplitude WE ¼ 7.5 � 1023 nS

and the spatial decay sE is a first approximation to the empirical

evidence that coupling strengths or connection probabilities

between neurons decrease as distances between them increase

[13,14]. We use sE ¼
ffiffiffiffiffi
15
p

� 155mm, in agreement with exper-

imental values of pyramidal-to-pyramidal projections [13]. The

homogeneous inhibitory coupling strength WI ¼ 5.0 � 1023 nS

matches anatomical evidence that inhibitory connections to pyr-

amidal neurons are non-specific and dense [20]. There are no

substantial consequences insofar as one could certainly obtain

similar observations with an inhibition of sufficient strength

that decays sufficiently slowly as a function of distance (see elec-

tronic supplementary material, figure S1); the choice of a

uniform inhibition between afferent neurons (i.e. up to dmax)

also allows us to better characterize a change in balance by

adjusting the inhibition; in this case, we do not need to account

for the effects of the shape of the connection strength.

The uniform inhibition between afferent neurons in our

model results in the range of inhibitory connections being

greater than that of excitatory connections. There is evidence

supporting this; for example, in layer 3 of macaque cortex

(visual areas V1, V2 and V4; somatosensory areas 3b, 1, and 2;

motor area 4; and prefrontal cortical areas 9 and 46), basal den-

drites of pyramidal cells have 200 mm diameter, whereas the five

long branches of basket cells have a 650 mm radius (Fig. 3 in

[21]). It has also been found that in basket cells of cat area 18,

local (i.e. less than 1 mm) inhibition extends further than exci-

tation [22]. On the other hand, from a functional standpoint, it

is known that the centre-on and surround-off connectivity

reflects such an arrangement of long-range lateral inhibition

and short-range excitation. It has been found that in V1 of maca-

que monkeys, such cortical surround suppression can only be

modelled as a result of a larger inhibitory spatial range com-

pared to excitation [23]. By studying auditory and visual

stimuli in V1 of owls, the authors pointed out why other studies,

which use equal ranges of E/I, cannot match key aspects of their

data [23]. Another study showed that, in addition to classical
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inhibitory surrounds, there exists global inhibition, which has

several different properties [24]; for example, inputs from the

classical inhibitory surround interact additively with inputs

from a unit’s excitatory centre, which help to shape the tuning

of neurons to nearby stimuli. By contrast, inputs from the

global inhibitory surround interact divisively with inputs out-

side the receptive field [24]. These interactions enable distant

stimuli to suppress neuronal responses to stimuli within the

receptive field [24]. It has also been pointed out that in addition

to broad inhibition from large basket calls, local disinhibition

from cells such as double-bouquet cells, may contribute to a

Mexican-hat-like arrangement [25]. Our network is a first

approximation to such a functional arrangement.

The external excitatory input, included in equation (2.1), is

given by

IrðtÞ ¼ I0 þWS exp
�jr� r̃j2

2s2
S

 !
H(t� tS): ð2:4Þ

For times of t , 2 s, all neurons receive a background stimulus of

I0 ¼ 0.4 nA. However, after tS ¼ 2 s, an additional localized

stimulus is added, as indicated by the Heaviside function H( . ).

This localized stimulus is centred around a certain gridpoint
~r ¼ (~x, ~y) in the network; we term the circular area (of radius 15

gridpoints) near this centre the region of input (RoI). We use a

spatial Gaussian profile of amplitude WS and spatial decay

sS ¼
ffiffiffiffiffi
10
p

� 126mm to approximate cortical receptive fields.

To run the model, we use the Euler method with time step

dt ¼ 0.05 ms, but similar results can be obtained for smaller

values of dt. The initial membrane potentials are chosen from a

random uniform distribution with values ranging between

VR ¼2 70 mV and Vth¼2 55 mV. We use a lattice of size N ¼ 300

with periodic boundary conditions, in order to avoid finite-size

effects. To study the response property of the network model,

we perform an analysis on an 81 � 81 section of this grid centred

around the RoI, except where otherwise noted. We perform 500

trials for a given set of conditions, and each trial is run for 3.5 s,

with the first 1 s excluded. The code for running the model

with this parameter set is available at https://github.com/

BrainDynamicsUSYD/spikegrid.
3. Results
3.1. Stimulus strength-dependent population response

patterns
We consider a spatially extended, conductance-based spiking

circuit model with excitatory and inhibitory neurons (see

Material and methods). This network model incorporates

the distance-dependent coupling property that has been

found in the connections of cortical neurons at different

levels [13,14]. Another key property of the network is that

its E/I are approximately balanced; that is, the ratio of excit-

atory and inhibitory synaptic inputs to individual neurons is

around 1. At the population level, the balanced, spatially

extended network exhibits spontaneous activity in the form

of propagating wave patterns with complex dynamics

(figure 1a). This balance is robust across a range of inhibitory

strengths, namely 2.5 � 1023 �WI � 7.5 � 1023 nS (see

Material and methods); for WI � 7.5 � 1023 nS, the patterns

tend to be static, or wander around a restricted area; and

for WI � 2.5 � 1023 nS, the patterns are not isolated from

one another, but expand and merge. This study is built

around the observation that these patterns can capture the

complexity of propagating waves as found during spon-

taneous cortical activity [26–32]. The dynamics of these
patterns can, in turn, quantitatively account for a range of

experimental observations of the irregular dynamics of

spontaneous neural activity [28].

In this study, we address the fundamental problems

regarding the intrinsic network mechanism underlying

stimulus strength-dependent response patterns [5], the shift

from the synchronous to the asynchronous state [3,4], and

the decline in neural variability caused by sensory stimuli

[2]. In addition, we unravel the mechanistic relationship

between these essential neural response properties. For

these purposes, we add deterministic external stimulation

to a localized region of the circuit (equation (2.4)), which

we refer to as the RoI. This local input is based on the

consideration that cortical inputs are topographically orga-

nized; for instance, in the visual cortex, thalamic inputs

are organized such that neighbouring cortical neurons

represent adjacent portions of the visual field [1].

For the spatially extended network, the RoI generally

exhibits two distinct spatio-temporal response patterns,

namely localized patchy patterns and propagating waves;

their relative occurrence is a function of stimulus strength.

Figure 1b shows a propagating wave evoked by applying a

weak stimulus to the RoI. The dynamics of these evoked

waves are similar to those of the propagating waves that

occur during the spontaneous activity, with random, see-

mingly superdiffusive, long-range trajectories (electronic

supplementary material, figure S2a). These waves consist of

a crescent-shaped spiking front with a refractory wake; simi-

larly shaped waves have been observed, for example, in rat

visual cortex [33]. Behind the refractory wake is a ‘ball’ of

depolarized neurons (figure 1a,b). This is likely due to the

spiking wavefront and background stimulus I0 (see Material

and methods) providing excitation to non-refractory neurons

that are also largely outside of the strong inhibitory fields of

other patterns. A strong stimulus, however, would evoke a

localized patchy pattern that is confined to the RoI (figure

1c), and wanders around this zone with seemingly Brownian

motion (electronic supplementary material, figure S2b); out-

side the RoI, the network exhibits spontaneous dynamics as

shown in figure 1a. If the strong stimulus is removed, the

RoI rapidly returns to the dynamics of the spontaneous

network. These results are consistent with the empirical

observation that cortical responses exhibited two distinct

spatio-temporal modes (i.e. propagating waves and localized

patchy patterns), which were generated when visual stimulus

was weak (or absent) and strong, respectively [5].

The average propagation speeds of the underlying spik-

ing patterns emerging from the RoI decrease when a strong

stimulus is applied. The spontaneous speed is approxima-

tely 44 mm s21, similar to that found experimentally in rat

visual cortex [33], whereas the evoked speed is approximately

25 mm s21, which reflects the trapping of many of the evoked

patterns. However, to quantify how the propagation range of

the population response patterns changes as a function of

stimulus strength, as in [5], we must calculate the local field

potential (LFP) for our spiking circuit model. To do this, we

use a method based on synaptic currents to obtain a temporal

LFP component and convolve it with a spatial LFP com-

ponent [34], which consists of a Gaussian envelope with

width comparable to the typical extent of LFP [35] (see the

electronic supplementary material). As in [5], we then calcu-

late the spike-triggered local field potential (stLFP), that is,

the peak amplitude of the LFP induced by an evoked spiking

http://https://github.com/BrainDynamicsUSYD/spikegrid
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Figure 1. Properties of spontaneous and evoked activity patterns. (a – c) Colours in the images represent membrane potential values between 275 mV (blue) and
spike threshold Vth ¼ 2 55 mV (yellow), as indicated by the colour bar, with red pixels indicating neurons that have fired within the last millisecond. Each image
is of a network of size 300 � 300 neurons, but a smaller range is shown for clarity, namely an 81 � 81 subsection in (a) and a 41 � 41 subsection centred around
the region of input (RoI) in (b) and (c). (a) Snapshot of the spatio-temporal patterns emerging from the balanced, spatially extended network during the spon-
taneous activity. These patterns take the form of multiple, localized patchy patterns and crescent-shaped propagating waves. (b) Snapshot of a propagating wave
evoked by a weak stimulus (0.4 nA) within the RoI. (c) Snapshot of a localized patchy pattern evoked by a strong stimulus (1.2 nA) within the RoI. (d ) Spike-
triggered local field potential (stLFP) as a function of distance from the RoI for the spontaneous activity (blue dots) and activity evoked by a strong stimulus (black
dots). The blue line and red line are exponential fits to the data for the spontaneous and evoked activity, respectively. (e) The average propagation range, as
characterized by the space constant, of the response patterns varies as a function of stimulus strength. ( f ) Stability of two localized solutions of the firing
rate model as a function of stimulus strength. The inset shows a zoomed in version of the solution with smaller radius. Red indicates values that are unstable
to perturbation, while blue indicates stable values. The ‘x’ indicates the point (approx. 34) at which numerical simulations show a shift from the case in which
perturbations cause propagating waves to the case in which the localized patchy pattern remains stationary.
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pattern. In our model, this stLFP is calculated at evenly

spaced intervals of 5 gridpoints, corresponding to a cortical

distance of 200 mm, but similar results can be obtained for

modest changes in how it is calculated (see the electronic sup-

plementary material). Note, that a similar result could be

found in any part of the grid when no stimulus is applied;

in this case, the stLFP is independent of the RoI. However,

by comparing the RoI before and after the stimulus, we

can use it as a ‘control’ to show how the dynamics of pat-

terns emerging from the same zone alter once a stimulus is

applied. A comparison between the patterns emerging from

each zone of the grid is performed in Nauhaus et al. [5]; in

our case, however, we are effectively just concentrating on

one zone.
In our model, the stLFP decays as a function of distance

from the RoI during both the spontaneous and evoked activity

(figure 1d, blue and black dots). As in [5], this decay can be fit

as an exponential function M exp(2d/l) þ B, with a space

constant l (figure 1d, blue and red lines). The space constants

for the spontaneous activity and the activity evoked by a

strong stimulus are lspont ¼ 0.8 mm and levoked ¼ 0.175 mm,

respectively. This result quantifies the observation that a

strong stimulus evokes responses that are more spatially loca-

lized than spontaneous activity patterns, which occur in the

absence of stimuli. The space constant ratio (i.e. lspont/levoked)

in our model is 4.7+0.2, which is quantitatively comparable

with those reported in [5], namely a value of 5.5+2.1 for cats,

and 3.0+2.3 for monkeys.
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Such a dramatic change in the spatial profile of stLFP

(figure 1d ) may represent the endpoint of a gradual change

caused by progressively stronger stimuli. To test this, we cal-

culate the stLFP at intermediate values of stimulus strength.

We find that the modulation of external stimuli causes the

propagation range, as characterized by the space constant,

to decrease linearly up to a stimulus strength of 0.8 nA

(figure 1e). This linear decrease occurs because localized

patchy patterns, which tend to be confined to the RoI,

become more common as the stimulus strength is increased.

On the other hand, the crescent-shaped waves, which usually

leave the RoI rapidly, become less common. Consequently,

the average distance travelled by evoked patterns becomes

smaller. For large enough stimulus strengths, only localized,

persistent patchy patterns are evoked, meaning that the aver-

age range of propagation is limited only to the RoI, where

these patterns are confined. These patchy patterns are

sustained indefinitely until the stimulus is removed. This

corresponds to the levelling out effect that occurs when

stimulus strengths are greater than 0.8 nA (figure 1e); further

increases in stimulus strength do not significantly alter the

propagation range.
3.1.1. Theoretical analysis of stimulus strength-dependent
response patterns

To obtain a further understanding about the mechanism

underlying the stimulus strength-dependent response pat-

terns, we consider a firing rate model that approximates the

spiking circuit model, and is analytically tractable (see elec-

tronic supplementary material). To preserve E/I balance,

the firing rate model has the same ratio of excitatory to inhibi-

tory inputs as that in the spiking circuit model (see electronic

supplementary material, equation S8). The spontaneous

activity of the firing rate model exhibits propagating wave

patterns with complex dynamics, resembling the patterns

emerging from the spiking circuit model (figure 1a).

Similarly, for the firing rate model, a weak stimulus tends

to evoke a propagating wave, but a strong one evokes a

localized patchy pattern.

To understand why different population response pat-

terns are evoked by weak (or absent) and strong stimuli,

we construct an explicit localized solution to the firing rate

model and analyse its stability under different eigenmode

perturbations (see the electronic supplementary material).

When stimuli with different strengths are added to the

firing rate model, we find that it has two solutions

(figure 1f ): one solution with a smaller radius and another

one with a larger radius. For the firing rate model, the

radius of the localized solution with the large radius stays

almost the same as the stimulus strength increases; this prop-

erty is similar to that of the evoked localized pattern in the

spiking circuit model. Our analysis shows that the solution

with the smaller radius is unstable for all stimulus strengths

(figure 1f, lower red line). However, based on our stability

analysis, we find that the localized solution with the larger

radius is stable to perturbations when stimulus strength is

greater than or equal to 47 (figure 1f, blue line), and unstable

when stimulus strength is less than or equal to 46 (figure 1f,
upper red line). For the unstable case, small perturbations

would cause a localized patchy pattern to evolve into a pro-

pagating wave. Numerical simulations of the firing rate

model confirm that this change in stability largely coincides
with a change in pattern dynamics: for weaker stimuli, a loca-

lized patch solution subjected to a small perturbation can

propagate away as a wave, but for stronger stimuli, it remains

stationary (figure 1f, cross).
3.2. Stimulus-evoked shift from the synchronous
to asynchronous states

Another fundamental property of cortical responses is that

stimuli shift neural activity from the synchronous to the asyn-

chronous state, as observed in [3,4]. We now demonstrate that

in our model, a strong stimulus can shift the state of the RoI

from the synchronous to the asynchronous state, and that the

resultant changes in membrane potential dynamics are com-

parable to those directly measured by using intracellular,

whole-cell recordings [3,4]. In addition, we illustrate that

the different population activity patterns occurring during

the spontaneous and evoked activity provide a mechanistic

account of the temporal properties of synaptic inputs to

individual neurons that accompany the different cortical states.
3.2.1. Membrane potential dynamics
Whole-cell membrane potential measurements from the pri-

mary visual cortex of behaving monkeys show that in the

synchronous state, the average membrane potential during

spontaneous activity is generally far from the spike threshold

[4]. However, in the asynchronous state that occurs after

stimulus onset, measurements show that the membrane

potential approaches this threshold [4]. This is the case for

the membrane potential of individual neurons in our

model: the time series of membrane potential for a randomly

chosen neuron, averaged over all trials, exhibits a rapid

ascent to a larger value after a strong stimulus is applied

(figure 2a). To quantify this observation, we calculate the dis-

tance, averaged over time, between its membrane potential

and the spike threshold (i.e. kVl 2 Vth). For the neuron

shown in figure 2a, the median value of kVl 2 Vth across all

trials is 11.0 mV for the spontaneous activity, which is similar

to the value of 13.9 mV reported in [4]. However, after stimu-

lus onset, this value changes to 6.1 mV, confirming that

membrane potential is closer to the spike threshold, which

is a characteristic feature of the asynchronous state [4]. Apply-

ing this analysis to the entire RoI, we obtain a median value

of kVl 2 Vth, averaged across neurons, of 10.9 mV prior to

stimulation, and 7.6 mV after stimulation.

Another characteristic change in the dynamics of mem-

brane potential, which accompanies a shift from the

synchronous to the asynchronous state, is related to its distri-

bution. In the synchronous state, the large, occasional

excursions in membrane potential result in a non-Gaussian dis-

tribution with a heavy tail at depolarized potentials [4]. In our

model, as shown in figure 2b, the histogram of membrane

potential for a randomly chosen neuron during the spon-

taneous activity has such a non-Gaussian distribution. We

can quantify how heavy-tailed a unimodal distribution is by

calculating its skewness S. Skewness measures the symmetry

of a distribution with respect to its median: S . 0 indicates

that the mean is greater than (to the right of) the median,

whereas S , 0 indicates that the mean is less than (to the left

of) the median (see the electronic supplementary material).

We find that across all trials, the distributions of the randomly

chosen neuron have a median skewness of S ¼ 0.59, meaning
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value towards spike threshold (V th ¼ 2 55 mV). (b) Histogram of the membrane potential values of the randomly chosen neuron during the spontaneous activity,
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after stimulation, aggregated across all trials; it has a negative skewness value of 20.41.
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that there is a heavy tail at depolarized values of its membrane

potential. If we apply this analysis to all neurons within the

RoI, we find that the average of these median skewnesses is

0.59 (s.d. 0.02), similar to the median skewness of 0.72 reported

in [4]. This positive skewness value indicates that during the

spontaneous activity there are large, infrequent excursions

in membrane potential [4]. Such non-Gaussian distributions

of membrane potential have also been measured in the audi-

tory cortex of both awake and anaesthetized rats during

spontaneous activity [15,36].

In the asynchronous state, many uncorrelated inputs

cause the distribution of membrane potential to be appro-

ximately Gaussian or to have a slightly negative skewness

[4]. The histogram for a randomly chosen neuron in our net-

work after stimulus onset is consistent with this (figure 2c):

across all trials, the membrane potential distributions of this

neuron have a median skewness of S ¼ 2 0.41. Note that

the depolarized tail of this histogram is truncated as a by-

product of the integrate-and-fire neural model, which can

only capture subthreshold values of membrane potential,

that is, values less than 255 mV (see Material and methods).

However, if we apply this analysis to all neurons within the

RoI, we find that the average of these median skewnesses is

20.09 (s.d. 0.38); this is within the margin of error of the

value of S ¼ 0 expected for a Gaussian distribution, and is

consistent with whole-cell recordings of evoked activity [4].
3.2.2. Synaptic input dynamics
We now illustrate that the membrane potential dynamics

occurring during the different cortical states are synaptic

in origin. In our spatially extended network, the excitatory

synaptic conductance gE to individual neurons during the

spontaneous activity consists of quiescent periods punctuated

by large, transient excursions, indicating the arrival of transient

synchronized inputs to the neuron (figure 3a). The resultant

histogram of gE received by this neuron has a long tail

(figure 3b), indicating that the synaptic inputs which add to

gE have non-Gaussian dynamics. To further quantify these

non-Gaussian dynamics, we again calculate the skewness,

and find that the median skewness of the distribution is 3.3,

which is significantly larger than 0. Note that such heavy-

tailed distributions of synaptic inputs have been observed in

brain slices [37] and somatosensory cortex [38]. This is in agree-

ment with previous findings in an unstimulated, spatially

extended network with balanced E/I [28].
After the onset of stimulus, however, gE has fundamen-

tally different dynamics: it now fluctuates continuously,

with smaller amplitudes than during the spontaneous

activity (figure 3c). The distribution of gE has a median skew-

ness of 0.72 (figure 3d ), which is significantly smaller than

that found during the spontaneous activity; in other

words, the dynamics more closely resemble that of a Gaus-

sian distribution. This change in skewness occurs across

the RoI, with an average median of skewnesses of 3.32 (s.d.

0.02) during the spontaneous activity, and 0.81 (s.d. 0.59)

after stimulus onset. These results thus demonstrate that in

the synchronous state during the spontaneous activity,

synaptic inputs to individual neurons are transiently

synchronized. These synchronized events are randomly

distributed in time (figure 3a) while the inputs have non-

Gaussian dynamics. By contrast, in the asynchronous state

evoked by strong stimuli, these inputs have more Gaussian

dynamics.

3.2.3. Population response patterns underlie the different
synaptic dynamics

We next illustrate that the dynamics of the population-level

response patterns, as we have demonstrated above, provide

an explanation for the temporal properties of synaptic

inputs. During the spontaneous activity, a wavefront pro-

vides a source of synchronized input to any neurons that it

approaches. We can quantify this dynamic mechanism by

considering the distance between a randomly chosen ‘test’

neuron within the RoI and the spikes occurring in a wave-

front that is approaching it. The wavefront consists of

multiple spikes occurring within a short time interval

(figure 4a); as soon as the distance from the wavefront to

the test neuron is smaller than DE ¼ 1200 mm (see Material

and methods), the spiking neurons in the wave front are affer-

ent to the test neuron and thus provide synchronized input to

it. However, the rapid movement of the propagating wave

means that after it has passed by, it quickly recedes such

that the distance again exceeds DE. After this, the spiking

neurons in its wavefront no longer provide inputs to the

test neuron; such synchronous inputs are, therefore, transient,

resulting in the bumpy features of the time series of gE

received by the test neuron (figure 3a).

We can quantify the number of spikes that the test neuron

receives from the propagating wave as a function of time by

using a sliding window of duration Dt ¼ 1 ms, a short
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duration that is necessary to capture the transient, synchro-

nized dynamics of the synaptic inputs. The resultant

histogram of spike counts, calculated across a 1000 ms inter-

val, has a heavy tail (figure 4b). This indicates that the test

neuron usually receives few spikes except when a wave

passes by, which provides the large spike counts contributing

to the heavy tail. By comparing the distances of the spikes

(figure 4a) with the time series of gE received by the test

neuron (figure 4c, brown line), we can see that the large

excursions (bumps) in input do indeed occur at the same

time as and when the spikes in each wavefront are closest.

As a final illustration of the relationship between the

wavefront and the synaptic inputs, we reconstruct the time

series of gE received by the test neuron, based on the spike

distances shown in figure 4a. First, for each millisecond

time interval, we calculate the amount that each presynaptic

spike contributes to gE according to equation (2.3). We then

add each of these contributions to the gE received by the

test neuron, which is evolved according to equation (2.2).

The resultant time series shows that, based on the propagat-

ing wavefront, we are able to reproduce the bumpy synaptic

dynamics (figure 4c, green line).

When a strong stimulus is applied, a localized patchy pat-

tern is usually evoked; this pattern is confined to the RoI. At

each moment, the pattern has a seemingly irregular spiking

configuration, which generates a sustained fluctuation in
the distances at which spikes occur, as shown in figure 4d;

the average of these distances over time is significantly less

than DE. The resultant histogram of the number of afferent

spikes that the test neuron receives in a Dt ¼ 1 ms interval

is bell-shaped (figure 4e); this indicates that it receives

nearly Gaussian synaptic inputs. By comparing the distances

of the spikes (figure 4d ) with the time series of gE received by

the test neuron, we can see that the random changes in the

spiking configuration of the localized patchy pattern do cor-

respond to fluctuations in gE (figure 4f, brown line). By

applying the same method described in the previous para-

graph to the spikes shown in figure 4d, we are again able

to reconstruct a time series of gE that is similar to the

measured one (figure 4f, green line).

These results, therefore, demonstrate that the dynamics of

the synaptic inputs to the neurons in the RoI can be explained

by the dynamics of the population response patterns. The

synchronized synaptic inputs caused by propagating waves

have non-Gaussian dynamics (figures 3b and 4b), resulting

in large, infrequent excursions of membrane potential as

measured for the synchronized state [4]. The localized

patchy patterns generate synaptic inputs with more Gaussian

dynamics (figures 3d and 4e), and the resultant membrane

potential close to the spike threshold; this indicates that the

state of neurons in the RoI with the strong external stimulus

is the asynchronous, balanced state [4].
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3.3. Stimulus-evoked decline in neural firing variability
We now demonstrate that our spatially extended network with

E/I balance is able to explain the stimulus-evoked decline in

neural variability that has been widely observed in the

cortex [2], and show that this prominent feature of cortical

responses can be explained by the population-level response

patterns. To this end, we first calculate the spike counts

across all trials of the neurons within the RoI by using a sliding

window of size Dt ¼ 250 ms. During the spontaneous activity,

the average firing rate is approximately 9 Hz (figure 5a, red

line), which is the same order of magnitude as that found in

experimental studies [39]. However, there are temporal and

trial-to-trial fluctuations in firing rates across all neurons in

the RoI (figure 5a, blue lines); these fluctuations are due to

the occasional dynamic switching of individual neurons

between the periods of high firing and low firing rates, similar

to that observed in previous modelling studies [8,28].
3.3.1. Fano factor indicates quenching of trial-to-trial variability
To quantify the changes in neural variability in our model,

we calculate the mean-matched Fano factor (FF), as in [2]

(see the electronic supplementary material). The use of

mean-matching ensures that any changes in FF are not trivi-

ally related to changes in firing rates. We note, however, that

even without mean-matching, the FF exhibits the same quali-

tative effects. During the spontaneous activity, the FF of each

neuron is roughly the same across the network, and has a

value of kFFl � 2:3 (figure 5b) where k . l indicates averaging
over time and the bar indicates averaging over neurons

within the RoI; such FF values that are well above 1 have

been widely observed experimentally during spontaneous

cortical activity [2,40,41]. Because a Poisson point process

without any variations in its underlying rate has an FF of 1,

values in excess of this indicate that there are fluctuations

in firing rates in addition to irregular spike timing; neural

variability can thus be approximated as a doubly stochastic

process [42].

After stimulus onset, there is a sharp increase in firing

rate, a significant reduction of firing rate fluctuations within

and across trials (figure 5a), and a sharp decline in the FF

to kFFl � 1:1 (figure 5b). These results are quantitatively con-

sistent with experimental observations; for instance, in

macaque monkeys, the neural variability assessed by the FF

using the same time window that we use (Dt ¼ 250 ms), has

been reported to decline from an initial value of approxi-

mately 2.1 to a final value of approximately 1.5 in MT, and

from an initial value of 2.3 to a final value of 1.3 in dorsal pre-

motor cortex ([2], their electronic supplementary material,

figure S3). In our model, if the stimulus is switched off

again, both the firing rate and FF of neurons within the RoI

return to the original values of the spontaneous activity;

this process is also in agreement with experimental obser-

vations in cortical areas, such as in V1 and MT ([2], their

electronic supplementary material, figure S4).

As pointed out above, the FF can reflect variability due

to both the irregular timing of individual spikes and fluctu-

ations in firing rate. Therefore, to unravel which of these
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factors is largely responsible for the decline in FF, we calcu-

late the FF as a function of the size of the time window Dt
within which spikes in the RoI are counted. During the spon-

taneous activity, the FF increases as a function of time window

for Dt � 600 ms, and for Dt � 150 ms this increase is approxi-

mately linear (figure 5c, blue line); for Dt . 600 ms, the FF

levels out, becoming less sensitive to the size of the time

window. The linear dependence of FF on the time window

for 150 � Dt � 600 ms indicates that individual neurons exhi-

bit fluctuations in firing rates over these timescales; this is

because a larger time window captures more of the switches

between the high and low firing rate states that happen over

these timescales. However, for the activity evoked by the

strong stimulus, the FF does not depend on the size of the

time window (figure 5c, red line); this indicates that there

are no transitions between high and low firing rate states

because each individual neuron is in the high firing state.

Nonetheless, the FF value is still 1.1, which is similar to that

expected for a Poisson process without fluctuations in firing

rates. In other words, after stimulus onset, the variability of

precise spike timing remains but the trial-to-trial fluctuations

of spike rates decline, as found in [2]. This evoked activity,

therefore, cannot be approximated as doubly stochastic but

is consistent with the classical balanced state [43]. Note, how-

ever, that this conclusion only applies to the mean-matched

values (see the electronic supplementary material).
3.3.2. Population response patterns account for the decline
in trial-to-trial rate variability

The disappearance of doubly stochastic firing activity, and

the resultant decline in FF values at stimulus onset, can be

explained in terms of the population response patterns.

During the spontaneous activity, the rapid movement of pro-

pagating waves provides a brief source of synaptic input as

their spiking wavefront sweeps past a particular neuron

(figure 4a). Their random origins and trajectories, therefore,

cause the variability of spike times over short timescales.

On the other hand, the sustained activity of localized

patchy patterns (figure 4d ) causes the high firing state.

Because these patterns also have random origins and trajec-

tories, they cause stochastic switching to the high or low

firing rate states as they wander towards or away from indi-

vidual neurons, respectively. As mentioned previously, this

dynamic switching provides the basis for firing rate fluctu-

ations over long timescales. Thus, the coexistence of both

kinds of activity patterns is the mechanism underlying

doubly stochastic firing activity, as elucidated further for

spontaneous cortical activity in [28].

However, as shown in figure 1e, response patterns have a

smaller propagation range when they are evoked by strong

stimuli. This is because for strong stimuli, the RoI is con-

stantly occupied by a localized patchy pattern, causing the

high firing state to occur for most of the neurons within the
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RoI. Because the localized patchy pattern is confined to the

RoI and cannot move away, there is, therefore, no switching

to low firing rate states. Thus, while there is still irregularity

in spike times over short timescales due to the seemingly irre-

gular spike configurations within the localized patchy pattern

(figure 4d ), there are no firing rate fluctuations over long

timescales. This is evidenced by the Gaussian distribution

that a random number of spikes with a constant rate would

be expected to produce (figure 4e). It should also be noted

that neurons in the periphery of the RoI receive a large

amount of inhibitory input due to the centre-surround inhi-

bition of the localized patchy pattern, and are consequently

quiescent, rather than having a high firing state. Nonetheless,

due to the immobility of the evoked, localized patchy pattern,

these neurons do not exhibit any switching behaviour either,

instead remaining in the quiescent state.

3.3.3. Trial-to-trial rate variability depends on applied stimulus
strength

We now go beyond the previous findings of a decline in

neural variability caused by stimulus onset [2], to investigate

how neural variability, as measured by FF, changes as a func-

tion of stimulus strength (figure 5d ). While the value of FF

fluctuates for weak stimuli (less than or equal to 0.4 nA),

for stronger stimuli (greater than or equal to 0.4 nA) there

is a monotonic decline. This decline in neural variability

can also be understood in terms of the population response

patterns. As shown in figure 1e, the average propagation

range of response patterns decreases linearly as a function

of stimulus strength up to strong values (greater than or

equal to 0.8 nA) where it levels out. As pointed out earlier,

this linear decrease occurs because localized patchy patterns,

which tend to be confined to the RoI, become more common

as the stimulus strength is increased. The increasing prob-

ability of localized patchy patterns being evoked means that

individual neurons in the RoI are more likely to be in the

high firing state. Furthermore, because these localized

patchy patterns can be confined to the RoI, individual neur-

ons are less likely to switch to the low firing rate state,

which occurs when a localized patchy pattern moves away

from the RoI. This means that there would be progressively

less fluctuations in firing rate, because most trials would

only exhibit the high firing state associated with localized

patchy patterns and not the low firing rate state associated

with propagating waves. However, figure 5d also shows

that for weaker stimulus values (0.2–0.4 nA), there can be a

slight increase in FF as a function of stimulus strength. To

understand this, we note that during the spontaneous

activity, the occurrence of sustained localized patchy patterns

is rare, and thus there are only occasional transitions to the

high firing rate state, which quickly return to the low firing

rate state. A small stimulus can cause a more equal ratio

between the occurrences of localized patchy patterns and

propagating waves, thereby maximizing the number of

switches between their associated high and low firing rate

states. This, in turn, causes a larger degree of trial-to-trial

variability as measured by FF.
4. Discussion
In this study, we have shown that dynamical response

properties at different neural levels, as found in recent
experimental studies, are mechanistically related in spatially

extended, spiking neural circuits with balanced E/I. Popu-

lation response patterns in these circuits are dependent on

the strength of external stimuli, as found in [5]. As we have

illustrated, these response patterns, which include propagat-

ing waves and localized activity patterns, can account for

the stimulus-evoked change from the synchronous to the

asynchronous state [3,4], and the decline in trial-to-trial rate

variability [2]. This mechanism, while explaining the changes

in stLFP, is caused by the underlying spiking patterns of indi-

vidual neurons, as elucidated in figure 4, and thus provides

an explanation rather than just an emulation for these obser-

vations. Whereas these previous models may be able to

explain one of these stimulus-based characteristics (e.g. [8]

can explain the reduction in trial-to-trial variability), our

model is able to explain all of these observations in a unified

way. Our results thus unravel the dynamic mechanism

underlying these experimental observations, which otherwise

remain disjointed in the existing cortical network models

with balanced E/I [6–8,44].

Cortical responses during spontaneous activity and weak

sensory stimulation generally take the form of propagating

waves spreading along lateral connections [5,45]. A strong

focal stimulus, however, tends to evoke localized responses

restricted to the input region. This finding of stimulus

strength-dependent response patterns has been proposed to

reconcile two apparently opposing views of cortical proces-

sing [5], namely the view that the responses of cortical

neurons are largely determined by local processing of thal-

amic inputs [46,47], and the view that cortical responses are

substantially shaped by lateral connections [48,49]. By quan-

titatively reproducing the characteristic features of the

stimulus strength-dependent response patterns found in [5],

our network model provides mechanistic plausibility for

reconciling the two views of cortical processing as proposed

in [5]. In addition, our results demonstrate that such stimulus

strength-dependent response patterns are an emergent prop-

erty of the spatially extended network with balanced E/I.

Our results thus indicate that different response patterns

can coexist in a single balanced network. Consequently,

there is no need to introduce different neural mechanisms

for stimuli with different strengths, such as disynaptic inhibi-

tory signals for strong stimuli as proposed in [5], to account

for the stimulus strength-dependent response patterns.

Population response patterns emerging in our spatially

extended network can account for a variety of seemingly

unrelated, prominent response features of individual neurons.

Propagating wave patterns with complex dynamics arising

from the balanced network produce synchronized, bumpy

synaptic inputs that are randomly distributed in time for

individual neurons; the magnitudes of these inputs are hetero-

geneous, with a heavy-tailed distribution (figure 3b). These

synchronized inputs cause non-Gaussian membrane potential

fluctuations, consisting of quiescent periods that are occasion-

ally interrupted by short intervals of high amplitude

depolarization. Such synchronized synaptic inputs, and

the resultant non-Gaussian membrane potential dynamics,

have been widely observed in whole-cell recordings

[3,4,15,36,50,51]; the accompanying cortical state is generally

referred to as the synchronous state [4]. Here, we emphasize

that the synchronous state, as studied here and found in

experimental studies, is a transient synchrony, during which

individual neurons receive synchronized synaptic inputs
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from presynaptic neurons within a short period of time; this is

different from the stable synchrony addressed in previous

modelling studies [52], during which all neurons fire synchro-

nously all the time. The transient synchrony, as illustrated

above, is caused by the localized wave pattern sweeping

through a local area of the network. This is different from

global transient synchrony, i.e. the synchronous irregular

state found in sparsely, randomly coupled networks [53].

Aside from accounting for the synchronous state during

spontaneous activity, our results unravel the dynamic mech-

anism underlying the shift from the synchronous to

asynchronous states evoked by strong stimulation, as found

in whole-cell membrane potential measurements from the

cortex of behaving monkeys [4]. As we have demonstrated,

when a strong external stimulus is present, a localized

patchy pattern would be trapped in the RoI. In this case,

there would not be any wave patterns sweeping through

the RoI, because it would already be occupied by the loca-

lized patchy pattern; this means that no transient,

synchronized inputs, like those found during the spon-

taneous activity, can be formed. However, the localized,

evoked patchy pattern produces nearly Gaussian synaptic

inputs to the neurons within it, because it has irregular

spiking configurations that are not correlated over time.

Accordingly, the cortical state with such random synaptic

inputs is consistent with the asynchronous state, in which

different neurons in the RoI asynchronously emit spikes,

and their membrane potentials are closer to the spike

threshold than those during the spontaneous activity. Local

bump activity patterns pinned by a local external input

have been studied in firing rate models, but these rate pat-

terns cannot capture irregular spiking configurations within

the localized spiking pattern in our model [54–58]; these irre-

gular spikes, however, are crucial for explaining experimental

data, as demonstrated in our study. Propagating waves can

be stabilized to obtain stationary bumps by applying a con-

stant input with a spatially localized Gaussian profile [59],

and the formation of spatio-temporal patterns has been

studied in spatially extended spiking networks with

excitation and inhibition. However, in these studies, the col-

lective dynamics of population activity patterns have not

been mechanistically related to the experimentally observed

response propertie as illustrated here in our study.

The decline in trial-to-trial firing rate variability has been

modelled in balanced networks with clustered connectivity

[8]. In [8], the mechanics underlying the fluctuations of

firing rates is spontaneous switching between two attractors,

with one attractor representing a low-activity state and the

other one representing a high-activity state. Stimuli bias net-

works towards the high-activity state, thus reducing firing

rate fluctuations. However, as we have demonstrated in our

model, the change of the collective dynamics of propagat-

ing patterns at the population level causes the decline in

firing rate variability. The balanced cortical networks with

random connectivity have been highly successful at explain-

ing the asynchronous and irregular nature of spike timing
of cortical neurons [6,7]. Very recently, it has been found

that variable neural activity with certain spatial correlation

structures can emerge from a spatially extended, balanced

cortical circuit when driven by external stimuli [44]. Never-

theless, these previous cortical models cannot explain the

other essential response properties of cortical circuits, includ-

ing: the dynamics of membrane potential with large,

infrequent fluctuations during spontaneous activity [4,36];

the shift from the synchronous to asynchronous state [4];

and the stimulus strength-dependent population response

patterns [5]. These important empirical observations can,

however, be captured by our spatially extended network

model with emergent, dynamical patterns, including the

propagating wave patterns and localized patchy patterns.

Our results thus provide a new and unified, dynamical

pattern-based framework to understand cortical processing.

Propagating wave patterns at the circuit level have indeed

been widely observed in the cortex [26,27,29–32,45,60]. In

particular, high-density neural recordings have begun reveal-

ing concurrent propagating wave patterns like those found in

our model. For instance, based on whole brain recordings of

transparent fish, multiple propagating patterns, which are

termed as a spatial gradient of activity timing, have been

observed [61]. In [30], the two types of activity patterns,

namely localized patchy patterns and propagating waves,

have been explicitly documented. To test the mechanistic

relationships between the essential neural response proper-

ties, as unravelled in our study, it would be ideal to

combine imaging studies and massive multi-unit recordings

to visualize and record neural activity at different levels,

and to analyse emergent population response patterns with

different stimulation strengths. This could be done in conjunc-

tion with the analysis of membrane potential, synaptic input

and neural variability by using the same methods as we have

done in our modelling study. This would allow us to validate

the relationship between post-synaptic potentials and the

average distance to each spiking pattern in the neuron, as

predicted in figure 4. In addition, our work predicts that

(figure 5d ) for intermediate stimulus values, the FF is a non-

linear function of stimulus strength. This could be verified by

measuring the FF in vivo at multiple stimulus strengths.
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