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A long calibration procedure limits the use in practice for a motor imagery (MI)-based brain-computer interface (BCI) system. To
tackle this problem, we consider supervised and semisupervised transfer learning. However, it is a challenge for them to cope with
high intersession/subject variability in the MI electroencephalographic (EEG) signals. Based on the framework of unsupervised
manifold embedded knowledge transfer (MEKT), we propose a supervised MEKT algorithm (sMEKT) and a semisupervised
MEKT algorithm (ssMEKT), respectively. sMEKT only has limited labelled samples from a target subject and abundant labelled
samples from multiple source subjects. Compared to sMEKT, ssMEKTadds comparably more unlabelled samples from the target
subject. After performing Riemannian alignment (RA) and tangent space mapping (TSM), both sMEKT and ssMEKT execute
domain adaptation to shorten the differences among subjects. During domain adaptation, to make use of the available samples,
two algorithms preserve the source domain discriminability, and ssMEKT preserves the geometric structure embedded in the
labelled and unlabelled target domains. Moreover, to obtain a subject-specific classifier, sMEKTminimizes the joint probability
distribution shift between the labelled target and source domains, whereas ssMEKT performs the joint probability distribution
shift minimization between the unlabelled target domain and all labelled domains. Experimental results on two publicly available
MI datasets demonstrate that our algorithms outperform the six competing algorithms, where the sizes of labelled and unlabelled
target domains are variable. Especially for the target subjects with 10 labelled samples and 270/190 unlabelled samples, ssMEKT
shows 5.27% and 2.69% increase in average accuracy on the two abovementioned datasets compared to the previous best
semisupervised transfer learning algorithm (RA-regularized common spatial patterns-weighted adaptation regularization, RA-
RCSP-wAR), respectively. +erefore, our algorithms can effectively reduce the need of labelled samples for the target subject,
which is of importance for the MI-based BCI application.

1. Introduction

A brain-computer interface (BCI) system can build a direct
communication pathway for a subject between his brain and
an electrical device without the participation of his pe-
ripheral nerves and muscles [1, 2]. Due to safety and con-
venience, noninvasive electroencephalogram (EEG)-based
BCIs have attracted great attention for decades [3]. Diverse
EEG paradigms have been widely studied, such as motor

imagery (MI), event-related potentials (ERP), steady-state
visual evoked potentials (SSVEP), emotion state recognition,
and driver drowsiness estimation [4–10].

In this paper, we focus on MI-based BCI, where people
with severe neuromuscular disabilities can recover their
neurological disorders by spontaneously performing
imagined movements of the feet, hands, or tongue without
external stimuli [8]. Furthermore, MI-based BCI gives able-
bodied people a novel way to control an electrical
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equipment [2]. +erefore, it is meaningful to study MI-
based BCI.

However, EEG data analysis is challenging due to low
signal-to-noise ratio and high artifacts [11, 12]. Moreover, a
long calibration procedure hinders the development of MI-
based BCI. Each subject usually spends a tedious calibration
time in training a subject-specific classifier before per-
forming the real-timeMI tasks. Since the MI EEG signals are
evoked by spontaneous movement imagination without
external stimuli, they are of high intersession/subject vari-
ability. +us, it is difficult to build a generic classifier that fits
all sessions/subjects. Instead, it is realistic to train a subject-
specific classifier that usually requires sufficient labelled data
from the subject. Nevertheless, a long calibration procedure
may unfortunately lead to high intersession differences and
user frustration.

To cope with this problem, it is crucial for a target subject
to reduce the need of amounts of labelled samples and ef-
fectively utilize the available samples. Rapid progress in
machine learning motivates a variety of studies on how to
make full use of the available samples [13–18]. EEG dataset
reduction can reduce the feature dimensionality of the
available EEG signals and improve the system learning
speed. However, it cannot reduce the calibration time for the
target subject [19, 20]. Likewise, different polynomials-based
recurrence algorithms are promising techniques for signal
processing due to their special capabilities in feature ex-
traction. Nevertheless, they also just shorten the computa-
tional cost instead of calibration time [21–23]. Deep learning
has been widely used in computer vision, natural language
processing, and physiological signal analysis [24–28].
Nevertheless, deep learning needs lots of labelled samples
from the target subject to show its superiority. +e artificial
data generation method can generate numerous artificial
labelled data by recombining the few original labelled data in
the time and frequency domains [29]. However, this method
highly relies on the quantity and quality of the labelled
samples. Transfer learning is a popular machine learning
technique, which usually transfers labelled samples from
different source sessions/subjects for a new target session/
subject with no or few labelled samples [30]. Semisupervised
learning can use the limited labelled set and comparably
large unlabelled set from the same subject simultaneously
[31]. +erefore, we pay more attention to transfer learning
and its combination with semisupervised learning.

In general, transfer learning can be divided into three
categories: supervised transfer learning, unsupervised
transfer learning, and semisupervised transfer learning,
depending on whether the samples from the target domain
are all labelled, all unlabelled, or partially labelled and
unlabelled. It is noted that all samples from the source
domains are labelled no matter whether transfer learning is
supervised, unsupervised, or semisupervised. Here, a do-
main means a subject or a session. +en, a labelled domain
consists of the labelled samples from a subject/session, while
an unlabelled domain includes the unlabelled samples from
a subject/session. To our best knowledge, most studies focus
on the supervised transfer learning since it can effectively use
the discriminative labelled samples from the target domain

to select and adjust the labelled samples from the source
domains. In fact, it is of great importance for unsupervised
and semisupervised transfer learning algorithms to explore
the geometric information embedded in the amounts of
unlabelled samples from the target domain. As an unsu-
pervised transfer learning algorithm, manifold embedded
knowledge transfer (MEKT) performed Riemannian align-
ment (RA), tangent space mapping (TSM), and domain
adaptation to continually minimize the differences among
different domains in ERP-based and MI-based BCIs [32]. In
our opinion, it is difficult to apply unsupervised transfer
learning to MI-based BCI due to the existence of BCI il-
literacy. It is better to collect initial labelled samples from the
target domain.

+erefore, inspired by MEKT, we develop a supervised
MEKT algorithm (sMEKT) and a semisupervised MEKT
algorithm (ssMEKT) to explore more possibilities of MEKT
in all cases and improve the efficiency of transfer learning by
using all available samples. +e main contributions of our
work can be summarized as follows:

(1) We extend MEKT in the supervised and semi-
supervised versions to further testify the effectiveness
of transfer learning on the Riemannian manifold and
its tangent space for MI-based BCI.

(2) We propose a supervised transfer learning algorithm
(sMEKT) which transfers a large labelled source
domain to a small labelled target domain by per-
forming domain adaptation between the labelled
domains.

(3) We present a semisupervised transfer learning al-
gorithm (ssMEKT) which transfers a large labelled
source domain into the labelled and unlabelled target
domains by performing domain adaptation between
the unlabelled target domain and all labelled
domains.

+e rest of this paper is structured as follows. In Section
2, we introduce the related work on supervised, unsuper-
vised, and semisupervised transfer learning. In Section 3, we
present the applied MI datasets and the detailed methods of
EEG processing, including preprocessing, RA, TSM, all
MEKT based algorithms, and a shrinkage linear discrimi-
nant analysis (sLDA) classifier. +e results of classification
accuracy and computation time are shown in Section 4. +e
experimental results are discussed in Section 5. Finally, our
conclusions are drawn in Section 6.

2. Related Work

Besides MI, the other EEG paradigms mentioned above,
such as SSVEP and ERP, also use transfer learning to reduce
or suppress the calibration time. +us, different EEG-based
BCIs can learn from each other in terms of transfer learning.

Most transfer learning algorithms are supervised, which
are designed to address the shortage of labelled samples from
the target domain. In MI-based BCI, the common spatial
patterns (CSP) method is a classical feature extraction al-
gorithm for only one subject. However, it performs poorly in
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the small labelled set scenario [33, 34]. Originated from CSP,
regularized CSP (RCSP) calculated the regularized average
spatial covariance matrix for each class by giving the labelled
samples from the source and target domains’ different
regularization parameters [35]. Based on the framework of
RCSP, different distance metrics, such as Frobenius norm
and cosine distance, were used to measure the similarity
between the labelled source and target domains [36, 37].
Combined CSP (CCSP) simply concatenated the labelled
samples from the target domain and multiple source do-
mains with equal weight to compute the spatial filters [38]. A
dynamic time warping RCSP (DTW-RCSP) method per-
formed domain adaptation by aligning the labelled source
domains to the labelled target domain from the same class
using an optimal warping path [39]. +ese RCSP algorithms
inherited the advantage of the CSP in MI-based BCI.
However, the regularization parameters, which were used to
evaluate the differences between the labelled source and
target domains, were often manually set or were obtained by
means of cross-validation. Recently, since affine transfor-
mation can make the covariance matrices of EEG data from
different domains close, RA-based supervised transfer
learning algorithms have received widespread attention in
different EEG-based BCIs [40–43]. Zanini first performed
RA for each domain using the Riemannian mean of its
resting trials as the reference matrix and then concatenated
all aligned matrices from the labelled domains to train a
minimum distance to mean (MDM) classifier based on
Riemannian Gaussian distributions [44]. A Riemannian
procrustes analysis (RPA) algorithm executed the following
transformations (translation, scaling, and rotations) for the
covariance matrices from the source and target domains to
shorten their differences and then constructed an MDM
classifier using the transformed matrices from the labelled
domains [45]. Due to good performance of RA, our pro-
posed sMEKT also belongs to the RA-based supervised
transfer learning algorithms.

Many unsupervised transfer learning algorithms utilize
the unlabelled samples from the target domain, as well as
abundant labelled samples from the source domains to
realize the zero-training for the target domain. In ERP-based
BCI, Waytowich presented an unsupervised transfer
learning method, where independent models were first
trained using labelled samples from different source subjects,
then the classification decisions of independent models were
combined to classify unlabelled samples from the target
subject, and finally each model’s decision was weighted
based on the inferred accuracy of direct classification [46].
Such method did not utilize the inherent information em-
bedded in the unlabelled samples. In MI-based BCI, Xu
proposed an unsupervised cross-dataset transfer learning,
where EEGNet and ShallowConvNet were trained with the
labelled source dataset, then an unsupervised domain ad-
aptation was performed between the labelled source dataset
and the unlabelled target dataset, and finally the pretrained
model was validated on the unlabelled target dataset [47].
However, this algorithm did not realize the domain adap-
tation between the subjects. To minimize the differences
among subjects, in ERP-based and MI-based BCIs, MEKT

first executed RA for the covariance matrices from different
subjects, then extracted the tangent feature vectors in the
TSM module, and finally performed joint probability dis-
tribution shift minimization, labelled source domain dis-
criminability preservation, and unlabelled target domain
locality preservation [32]. Our proposed algorithms are
based on the framework of MEKT, since MEKTcan not only
shorten the differences between domains but also preserve
the characteristics of the labelled source domain and
unlabelled target domain as much as possible.

+eoretically, semisupervised transfer learning can
provide more information than unsupervised transfer
learning due to the existence of a labelled target domain. To
achieve epileptic seizure classification from EEG signals,
Jiang integrated transfer learning, semisupervised learning,
and a Takagi-Sugeno-Kang fuzzy system [48]. +is method
achieved good performance at the cost of the computation
time. In ERP-based BCI, Wu proposed online and offline
weighted adaptation regularization (wAR) algorithms which
performed domain adaptation between the labelled source
domain and the entire target domain by integrating the loss
function minimization, structural risk minimization, mar-
ginal conditional probability distribution adaptation, and
conditional probability distribution adaptation [49]. Al-
though wAR is a semisupervised transfer learning algorithm,
its architect is similar to that of unsupervised MEKT.

In summarize, these approaches mentioned above in-
spired the design of our supervised and semisupervised
transfer learning algorithms in MI-based BCI.

3. Materials and Methods

3.1. Description of Datasets. Two publicly available MI
datasets were used to assess the effectiveness of our proposed
transfer learning algorithms. More details about these
datasets are described as follows:

(1) Dataset 1(BCI Competition III dataset IVa): this
dataset contained 118-channel EEG signals from five
healthy subjects (aa, al, av, aw, and ay). A visual cue
on a computer screen was displayed for 3.5 s, during
which the subject was instructed to perform one of
the following MI tasks: left hand, right hand, and
right foot. Only EEG signals evoked by the right
hand and right foot MI tasks were provided for
competition. A total of 140 trials per MI task were
available for each subject. +e EEG signals were
band-pass filtered between 0.05 and 200Hz and
downsampled from 1000Hz to 100Hz [50].

(2) Dataset 2 (BCI Competition IV dataset 1): this
dataset consisted of the calibration data and evalu-
ation data from seven healthy subjects (a, b, c, d, e, f,
and g). Only calibration data was used for our ex-
periments because of complete marker information.
Two classes of MI tasks could be chosen from the
three classes (left hand, right hand, and foot) by each
subject. Each subject was shown a visual cue for a
period of 4 s and performed the cued MI task. 100
trials per MI task were collected for each subject. 59-
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channel EEG signals were recorded at a sampling
rate of 100Hz and band-pass filtered between 0.05
and 200Hz [51].

3.2. *e Frameworks of Different MEKT Based Algorithms.
Our proposed supervised MEKT (sMEKT) and semi-
supervised MEKT (ssMEKT) are based on the unsupervised
MEKT. To better understand them, the frameworks of
MEKT, sMEKT, and ssMEKT are shown in Figure 1.

+e detailed steps of the different algorithms are outlined
below:

(1) Preprocess the original EEG trials from different
subjects. Note that the original EEG trials from all
source subjects are labelled and used for all algo-
rithms. For MEKT, all original EEG trials from the
target subject are unlabelled. However, for sMEKT
and ssMEKT, they are partitioned into the labelled
and unlabelled EEG trials. +e labelled ones are used
for sMEKT and ssMEKT, whereas the unlabelled
ones are only used for ssMEKT.

(2) Convert the filtered labelled/unlabelled EEG trials
from each subject into the corresponding labelled/
unlabelled covariance matrices. +en, we perform
RA for these covariance matrices using their Rie-
mannian mean as the reference matrix to obtain the
corresponding aligned matrices in different MEKT
based algorithms.

(3) In the TSM module, the aligned matrices are
transformed into the Euclidean tangent feature
vectors. +e tangent feature vectors from different
source subjects are concatenated into the labelled
source tangent feature vector set, which is inputted
into ssMEKT, MEKT, and sMEKT along with all,
unlabelled, and labelled target tangent feature vec-
tors, respectively. It is noted that the target tangent
feature vectors are the feature vectors from the target
subject.

(4) All MEKT based algorithms utilize the available
tangent feature vector sets to yield different pro-
jection matrices which can be used to generate new
lower dimensional feature sets.

(5) All new labelled feature sets from different subjects
are fed into the sLDA classifier [52] to train a subject-
specific model which is then used to classify the new
unlabelled target feature set.

Next, we introduce the above procedures in detail.

3.3. Preprocessing of EEG Data. For dataset 1, all original
EEG trials from each subject were band-pass filtered between
8 and 30Hz using a fifth-order Butterworth filter. +en, the
filtered EEG trials were extracted from the time interval
between 0.5 and 2.5 s after the visual cue signalling the start
of imagery.

For dataset 2, all original EEG trials from each subject
were spectrally filtered by a fiftieth order finite impulse
response filter with cut-off frequencies of 8 and 30Hz and

temporally segmented from 0.5 to 3.5 s after the visual cue
onset.

We only used channels in the central area of the brain
where the sensorimotor rhythms (SMR) of MI are active. 25
and 29 channels were selected separately for dataset 1 and
dataset 2. In Figure 2, the selected channels for the two
datasets are marked in red.

3.4. Riemannian Alignment. Although there are high
intersubject variances in MI-based BCI, RA can make the
marginal distributions of EEG trials from different subjects
closer.

Let Xi ∈ Rn×t be the ith filtered trial from a subject,
where n is the number of channels and t is the number of
sample points of the selected time window. +e spatial
covariance matrix of Xi can be defined as [40]

Ci �
XiX

T
i

t − 1
. (1)

Since the covariance matrices belong to a smooth Rie-
mannian manifold of symmetric positive definite (SPD)
matrices, they can be viewed as points on the manifold [44].
To show the benefits of RA, we first present some basic
concepts of Riemannian geometry.

3.4.1. *e Riemannian Distance. Suppose that Ci and Cj are
the points of the Riemannian manifold. +e Riemannian
distance δ(Ci, Cj) between these two points can be defined
as the length of the shortest curve (named geodesic) con-
necting them [53]:

δ Ci, Cj􏼐 􏼑 � log C
−1
i Cj􏼐 􏼑

�����

�����F
� 􏽘

n

k�1
log2λk

⎡⎣ ⎤⎦
1/2

, (2)

with the Frobenius norm ‖∙‖F and the eigenvalues ( λk􏼈 􏼉
n

k�1)

of C−1
i Cj.

3.4.2. *e Riemannian Mean. +e Riemannian mean is
usually used as the statistical descriptor of a set of SPD
matrices on the manifold. Given N SPD matrices, their
Riemannian mean MR is defined as below [44]:

MR � argmin
M

􏽘

N

k�1
δ2 Ck, M( 􏼁. (3)

For N � 2, MR is the middle point of a geodesic con-
necting the two points. However, MR can be effectively
calculated by an iterative procedure for N> 2 [40].

3.4.3. Congruence Invariance. Congruence invariance is an
important property about the Riemannian distance, which
means that the distance between the two points remains
invariant after affine transformation using an invertible
matrix as below [45]:

δ Ci, Cj􏼐 􏼑 � δ W
T
CiW,W

T
CjW􏼐 􏼑∀W ∈ GL(n), (4)



where GL(n) is the set of invertible symmetric n × n square
matrices.

Based on these concepts, RA executes the affine trans-
formation for N points on the manifold using their Rie-
mannian mean as the reference matrix. +en, the aligned
matrix of Ci is [44]

􏽢Ci � M
(−1/2)
R CiM

(−1/2)
R . (5)

We perform RA for all covariance matrices from each
domain using their own Riemannian mean as the reference
matrix. +en, all aligned matrices from each domain are
centred at the identity matrix. +is property can be testified
by the following [32]:

M M
−1/2
R C1M

−1/2
R , M

−1/2
R C2M

−1/2
R , · · · , M

−1/2
R CNM

−1/2
R􏼐 􏼑

� M
−1/2
R M C1, C2, · · · , CN( 􏼁M

−1/2
R � M

−1/2
R MRM

−1/2
R � I,

(6)

where M(C1, C2, · · · , CN) is the Riemannian mean opera-
tion and I is an identity matrix.

+us, RA can make the aligned matrices from different
domains comparable and preliminarily shorten their
differences.

Additionally, as in [40], the filtered trial Xi can be
spatially whitened by performing RA as follows:

􏽢Xi � M
(−1/2)
R Xi. (7)

3.5. Tangent Space Mapping. Most traditional classifiers,
such as linear discriminant analysis (LDA) and support
vector machine (SVM), are designed for the Euclidean space,
instead of the Riemannian space. To inherit the advantage of
RA, we transform the aligned matrices into the Euclidean
tangent feature vectors.

+e SPD matrices lie in a differentiable Riemannian
manifold. +eir derivatives at a reference point on the
manifold compose a tangent space. As mentioned in [54],
the choice of Riemannian mean for the reference point leads
to a tangent space locally approximate to the manifold.
Figure 3 shows a Riemannian manifold and its tangent space
at a Riemannian mean point MR.

As shown in Figure 3, the logarithmic map projects Ci

onto the tangent space at a Riemannian mean point MR by
[40]

Ti � logMR
Ci( 􏼁 � M

1/2
R log M

−1/2
R CiM

−1/2
R􏼐 􏼑M

1/2
R . (8)

As in (6), the identity matrix I is the Riemannian mean
of all aligned matrices from each domain. +en, the loga-
rithmic mapping of the aligned matrix 􏽢Ci onto the nor-
malized tangent space can be calculated as follows [55]:

􏽢Ti � logI
􏽢Ci􏼐 􏼑 � logI M

−1/2
R CiM

−1/2
R􏼐 􏼑

� log M
−1/2
R CiM

−1/2
R􏼐 􏼑 � M

−1/2
R logMR

Ci( 􏼁M
−1/2
R .

(9)
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Figure 1: +e frameworks of MEKT [32], sMEKT, and ssMEKT.
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To obtain a minimal representation, we vectorize the
above logarithmic mapping 􏽢Ti by keeping its upper trian-
gular part and applying unity weight for its diagonal ele-
ments and

�
2

√
weight for its nondiagonal elements [40]:

Fi � vect 􏽢Ti􏼐 􏼑 � 􏽢Ti1,1;
�
2

√
􏽢Ti1,2;

􏽢Ti2,2;
�
2

√
􏽢Ti1,3;􏽨

�
2

√
􏽢Ti2,3;

􏽢Ti3,3; · · · ; 􏽢Tin,n􏽩,
(10)

where 􏽢Tij,k
∈ 􏽢Ti. +en, the aligned matrix 􏽢Ci is transformed

into the tangent feature vector Fi.

3.6. Manifold Embedded Knowledge Transfer. +e tangent
feature vectors from different domains have similar marginal
probability distributions inherited from the corresponding
aligned matrices. However, their dimensionality d � n × (n +

1)/2 is very high. To further reduce their differences and di-
mensionality, MEKT based algorithms aim to find optimal
projection matrices for these tangent feature vectors.

As shown in Figure 1, all labelled tangent feature vectors
from multiple source subjects are concatenated into a la-
belled source tangent feature vector set. For convenience,
this set is called a labelled source domain FS � FS,i􏽮 􏽯

nS

i�1. Let

FS,i and nS be the ith tangent feature vector and the size of FS,
respectively. Likewise, all tangent feature vectors from the
target subject can be called a target domain FT � FT,i􏽮 􏽯

nT

i�1.
Assume FT,i and nT are the ith tangent feature vector and the
size of FT, respectively. For MEKT, FT is unlabelled.

Since MEKT transfers a labelled source domain to an
unlabelled target domain, it is an unsupervised transfer
learning algorithm.

MEKTseeks the optimal projection matrix PS ∈ Rd×q for
FS and the optimal projection matrix PT ∈ Rd×p for FT,
which can not only make the lower dimensional features
PT

S FS and PT
TFT close, but also preserve the labelled source

domain discriminability and the unlabelled target domain
locality. Note that q≪ d is the dimensionality of a shared
subspace for MEKT. MEKT sets q � 10. +e following four
properties are designed:

3.6.1. Joint Probability Distribution Shift Minimization.
+e traditional maximum mean discrepancy (MMD) is
usually used to shorten the marginal and conditional
probability distribution discrepancies between different
domains [56]. For simplicity, in MEKT, the joint probability

Tangent space at point MR

Riemannian manifold

Ti= logMR
(Ci)

Ci

MR

Figure 3: A Riemannian manifold and its tangent space (this figure was adopted from Barachant et al. [40]).
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Figure 2: +e selected channels for two datasets. (a) Dataset 1. (b) Dataset 2.
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MMD is proposed to measure and minimize the joint
probability distribution shift between the source and target
domains as follows [32]:

min
PS,PT

DS,T � min
PS,PT

D Q FS, yS( 􏼁, Q FT, 􏽢yT( 􏼁( 􏼁 � min
PS,PT

D Q FS|yS( 􏼁Q yS( 􏼁, Q FT|􏽢yT( 􏼁 | Q 􏽢yT( 􏼁( 􏼁

≈ min
PS,PT

􏽘

2

k�1

1
nS

􏽘

nk
S

i�1
P
T
S F

k
S,i −

1
nT

􏽘

nk
T

i�1
P
T
TF

k
T,i

�����������

�����������

2

F

⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠ � min
PS,PT

N
T
S F

T
S PS − N

T
TF

T
TPT

����
����
2
F
,

(11)

where D(∙, ∙) is the joint probability distribution shift oper-
ation. Q(∙), Q(∙ | ∙), and Q(∙, ∙) are the marginal, conditional,
and joint probability distributions, respectively. Assume yS and
􏽢yT are the label vector of the labelled source domain and the
pseudolabel vector of the unlabelled target domain, respectively.
Let nk

S and Fk
S,i be the size and the ith tangent feature vector of

the labelled source domain belonging to the kth class, re-
spectively. Likewise, nk

T and Fk
T,i are the size and the ith tangent

feature vector of the unlabelled target domain predicted to be
the kth class, respectively. Here, only binary classification is
considered. +en, NS � YS/nS and NT � 􏽢YT/nT, where YS is
the one-hot encoding matrix of yS, and 􏽢YT is the one-hot
encoding matrix of 􏽢yT. +e one-hot encoding matrix will be
[1, 0; 0, 1; 0, 1], if its corresponding true/pseudolabel vector is
[class 1; class 2; class 2].

3.6.2. Source Domain Discriminability Preservation. +e
source domain discriminability can be defined by the within-
class and between-class scatter matrices. +us, after pro-
jection, it can be maintained by [32]

min
PS

tr P
T
S S

s
wPS􏼐 􏼑, subject to: P

T
S S

s
bPS � I, (12)

where tr(∙) is the trace computation, Ss
w � 􏽐

2
k�1 Fk

SHnk
S
Fk

ST is
the within-class scatter matrix of the labelled source domain,
and Ss

b � 􏽐
2
k�1 nk

S(mk
S − mS)(mk

S − mS)T is the between-class
scatter matrix of the labelled source domain, in which Fk

S ,
Hnk

S
� I − 1nk

S
/nk

S , mk
S represent the labelled source domain

belonging to class k, its centring matrix, and its mean, re-
spectively, and mS is the mean of the labelled source domain
[57]. Note that 1nk

S
∈ Rnk

S
×nk

S is an all-one matrix.

3.6.3. Target Domain Locality Preservation. Although the
target domain is unlabelled, its local manifold structure can be
formulated by the graph Laplacianmatrix.MEKTconstructs the
normalized Laplacian graph L � I − D− 1/2 WD− 1/2 [32], where

Wij �

exp
− FT,i − FT,j

�����

�����
2

2

2σ2
⎛⎜⎜⎝ ⎞⎟⎟⎠ if FT,i ∈ NearK FT,j􏼐 􏼑,

0, otherwise

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Dij �
􏽘

nT

j�1Wij, if i � j,

0, otherwise

⎧⎪⎨

⎪⎩

(13)

in which σ is a scaling parameter and NearK(FT,j) is a set of
K nearest neighbours of FT,j using the Euclidean metric.
MEKT sets σ � 1 and K � 10.

To maintain the target domain locality after projection
and remove the scaling effect, a graph regularization is
minimized under the following constraints [32]:

min
PT

􏽘

nT

i,j�1
P

T
TFT,i − P

T
TFT,j

�����

�����
2

2
Wij � min

PT

tr P
T
TFTLF

T
TPT􏼐 􏼑,

subject to: P
T
TFTHnT

F
T
TPT � I,

(14)

where HnT
� I − 1nT

/nT is also a centring matrix.

3.6.4. Parameter Transfer and Regularization. +e following
constraints are imposed on the projection matrices for better
similarity and generalization performance [32]:

min
PS,PT

PS − PT

����
����
2
F

+ PT

����
����
2
F

􏼒 􏼓. (15)

+en, the four properties above are integrated into an
overall loss function of MEKTusing different weights α, β, c,

and θ [32]:

min
PS,PT

αDS,T + βtr P
T
S S

s
wPS􏼐 􏼑 + ctr P

T
TFTLF

T
TPT􏼐 􏼑 + θ PS − PT

����
����
2
F

+ PT

����
����
2
F

􏼒 􏼓􏼒 􏼓

subject to: P
T
S S

s
bPS � I, P

T
TFTHnT

F
T
TPT � I,

, (16)

where α, β, c, and θ are manually set to be 1, 0.01, 0.1, and 20,
respectively. For convenience, assume P � [PS; PT] is an

overall projection matrix (P ∈ R2 d×q). +e Lagrange func-
tion is designed as below [32]:
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T � tr P
T
(αA + βB + cE + θG)P + μ I − P

T
JP􏼐 􏼑􏼐 􏼑, (17) where

A �
FSNSN

T
S F

T
S −FSNSN

T
TF

T
T

−FTNTN
T
S F

T
S FTNTN

T
TF

T
T

⎡⎢⎢⎣ ⎤⎥⎥⎦, B �
S

s
w 0

0 0
􏼢 􏼣, E �

0 0

0 FTLF
T
T

􏼢 􏼣

G �
I −I

−I 2I
􏼢 􏼣, J �

S
s
b 0

0 FTHnT
F
T
T

⎡⎢⎣ ⎤⎥⎦.

(18)

To obtain the optimal P, MEKT sets the derivative of T
to be 0 and then has

(αA + βB + cE + θG)P � μJP. (19)

Note that μ � 10− 3 is also a weight. After generalized
eigen-decomposition, P is comprised of q trailing eigen-
vectors, where q � 10 is the dimensionality of the new
feature. Consequently, PS and PT can be obtained from P.
For the matrix A, NT relates to the pseudolabel vector 􏽢yT.
Since 􏽢yT is unknown initially, it is set to be an all-zero vector
first. At the next iteration, 􏽢yT is updated using sLDA as the
classifier. MEKT performs five iterations in total.

3.7. *e Proposed Supervised Manifold Embedded Knowledge
Transfer. Supervised manifold embedded knowledge transfer
(sMEKT) is an extension of MEKT in the supervised version.
For sMEKT, all tangent feature vectors from the target subject
are divided into the labelled and unlabelled target domains.
Only the labelled source and target domains are used to train a
subject-specific classifier. +e remaining unlabelled target
domain is used to evaluate the performance of sMEKT.

To make full use of the available data, the following two
problems should be taken into consideration for sMEKT:

(1) How to choose the appropriate regularization terms
and constraints in the formulation of sMEKT?

(2) How to map the unlabelled target domain into the
projected subspace since only the projection

matrices for the labelled source and target domains
are obtained for sMEKT?

+is section presents the corresponding solutions to the
above questions. Let PTL be the projection matrix of the
labelled target domain.

First, we exclude the target domain locality preservation
because the limited labelled target domain does not effec-
tively show the entire geometric structure of the target
domain with the absence of the unlabelled target domain.

Secondly, we keep the source domain discriminability
preservation as in (12) and do not add the labelled target
domain discriminability preservation as

min
PTL

tr P
T
TLS

TL
w PTL􏼐 􏼑,

subject to: P
T
TLS

TL
b PTL � I,

(20)

where STL
w and STL

b are the within-class scatter matrix and
between-class scatter matrix of the labelled target domain,
respectively. +e reason is that sMEKT aims at transferring
the labelled source domain for the target domain. +erefore,
the source domain discriminability should be taken into
consideration, instead of the target domain discriminability.

In addition, the crucial work of MEKT is to minimize the
joint probability distribution shift between the source and
target domains. In sMEKT, since we only have the labelled
source and target domains, the joint probability distribution
shift minimization is updated as below:

min
PS,PTL

DS,TL � min
PS,PTL

D Q FS, yS( 􏼁, Q FTL, yTL( 􏼁( 􏼁 � min
PS,PTL

D Q FS yS

􏼌􏼌􏼌􏼌􏼐 􏼑Q yS( 􏼁, Q FTL yTL

􏼌􏼌􏼌􏼌􏼐 􏼑 | Q yTL( 􏼁􏼐 􏼑

≈ min
PS,PTL

􏽘
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N
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S F

T
S PS − N

T
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T
TLPTL

����
����
2
F
,

(21)

where yTL and nTL are the label vector and the size of the
labelled target domain FTL, respectively, nk

TL and Fk
TL,i are the

size and the ith tangent feature vector of FTL belonging to the
kth class, and NTL � YTL/nTL, in which YTL is the one-hot
encoding matrix of yTL.

Finally, we remove the parameter transfer and regula-
rization. In (15) and (16), MEKT pays more attention to
minimization of the differences between PS and PT because

it sets θ � 20. In our opinion, this minimization can further
shorten the gaps between the labelled source domain and the
unlabelled target domain, which will benefit the classifica-
tion of the latter. If we have the similar constraint,
min PS,PTL

(‖PS − PTL‖2F), and use the same weight on it, it
may not play the same role as the constraint in (15) since the
limited labelled target domain may not represent the
remaining unlabelled target domain well. Calculating the
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optimal θ with cross-validation can make up this limitation.
However, it will yield computational burden.

+us, the overall loss function of sMEKT can be for-
mulated by

min
PS,PTL

αDS,TL + βtr P
T
S S

s
wPS􏼐 􏼑􏼐 􏼑, subject to: P

T
S S

s
bPS � I. (22)

Let P � [PS; PTL](P ∈ R2d×q). +en, the corresponding
Lagrange function is

T � tr P
T
(αA + βB)P + μ I − P

T
JP􏼐 􏼑􏼐 􏼑, (23)

where

A �
FSNSN

T
S F

T
S −FSNSN

T
TLF

T
TL

−FTLNTLN
T
S F

T
S FTLNTLN

T
TLF

T
TL

⎡⎢⎢⎣ ⎤⎥⎥⎦, B �
S

s
w 0

0 0
􏼢 􏼣, J �

S
s
b 0

0 0
􏼢 􏼣. (24)

+en, (23) can be solved by the same means as in (17).
Since YTL in NTL is the one-hot encoding matrix of the label
vector yTL, rather than that of the pseudolabel vector, we can
obtain the optimal P without multiple iterations.

As for the second question presented above, we assume
that the labelled and unlabelled target domains have similar
joint probability distributions. Moreover, we minimize the
joint probability distribution shift between the labelled
source and target domains in (21). +us, we define the
average of the projection matrices of the labelled source and
target domains as the projection matrix of unlabelled target
domain:

PTU �
PS + PTL( 􏼁

2
. (25)

+erefore, the new unlabelled target feature set is
PT

TUFTU, where FTU is the unlabelled target domain.

3.8. *e Proposed Semisupervised Manifold Embedded
Knowledge Transfer. Semisupervised manifold embedded
knowledge transfer (ssMEKT) utilizes the labelled source
and target domains, as well as the unlabelled target domain.

We construct the following regularization terms and con-
straints for ssMEKT.

First, we keep the target domain locality preservation
because of the existence of the labelled and unlabelled target
domains. Let FT � FTL∪FTU. It is noted that FTL and FTU

are separately obtained after performing RA and TSM for
their original domains. +en, we can minimize the graph
regularization using all data from the target domain as in
Section 3.6. Accordingly, we retain the projection matrix for
the entire target domain, denoted as PT.

+en, like sMEKT, the source domain discriminability
preservation is considered.

Additionally, to benefit the classification of the unla-
belled target domain, we reduce the joint probability dis-
tribution discrepancies between the labelled and unlabelled
domains, instead of those between the source and target
domains. Actually, MEKT also minimizes the joint proba-
bility distribution shift between the labelled and unlabelled
domains since the source domain is labelled and the target
domain is unlabelled. For ssMEKT, the joint probability
distribution shift minimization can be rewritten as

min
PS,PT,PTL

DL,U � min
PS,PT,PTL

D Q FS ∪FTL, yS ∪yTL( 􏼁, Q FTU, 􏽢yTU( 􏼁( 􏼁
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≈ min
PS,PT,PTL

􏽘

2

k�1

1
nS

􏽘

nk
S

i�1
P
T
S F

k
S,i +

1
nTL

􏽘

nk
TL

i�1
P
T
TLF

k
TL,i −

1
nTU

􏽘

nk
TU

i�1
P
T
TF

k
TU,i

�����������

�����������

2

F

⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠

� min
PS,PT,PTL

N
T
S F

T
S PS + N

T
TLF

T
TLPTL − N

T
TUF

T
TUPT
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2
F
,

(26)

where 􏽢yTU and nTU are the pseudolabel vector and the size
of the unlabelled target domain FTU, respectively, Fk

TU,i

and nk
TU are separately the ith tangent feature vector and

the size of the unlabelled target domain predicted to be
the kth class. Let NTU � 􏽢YTU/nTU, in which 􏽢YTU is the one-
hot encoding matrix of 􏽢yTU. For simplicity, PT is tem-
porally used as the projection matrix of the unlabelled

target domain since it relates to the unlabelled target
domain.

Finally, we keep and update parameter transfer and
regularization since there are abundant tangent feature
vectors in the target domain. +en, we want the projection
matrix PT learned in the entire target domain to be similar to
the projectionmatrix PS learned in the source domain and to
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be similar to the projectionmatrixPTL learned in the labelled
target domain. For better generalization performance, we
avoid extreme values for these projection matrices. +ere-
fore, we redefine the following constraints:

min
PS,PT,PTL

PS − PT

����
����
2
F

+ PTL − PT

����
����
2
F

+ PT

����
����
2
F

􏼒 􏼓. (27)

After integrating the regularization terms and the
constraints above, the overall loss function of ssMEKT can
be formulated as follows:

min
PS,PT,PTL

αDL,U + βtr P
T
S S

s
wPS􏼐 􏼑 + ctr P

T
TFTLF

T
TPT􏼐 􏼑 + θ PS − PT

����
����
2
F

+ PTL − PT

����
����
2
F

+ PT

����
����
2
F

􏼒 􏼓􏼒 􏼓,

subject to: P
T
S S

s
bPS � I, P

T
TFTHnT

F
T
TPT � I.

(28)

Given an overall projection matrix
P � [PS; PT; PTL](P ∈ R3d×p), the corresponding Lagrange
function can be reformulated as

T � tr P
T
(αA + βB + cE + θG)P + μ I − P

T
JP􏼐 􏼑􏼐 􏼑, (29)

where
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⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(30)

+en, we can obtain the optimal P, PS, PT and PTL in
the same way as MEKT and sMEKT. Like MEKT,
NTU is updated along with the change of 􏽢YTU at each
iteration.

Finally, we choose and average the most relevant pro-
jection matrices PT and PTL for the projection matrix of
unlabelled target domain:

PTU �
PT + PTL( 􏼁

2
. (31)

3.9. Classification. As depicted in Figure 1, the tangent
feature vector sets from different domains can be trans-
formed into new feature sets by different MEKT based al-
gorithms. However, only labelled feature sets are inputted to
the supervised sLDA classifier to build a subject-specific
model. For MEKTand ssMEKT, the pseudolabels of the new
unlabelled target features marked by the model can be used
to iteratively update the projection matrices and the model.

Additionally, the goal of LDA is to find an optimal
hyperplane that can simultaneously maximize the between-
class variances and minimize the within-class variances of
the two-class projection data. To cope with high-dimen-
sional data, sLDA uses a shrinkage estimate for the average

covariance matrix of each class in the LDA algorithm. More
details can be seen in [52].

4. Experimental Results

4.1. Baseline Algorithms. We compared the following six
baseline algorithms with various properties of transfer
learning:

(1) CSP-LDA is the classical combination of feature
extraction and classifier for MI. No source domain is
used at all. Only the labelled target domain is used to
design the CSP spatial filters and then to train the
LDA classifier [33].

(2) RA-CCSP-LDA separately performs RA for the la-
belled source and target domains as in (7), then
concatenates them with equal weight to calculate the
CSP spatial filters, and finally inputs them into the
LDA classifier [38].

(3) RA-RCSP-LDA is similar to RA-CCSP-LDA except
for the way of generating the spatial filters. RCSP
weights the labelled source and target domains using
different regularization parameters [35]. To relieve
the computational cost and give bigger weight to the
labelled target domain, we manually set the two
regularization parameters to be 0.1.
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(4) RA-CCSP-wAR successively executes RA and CCSP
before wAR. wAR is also a semisupervised transfer
learning algorithm, which performs weighted do-
main adaptation between the labelled source domain
and the entire target domain using SVM as the base
classifier [49].

(5) RA-RCSP-wAR sequentially performs RA, RCSP,
and wAR. For RA-CCSP-wAR and RA-RCSP-wAR,
the hyperparameters of wARwere set according to its
corresponding publication [49]. Note that three pairs
of spatial filters were used for all spatial filtering-
based algorithms in our experiments.

(6) MEKT-sLDA first performs unsupervised MEKT
and then feeds the new labelled features from the
source domain into the supervised sLDA classifier
[32].

As mentioned above, our proposed sMEKTand ssMEKT
also use the sLDA classifier. Moreover, we set the same
values for the same weights and parameters in the MEKT
based algorithms, such as α � 1, β � 0.01, c � 0.1, θ � 20,
μ � 10− 3, σ � 1, K � 10, and q � 10. Additionally, both
MEKT and ssMEKT perform five iterations to update their
overall loss functions.

A summary of the six baseline algorithms and the two
proposed algorithms is shown in Table 1.

4.2. Experimental Design. For each dataset, all trials from
each target subject were randomly partitioned into two
portions over twenty repetitions. +e first portion was the
labelled set to train a subject-specific classifier for the su-
pervised and semisupervised algorithms, while the second
portion was the unlabelled set to build the classifier for the
unsupervised and semisupervised algorithms and to evaluate
the effectiveness of different algorithms. All trials from the
remaining source subjects were labelled and concatenated
into a source domain to be transferred into a target domain.
For each target subject, we varied the number of labelled
trials from 10 to 50 with a step of 10 to investigate the
robustness of all algorithms. For simplicity, denote the trial
from the target subject and the trial from the source subject
as the target trial and the source trial, respectively.

4.3. Classification Accuracy with Few Labelled and/or More
Unlabelled Target Trials. +e goal of our proposed algo-
rithms is to achieve good classification performance even
using few labelled target trials. +us, we first conducted
the experiments with few labelled and/or more unlabelled
target trials. For the two MI datasets, ten labelled target
trials, with equal number per class, were randomly se-
lected over twenty repetitions. +en, 270 and 190 unla-
belled target trials were separately available for dataset 1
and dataset 2. For each target subject, the classification
accuracy of the unlabelled target trials was taken as an
average of twenty repetitions. Detailed results of the two
MI datasets are given in Tables 2 and 3.+e bold-faced and
italic numbers show the best and second-best classifica-
tion accuracies, respectively.

Defining BCI illiteracy has been challenging because
different researchers use different criteria to distinguish
between good and bad subjects. Early work stated that 70%
accuracy was effective for binary classification [58, 59]. In
Table 2, the nontransfer learning algorithm CSP-LDA rea-
ches or approaches a benchmark accuracy of 70% for
subjects al, aw, and ay. +erefore, in our paper, subjects al,
aw, and ay are grouped into good subjects, whereas subjects
aa and av are grouped into bad ones. +e transfer learning
algorithms obviously improve the classification performance
for bad subjects aa and av. Only MEKT-sLDA and ssMEKT-
sLDA obtain satisfactory accuracy for bad subject av. Fur-
thermore, sMEKT-sLDA outperforms the other supervised
transfer learning algorithms RA-CCSP-LDA and RA-RCSP-
LDA on average when the number of labelled target trials is
as low as 10. RA-CCSP-wAR and RA-RCSP-wAR perform
slightly higher than their corresponding supervised transfer
learning algorithms. Our proposed ssMEKT-sLDA stands
out itself among all semisupervised transfer learning
algorithms.

In Table 3, CSP-LDA provides the benchmark accu-
racy of about 70% for subjects e, f, and g, leading to the
following categorization in our paper: good subjects e, f,
and g; bad subjects a, b, c, and d. +e improvement in the
classification performance of the transfer learning algo-
rithms is substantial compared to CSP-LDA for bad
subjects a, b, c, and d. However, sMEKT-sLDA yields
worse classification performance than RA-CCSP-LDA
and RA-RCSP-LDA on average. A possible explanation is
that more than half of the subjects on dataset 2 perform
MI tasks poorly. For sMEKT-sLDA, the target domain can
be seriously affected by the bad source domain since the
target and source domains are simultaneously adapted to
make them close during the minimization of the joint
probability distribution shift. However, for RA-CCSP-
LDA and RA-RCSP-LDA, both the target and source
domains are used to design the spatial filters without
directly influencing each other. In addition, RA-CCSP-
wAR and RA-RCSP-wAR still perform better than their
corresponding supervised transfer learning algorithms.

As shown in Tables 2 and 3, ssMEKT-sLDA exhibits
slightly higher classification performance than unsupervised
MEKT-sLDA due to the existence of ten labelled target trials.
In addition, for the target subjects with 10 labelled samples
and 270/190 unlabelled samples, ssMEKT-sLDA shows a
5.27% and 2.69% increase in average accuracy on the two
datasets compared to the best semisupervised algorithm RA-
RCSP-wAR, respectively.

+en, we performed the paired-sample t-tests between
the six baseline approaches and our proposed algorithms on
the two datasets to further check if the performance dif-
ferences among all algorithms were significant. +e p-values
are shown in Table 4.

+e paired-sample t-tests show that the results of our
proposed algorithms are statistically higher than those of
CSP-LDA (p< 0.005). Although our proposed algorithms
are based on MEKT-sLDA, their performance differences
are very big. In most cases, ssMEKT-sLDA shows its su-
periority in terms of the p-values, especially on dataset 1.+e
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performance differences between sMEKT-sLDA and other
transfer learning algorithms are small when sMEKT-sLDA
performs well.

4.4. ClassificationAccuracywithVaryingNumbers of Labelled
and/orUnlabelledTargetTrials. To show the effect of the size
of the target domain, with varying numbers of labelled and/
or unlabelled target trials, the classification accuracies of

different subjects from different datasets and their means are
shown in Figures 4 and 5.

As depicted in Figures 4(b), 4(d), and 4(e), for good
subjects al, aw, and ay, CSP-LDA shows better classification
performance than the supervised and semisupervised
transfer learning algorithms with the increase of the labelled
target trials. As shown in Table 2, these subjects perform well
even using few labelled target trials. +us, as their labelled
target trials increase, their increasing between-class

Table 1: A summary of the eight algorithms with various properties.

Spatial filtering RA Transfer learning Supervised Semisupervised Unsupervised
CSP-LDA [33] √ — — √ — —
RA-CCSP-LDA [38] √ √ √ √ — —
RA-RCSP-LDA [35] √ √ √ √ — —
RA-CCSP-wAR [49] √ √ √ — √ —
RA-RCSP-wAR [49] √ √ √ — √ −

MEKT-sLDA [32] — √ √ — — √
sMEKT-sLDA — √ √ √ — —
ssMEKT-sLDA — √ √ — √ —

Table 2: Classification accuracy (%) with 10 labelled target trials and/or 270 unlabelled target trials on dataset 1, for CSP-LDA [33], RA-
CCSP-LDA [38], RA-RCSP-LDA [35], RA-CCSP-wAR [49], RA-RCSP-wAR [49], MEKT-sLDA [32], and our proposed algorithms.

aa al av aw ay Mean± std.
CSP-LDA 63.39 82.89 60.06 68.61 72.54 69.50± 8.89
RA-CCSP-LDA 72.17 93.06 64.31 64.76 87.41 76.34± 13.21
RA-RCSP-LDA 70.93 95.24 65.04 68.50 88.91 77.72± 13.45
RA-CCSP-wAR 72.89 92.70 62.72 68.56 88.35 77.04± 12.92
RA-RCSP-wAR 70.76 95.06 65.41 71.24 89.37 78.37± 13.00
MEKT-sLDA 75.94 96.35 71.94 75.26 90.48 82.00± 10.74
sMEKT-sLDA 72.52 93.72 67.94 73.69 87.22 79.02± 10.92
ssMEKT-sLDA 76.06 96.52 72.59 76.85 90.50 82.50± 10.39

Table 3: Classification accuracy (%) with 10 labelled target trials and/or 190 unlabelled target trials on dataset 2, for CSP-LDA [33], RA-
CCSP-LDA [38], RA-RCSP-LDA [35], RA-CCSP-wAR [49], RA-RCSP-wAR [49], MEKT-sLDA [32], and our proposed algorithms.

a b c d e f g Mean± std.
CSP-LDA 65.50 52.37 56.05 61.92 70.34 69.97 70.68 63.83± 7.36
RA-CCSP-LDA 64.79 77.03 75.13 78.50 92.45 76.82 88.42 79.02± 9.09
RA-RCSP-LDA 69.37 76.87 74.68 77.84 92.21 77.47 87.61 79.44± 7.82
RA-CCSP-wAR 67.11 77.58 75.63 77.71 92.32 76.95 89.47 79.54± 8.62
RA-RCSP-wAR 69.79 77.42 74.79 77.84 92.24 77.53 88.95 79.79± 7.94
MEKT-sLDA 83.24 72.63 76.08 71.71 91.55 85.50 91.61 81.76± 8.42
sMEKT-sLDA 71.89 64.16 60.47 68.89 84.13 74.74 88.26 73.22± 10.11
ssMEKT-sLDA 83.76 72.66 76.11 71.92 91.47 85.74 91.95 81.94± 8.46

Table 4: +e p-values in paired-sample t-tests on the two datasets between our proposed algorithms and CSP-LDA [33], RA-CCSP-LDA
[38], RA-RCSP-LDA [35], RA-CCSP-wAR [49], RA-RCSP-wAR [49], and MEKT-sLDA [32].

Dataset 1 Dataset 2
sMEKT-sLDA ssMEKT-sLDA sMEKT-sLDA ssMEKT-sLDA

CSP-LDA 0.0040 0.0011 0.0027 0.00002
RA-CCSP-LDA 0.1903 0.0246 0.0954 0.4091
RA-RCSP-LDA 0.3813 0.0310 0.0444 0.3883
RA-CCSP-wAR 0.2179 0.0230 0.0573 0.4536
RA-RCSP-wAR 0.5493 0.0264 0.0325 0.4513
MEKT-sLDA 0.0020 0.1546 0.0025 0.0570
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Figure 4: Continued.
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Figure 4: Classification accuracy (%), with varying numbers of labelled and/or unlabelled target trials on dataset 1, for CSP-LDA [33], RA-
CCSP-LDA [38], RA-RCSP-LDA [35], RA-CCSP-wAR [49], RA-RCSP-wAR [49], MEKT-sLDA [32], and our proposed algorithms. (a)
Subject aa. (b) Subject al. (c) Subject av. (d) Subject aw. (e) Subject ay. (f ) All subjects.
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Figure 5: Continued.
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Figure 5: Classification accuracy (%), with varying numbers of labelled and/or unlabelled target trials on dataset 2, for CSP-LDA [33], RA-
CCSP-LDA [38], RA-RCSP-LDA [35], RA-CCSP-wAR [49], RA-RCSP-wAR [49], MEKT-sLDA [32], and our proposed algorithms. (a)
Subject a. (b) Subject b. (c) Subject c. (d) Subject d. (e) Subject e. (f ) Subject f. (g) Subject g. (h) All subjects.
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discriminability can gradually reduce their dependence on
transfer learning. As illustrated in Figures 4(a) and 4(c), for
bad subjects aa and av, most transfer learning algorithms
outperform CSP-LDA in most cases. It is necessary for them
to transfer the source labelled trials due to their poor be-
tween-class discriminability. In Figures 4(a), 4(b), 4(c), and
4(e), the average performance of sMEKT-sLDA is higher
than that of RA-RCSP-LDA for bad subjects aa and av, while
RA-RCSP-LDA performs better than sMEKT-sLDA on
average for good subjects al and ay. +e reason is that much
more good source subjects are available for bad target
subjects aa and av, compared to good target subjects al and
ay. Bad target subjects aa and av benefit from the domain
adaptation used in sMEKT-sLDA, while good target subjects
al and ay benefit from their bigger weights used in RA-
RCSP-LDA. As shown in Figure 4(f ), for all subjects, the
classification performance of MEKT-sLDA decreases due to
the reduction of unlabelled target trials. On average,
ssMEKT-sLDA shows its compelling validity.

As shown in Figures 5(e)–5(g), for good subjects e, f, and
g, due to their good between-class discriminability, as the
labelled target trials increase, the classification performance
of CSP-LDA is close to that of the transfer learning algo-
rithms. As depicted in Figures 5(b) and 5(c), for bad subjects
b and c, due to their poor between-class discriminability, the
transfer learning algorithms maintain obvious advantages
over CSP-LDA with the increasing labelled target trials. As
illustrated in Figures 5(a)–5(h), on average, sMEKT-sLDA
performs worse than most supervised transfer learning al-
gorithms since a poor source domain might affect the dis-
criminability of the target domain during domain
adaptation. For subjects a, d, e, and f, RA-RCSP-wAR
achieves higher results than RA-CCSP-wAR in most cases.
All semisupervised transfer learning algorithms reach better
performance than their supervised or unsupervised coun-
terparts. Moreover, ssMEKT-sLDA shows its superiority for
four out of seven subjects.

4.5. Computational Cost. All experimental results were
obtained from our operating platform:

(1) Hardware: processor: Intel i5 CPU@1.60GHz; RAM:
8GB.

(2) Software: Windows 10 Home Edition; Matlab 2015a.

+e computation times of the different algorithms on
two datasets using 10 labelled and/or 270/190 unlabelled
target trials are shown in Table 5. +e best performance was
highlighted in bold.

As shown in Table 5, CSP-LDA spends the shortest
computation time among all algorithms. +e computational
cost of sMEKT-sLDA is slightly higher than that of RA-RCSP-
LDA due to higher-dimensional features. ssMEKT-sLDA re-
quires more time than other MEKT based algorithms because
of more available trials. However, for all semisupervised
transfer learning algorithms, even with higher-dimensional
features, ssMEKT-sLDA runs faster than RA-CCSP-wAR and
RA-RCSP-wAR on average. +e possible reason is that wAR
works more complicatedly than ssMEKT.

5. Discussion

In this section, we discuss the experimental results from
various aspects.

5.1. Effectiveness of Riemannian Alignment and Transfer
Learning. In our experiments, all algorithms perform RA
and transfer learning, except CSP-LDA. +ey first execute
RA for different domains in an unsupervised way, which can
not only make different domains comparable, but also
overcome the impact of limited labelled target trials. For all
spatial filtering-based transfer learning algorithms, such as
RA-CCSP-LDA, RA-RCSP-LDA, RA-CCSP-wAR, and RA-
RCSP-wAR, the EEG trials are whitened by performing RA.
Likewise, for all MEKT based transfer learning algorithms,
the tangent feature vectors from different subjects are close
to each other due to RA. +us, RA can shorten the differ-
ences between domains, which is beneficial to successive
transfer learning. As mentioned above, different transfer
learning algorithms combine different domains in different
ways. In Tables 2 and 3, even using few labelled and/or more
unlabelled target trials, with the help of abundant labelled
source trials, the supervised, unsupervised, and semi-
supervised transfer learning algorithms demonstrate better
average classification accuracies than CSP-LDA. It is implied
that both RA and transfer learning contribute to the good
classification performance.

However, as shown in Figures 4 and 5, for good target
subjects al, aw, ay, e, f, and g, with the increase of their
labelled trials, their between-class discriminability can in-
crease; thus the classification accuracies of CSP-LDA are
gradually close to, or even higher than those of transfer
learning algorithms. In contrast, for bad target subjects aa,
av, b, and c, the transfer learning algorithms always out-
perform CSP-LDA as the labelled target trials increase.
+erefore, it is implied that the number of labelled target
trials and the extent of between-class discriminability of the
source subjects greatly affect the performance of transfer
learning algorithms.

5.2. Differences between Spatial Filtering and Manifold Em-
bedded Knowledge Transfer. +e CSP features used in all
spatial filtering-based transfer learning algorithms have
lower dimensions than the transformed tangent space

Table 5: Computation times (seconds) of CSP-LDA [33], RA-
CCSP-LDA [38], RA-RCSP-LDA [35], RA-CCSP-wAR [49], RA-
RCSP-wAR [49], MEKT-sLDA [32], and our proposed algorithms
on two datasets.

Dataset 1 Dataset 2 Mean± std.
CSP-LDA 0.16 0.03 0.10± 0.09
RA-CCSP-LDA 1.36 0.29 0.83± 0.76
RA-RCSP-LDA 0.28 0.31 0.30± 0.02
RA-CCSP-wAR 6.56 4.50 5.53± 1.46
RA-RCSP-wAR 5.42 4.57 5.00± 0.60
MEKT-sLDA 1.26 2.60 1.93± 0.95
sMEKT-sLDA 0.45 0.50 0.48± 0.04
ssMEKT-sLDA 2.47 4.74 3.61± 1.61
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vectors used in all MEKT based transfer learning algorithms.
To keep or highlight the importance of the target domain, for
CCSP based algorithms, the weight of the target domain is
the same as that of the source domain, and for RCSP based
algorithms, the weight of the target domain is higher than
that of the source domain. Consequently, the source and
target domains independently play their roles in spatial
filtering-based algorithms. However, to further reduce the
differences between the source and target domains, all
MEKT based transfer learning algorithms pay great atten-
tion to the joint probability distribution shift minimization
between domains. +erefore, the target domain is easily
affected by the source domain during the minimization. +e
degree of positive transfer depends on the performance of
the source domain.

As shown in Tables 2–4, most MEKT based transfer
learning algorithms show better performance than the spatial
filtering-based ones. However, for dataset 2, the average
classification accuracy of sMEKT-sLDA is inferior to that of
spatial filtering-based transfer learning algorithms, but still
superior to that of CSP-LDA. +e possible reason is that only
three out of seven subjects perform MI tasks well on dataset 2.
+us, the poor source domain affects the positive transfer of
sMEKT-sLDA. +us, our supervised transfer learning algo-
rithm sMEKT-sLDA should identify the most suitable source
subjects instead of all available source subjects. In addition, due
to the existence of unlabelled target domain, MEKT-sLDA and
ssMEKT-sLDA reduce the negative impact of the poor source
domain. As given in Table 5, in terms of computation time, all
supervised transfer learning algorithms run efficiently. Fur-
thermore, ssMEKT-sLDA takes shorter time than RA-CCSP-
wAR and RA-RCSP-wAR. Overall, our proposedMEKT based
algorithms provide comparably good performance with effi-
cient running time.

5.3. Impact of Labelled and/or Unlabelled Target Trials. To
investigate the roles of labelled and unlabelled target trials, all
algorithms can be divided into supervised, unsupervised, and
semisupervised algorithms. As shown in Tables 2 and 3, with
abundant unlabelled target trials, MEKT-sLDA outperforms
spatial filtering-based algorithms and sMEKT-sLDA on av-
erage. +us, a large unlabelled target domain is beneficial for
classification due to its embedded geometric structure.
Moreover, with the help of a few labelled target trials, the
performance of ssMEKT-sLDA is slightly better than that of
MEKT. As illustrated in Figures 4 and 5, with increasing
number of the labelled target trials and decreasing number of
the unlabelled target trials, the performance improvement of
ssMEKTover MEKT increases. As depicted in Figures 4(f) and
5(h), the curve of CSP-LDA grows fast with the increase of the
labelled target trials. It is implied that the labelled target trials
are crucial for the classification performance. Since the labelled
and unlabelled target trials are less than the labelled source
trials, the performance improvements of supervised and
semisupervised transfer learning are not apparent as the la-
belled target trials increase.

Additionally, as shown in Figures 4 and 5, for good target
subjects al, ay, e, f, and g, their classification accuracies of

ssMEKT-sLDA are always similar to those of MEKT-sLDA.
+e possible reason is that both the unlabelled and labelled
target trials of good target subjects can provide important
information. However, for bad target subjects aa, av, a, and
d, the differences between ssMEKT-sLDA and MEKT-sLDA
are comparably obvious. +e possible explanation is that the
labelled target trials of bad target subjects can provide more
valuable information than their unlabelled target trials.
Overall, labelled target trials play an important role in the
classification. +e unlabelled target trials are also beneficial
for classification, especially for good target subjects.

It is noted that our proposed ssMEKT-sLDA does not
utilize the unlabelled target trials to train the classifier,
resulting in the limited performance improvement.

6. Conclusion

To shorten the calibration time of the target subject, we
propose a supervised MEKT algorithm (sMEKT) and a
semisupervised MEKT algorithm (ssMEKT) in MI-based
BCI. Both are combined with the sLDA classifier. Due to
high intersubject variability, it is better to build a subject-
specific classifier rather than a generic classifier. Both
sMEKT and ssMEKT transfer abundant labelled samples
from multiple source subjects for a specific target subject.
First, they perform RA in an unsupervised way to prelim-
inarily reduce the differences among different subjects.+en,
they convert the aligned covariance matrices from different
subjects into the corresponding tangent feature vectors for
classification in the Euclidean space. Finally, to further cope
with variations among different subjects, sMEKT performs
domain adaptation between the labelled source and target
domains, whereas ssMEKT performs domain adaptation
between the labelled source domain and the entire target
domain. During adaptation, both sMEKT and ssMEKT not
only minimize the joint probability distribution shift among
different domains, but also maintain the source domain
discriminability as much as possible. Moreover, ssMEKT
keeps the entire target domain locality to utilize its geometric
structure. In addition, ssMEKT performs the parameter
transfer and regularization, to make the projection matrices
of different domains closer. For the target subjects with 10
labelled samples and 270/190 unlabelled samples, ssMEKT
stands out itself with average accuracies of 82.50% and
81.94% on the dataset 1 and dataset 2, respectively, and
sMEKT can also obtain higher classification performance
(79.02%) than other spatial filtering-based transfer learning
algorithms on dataset 1. +erefore, the experimental results
show that our proposed algorithms can reduce the need of
labelled target trials. In the future, we will not only choose
themost beneficial source subjects for the target subjects, but
also make use of the unlabelled target samples in the clas-
sification module. In addition, our proposed ssMEKT is
designed offline since the unlabelled samples from the target
subject are obtained a priori, instead of on-the-fly. Future
work will be dedicated to updating ssMEKT in real-time BCI
applications, where domain adaptation is performed be-
tween the labelled source domain and the increasing target
domain.
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In this study, the authors used two publicly available MI
datasets for analysis: (1) dataset IVa, BCI competition III
[50], which has been deposited on the website https://www.
bbci.de/competition/iii/#data_set_iva; (2) dataset 1, BCI
competition IV [51], which is available on the website http://
www.bbci.de/competition/iv/desc_1.html.
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