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ABSTRACT Streptomyces sp. strain V2 was isolated from potato scab lesions in the
state of Sinaloa, Mexico, and appears to be responsible for outbreaks in the area.
The thaxtomin cluster was found in the �10.2-Mb genome; this cluster is associated
with potato common scab disease in other potato pathogens.

The genus Streptomyces, class Actinobacteria, currently contains 533 described spe-
cies, most of them isolated from soil (their primary natural habitat), although there

are reports of species recovered from both freshwater and marine environments (1).
Among this high number of described species, only a few are considered human and
plant pathogens (2, 3).

Some of these plant pathogens cause economically important diseases, such as
potato common scab (PCS), which appears as shallow or deep corky blemishes that
disfigure the potato skin, which consequently needs excessive peeling (4). Streptomyces
scabiei is regarded as the predominant PCS agent worldwide (5), although S. acidisca-
bies, S. turgidiscabies, S. europaeiscabiei, S. stelliscabiei, S. luridiscabiei, S. puniciscabiei,
and S. niveiscabiei (6–9) have also been recovered from PCS lesions. These pathogenic
strains have a polyphyletic nature and have been related by a transmissible pathoge-
nicity island which seems to confer the pathogenic phenotype on some species. The
main pathogenicity factor of this phenotype is the production of the phytotoxin
thaxtomin, a nitrated dipeptide which inhibits cellulose synthesis in expanding plant
tissue (10, 11).

Streptomyces sp. strain V2 was recovered as part of a study in the state of Sinaloa,
Mexico, of the diversity of PCS lesions related to or associated with bacteria. At the time
of writing, this ongoing study has recovered 22 actinobacterial strains identified by
nearly complete 16S rRNA gene sequences and includes not only streptomycetes but
also rare actinobacteria (i.e., Amycolatopsis and Lentzea spp.). Currently, studies are
being conducted to establish either the pathogenic relationship of each isolate to the
PCS lesion or its merely saprophytic role within the tubercle (A. Alejo-Viderique, E.
Burgueño, L. A. Maldonado, G. Herrera, R. Felix, and E. T. Quintana, unpublished data).

The genome of strain V2 was sequenced by ChunLab (Seoul, South Korea) using the
Illumina MiSeq sequencing platform. The obtained reads were assembled with SPAdes
3.1.1 (12). The genome size is 10.2 Mb. The GC content was found to be 71%. Two-way
comparison of the average nucleotide identity (ANI) values (13) of S. scabiei and S.
acidiscabies indicated values of 82.74% and 93.35%, respectively, suggesting that
isolate V2 should constitute a novel species. The genome was annotated with the NCBI
Prokaryotic Genome Annotation Pipeline (14). The number of genes was 9,222, with 68
tRNAs, 8 complete rRNAs, 3 noncoding RNAs, and 4 CRISPR arrays. Mining of the
genome using antiSMASH 3.0 (15) found 53 potential secondary metabolite-related
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clusters. The antiSMASH suite predicted the presence of gene clusters related to the
production of albaflavenone, alnumycin, ansamitocin, cahuitamycin, coelibactin, coeli-
chelin, desferrioxamine B, desotamide, ectoine, furaquinocin A, gamma-butyrolactone,
grincamycin, herboxidiene, hopene, informatipeptin, jawsamycin, kanamycin, kedarci-
din, lactonamycin, laspartomycin, mensacaricin, nikkomycin, oxazolomycin, pactamy-
cin, pristinamycin, salinamides, skyllamycin, and xantholipin, among others predicted
by the Web tool NaPDos (16). It is worth mentioning that the phytotoxin thaxtomin
cluster was also found, with over 50% of the genes showing similarity to the cluster of
S. scabiei.

Data availability. This whole-genome shotgun project has been deposited in
GenBank under the accession no. QFDR00000000. The version described in this paper
is the first version, QFDR01000000.
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