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the pluripotency transcription
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cells
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Pluripotency maintenance requires transcription factors (TFs) that induce genes necessary to preserve
the undifferentiated state and repress others involved in differentiation. Recent observations support
that the heterogeneous distribution of TFs in the nucleus impacts on gene expression. Thus, it is
essential to explore how TFs dynamically organize to fully understand their role in transcription
regulation. Here, we examine the distribution of pluripotency TFs Oct4 and Sox2 in the nucleus of
embryonic stem (ES) cells and inquire whether their organization changes during early differentiation
stages preceding their downregulation. Using ES cells expressing Oct4-YPet or Sox2-YPet, we show
that Oct4 and Sox2 partition between nucleoplasm and a few chromatin-dense foci which restructure
after inducing differentiation by 2i/LIF withdrawal. Fluorescence correlation spectroscopy showed
distinct changes in Oct4 and Sox2 dynamics after differentiation induction. Specifically, we detected
an impairment of Oct4-chromatin interactions whereas Sox2 only showed slight variations in its short-
lived, and probably more unspecific, interactions with chromatin. Our results reveal that differentiation
cues trigger early changes of Oct4 and Sox2 nuclear distributions that also include modifications in
TF-chromatin interactions. This dynamical reorganization precedes Oct4 and Sox2 downregulation and
may contribute to modulate their function at early differentiation stages.

Pluripotent stem cells self-renew and differentiate to all cell types derived from the three germ layers in response
to developmental cues. These cells are an excellent model to study embryo development and development-related
disorders, could also be used for drug screening and constitute an important promise in regenerative medicine’.

The maintenance of pluripotency depends mostly on three transcription factors (TFs) namely Oct4 (also
known as Pou5f1), Sox2 and Nanog which induce genes necessary to preserve the undifferentiated state and
repress others involved in differentiation®. Knockout of any of these TFs leads to embryo lethality and loss of
pluripotency*~’.

Although these TFs coordinately regulate a great number of genes, their expression profiles are different dur-
ing differentiation. Particularly, Nanog concentration rapidly decreases during the transition from the ground
state to primed pluripotency while Oct4 and Sox2 levels remain constant both in cultured embryonic stem (ES)
cells and in the embryo?®. These observations emphasize that the modulation of the activity of Oct4 and Sox2
during these early differentiation stages involves other mechanisms.

The expansion and optimization of methodologies aimed to visualize nuclear processes in living cells revealed
that transcription is a complex process with multiple spatial and temporal layers of control’. Chromatin archi-
tecture per se is an important player on the modulation of gene expression. For example, ES cells differentiation
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and embryo development are associated to a reorganization of chromatin that includes homologous pairing of
Oct4 alleles’.

The hierarchically folding of chromatin within the nuclear space also defines regions with different levels of
compaction that modulate TFs diffusion and the target-searching process''. Additionally, epigenetic marks locally
regulate the accessibility of TFs to their targets modifying the transcriptional outcome!>!3,

TFs interact dynamically with a wide variety of chromatin targets; their distribution among all these sites also
impacts on the transcriptional output*. In line with this statement, we have found variations on chromatin-Sox2
interactions among blastomeres of 4-cell mouse embryos that correlate with the cell fate of the progeny*>.

Furthermore, many transcription-related biomolecules partition into compartments which are not enclosed
by membranes'® and contribute to buffer the amount of molecules in the nucleoplasm!”'8. Very recently, it has
been proposed that a liquid-liquid phase separation process drives the formation of many nuclear compart-
ments'® that may play important roles in the local remodeling of chromatin®® and genes activation®"** finally
impacting on the transcriptional output®’. Notably, Oct4 is required for the formation of Mediator liquid conden-
sates in ES cells?!. Additionally, it was proposed that Mediator foci occur at super-enhancers in ES cells and it was
suggested that the recruitment of transcription-related molecules at these condensates modulates transcription
of genes key for cell identity*.

These previous works show that the regulation of transcription and thus cell decisions cannot be completely
understood by just analyzing the nuclear concentration of transcription-related molecules. Here, we use a com-
bination of advanced fluorescence microscopy techniques in live cells to explore how Oct4 and Sox2 distribute
in the nucleus of ES cells and inquire whether this organization changes during early differentiation. Our exper-
iments showed that Oct4 and Sox2 redistribute in the nuclear space as early as 12-24h after inducing differen-
tiation by 2i/LIF withdrawal. We also detected that chromatin-TFs interactions respond to early differentiation
cues. These results evidence a dynamical reorganization of these TFs that may impact on their functions at early
differentiation stages preceding their downregulation. These observations provide valuable clues to understand
the molecular mechanisms involved in cell fate decisions.

Results

Generation of mouse embryonic stem cell lines with doxycycline-inducible expression of Y Pet-
tagged Oct4 or Sox2. We first generated ES cell lines that express Oct4 or Sox2 fused to the fluorescent
protein YPet in an inducible manner. This system allows controlling the expression levels of the fluorescent TFs
and minimizes the large cell-to-cell variability observed in transient transfections®. Additionally, the expression
of the TFs-YPet can be turned on when desired, which is essential for many of the experiments described below.
A previous work shows that the fluorescent TFs present similar genome-wide binding profiles to those obtained
for the untagged TFs and that the expression of the fluorescently-tagged TFs rescues pluripotency of Oct4 or Sox2
knockout ES cells®.

Briefly, we transduced W4 ES cells following the lentiviral-based strategy described in Materials and
Methods and schematized in Fig. 1a. After 15 days of blasticidin selection, YPet positive cells were selected by
fluorescence-activated cell sorting (FACS) from the doxycycline (Dox) induced cell population. Isolated single
cells were amplified and the selected clones expressing fusion proteins were analyzed in detail for their validation.

Figure 1b shows brightfield images of the selected single clones (Oct4-YPet and Sox2-YPet) that were YPet
positive in Dox-induced conditions (see below) and presented the expected colony morphology and normal cell
cycle. Additionally, these clones expressed similar amounts of the pluripotency markers Sox2, Oct4, Nanog and
SSEA-1 in comparison to the parental cell line as assessed by immunofluorescence (Fig. 1¢ and Supplementary
Fig. S1).

To set the optimal conditions for Dox-induction, we analyzed widefield fluorescence images of the generated
clones as a function of Dox concentration or time of induction (Supplementary Fig. S2). Based on these results,
we decided to induce the expression of these fusion proteins by incubating the cells with 5g/ml Dox for 48 h.
This condition guaranteed adequate fluorescence intensity levels for the experiments described in the following
sections.

After Dox induction, the generated clones presented mRNA levels of Oct4 or Sox2 slightly higher than those
of the parental ES cell line (Fig. 1d). Western blot analyses showed that the intensity of the Oct4-YPet band
was ~10% of that corresponding to the endogenous Oct4 (Supplementary Fig. S1b) suggesting that the total
levels of this TF did not greatly increase after Dox induction. Unfortunately, the Sox2 antibody did not recog-
nize Sox2-YPet (Supplementary Fig. S1b); therefore, we used fluorescence correlation spectroscopy (FCS) to
determine the concentration of this fusion protein®’. Using the procedure detailed in Methods, we estimated
that Sox2-YPet concentration in the nucleoplasm of undifferentiated Sox2-YPet ES cells was 0.63 £ 0.03 uM
(N_qis = 110) which is lower than the concentration of the endogenous protein®. Moreover, Dox treatment did
not modify Nanog mRNA levels. Since this TF is a well-known gene target of both Oct4 and Sox2, this result sug-
gests that the low Dox-induced expression of Oct4 and Sox2 do not considerably modify ES cells gene expression
(Fig. 1d). Additionally, the subcellular distributions of these fluorescent fusion proteins and the corresponding
endogenous TFs were the same (Fig. 1e) in line with a previous report showing that YPet fusion does not affect
TFs localization®.

Altogether, these results support that the expression of Oct4-YPet and Sox2-YPet did not alter substantially
the profile of pluripotency markers.

Nuclear reorganization of Oct4 and Sox2 at the onset of differentiation. Figure 2a shows that
Oct4-YPet partitions between the nucleoplasm and a few brighter domains or foci in the nucleus of ES cells
cultured in the presence of LIF 4 2i (“undifferentiated cells”). These observations agree with previous results
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Figure 1. Generation and characterization of inducible ES cell lines. (a) Diagram of the experimental protocol
used for the establishment of the stable ES cell lines Oct4-YPet and Sox2-YPet. (b) Representative phase
contrast images showing the characteristic morphology of ES cell colonies and the cell cycle distribution of the
parental, Oct4-YPet and Sox2-YPet ES cell lines after propidium iodide staining and flow cytometry analysis.
Scale bar, 120 pm. (c) Representative immunostainings of the pluripotency markers Sox2, Oct4, Nanog and
SSEA-1 in the parental cells, compared to Oct4-YPet and Sox2-YPet ES cells cultured in propagation medium
in basal conditions (without Dox). Nuclei were counterstained with DAPI. Sox2 and Nanog proteins were co-
immunostained. Scale bar, 30 pm. Intensity quantification is shown in Supplementary Fig. S1. (d) RT-qPCR
analysis of the indicated genes in Oct4-YPet and Sox2-YPet ES cells cultured in propagation medium in the
presence of Dox. Results are presented as means + SEM (n = 3) and plotted in log2 scale. Data were relativized
to the basal condition (without Dox, dotted line). No significant differences were detected in the expression of
the analyzed genes comparing induced versus non-induced conditions, except for the TF-YPet fusion transgene
in both cell lines (p =0.0004). (e) Representative confocal images showing the distribution of Oct4-YPet and
Oct4 proteins in Oct4-YPet ES cells (upper panel), or Sox2-YPet and Sox2 proteins in Sox2-YPet ES cells (lower
panel), cultured in propagation medium. Immunostainings were performed in the presence (+Ab) or absence
(—Ab) of the primary antibody, and cells were cultured for 48 h with (+Dox) or without (—Dox) Dox. Scale bar,
10 pm.

suggesting that this TF is included in liquid condensates in ES cells?!. Interestingly, Sox2-YPet also forms foci
similar to those observed for Oct4-YPet (Fig. 2b).

In order to analyze if there is a correlation between foci formation and the local compaction of chromatin, we
also examined the distribution of the histone H2B fused to mCherry in undifferentiated cells. Figure 2c shows
that H2B-mCherry displayed a few concentrated domains as reported previously**-*% these domains colocalized
with regions enriched in HP1a—EGFP (Supplementary Fig. S3), a protein commonly associated with silenced
heterochromatin regions®.
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Figure 2. Reorganization of chromatin and Oct4 and Sox2 during early differentiation. Representative confocal
images of Oct4-YPet ES cells expressing Oct4-YPet (a), Sox2-YPet (b) or H2B-mCherry (c) as a function of
time after 2i/LIF withdrawal. Scale bar, 10 pm. The nuclear distribution of these proteins was quantitatively
analyzed as described in the text to obtain the coeflicient of variation (CV), the number of dense domains (N)
and their intensity relative to the mean nuclear intensity (I/1,,qeys) for (d) Oct4-YPet, (e) Sox2-YPet and (f)
H2B-mCherry. Results are presented as means = SEM. N, were 106, 62, 67, 138 and 99 (Oct4-YPet); 140, 79,
73,104 and 141 (Sox2-YPet); 58, 59, 40, 48 and 49 (H2B-mCherry) for 0, 12, 24, 36 and 48 h, respectively.

Supplementary Fig. S4 shows that Sox2 and Oct4 foci colocalized with regions of condensed chromatin. The
relative intensities of TF-YPet and H2B-mCherry in single cells varied among foci suggesting that the local com-
paction of chromatin is not the only factor determining the recruitment of TFs at these domains.

To explore if the spatial organization of Oct4 and Sox2 changes during the initial stages of differentiation, we
induced differentiation of Oct4-YPet and Sox2-YPet ES cells by 2i/LIF withdrawal and registered confocal images
during the initial 48 h of the differentiation process. Supplementary Fig. S5 shows that the endogenous levels of

SCIENTIFIC REPORTS |

(2020) 10:5195 | https://doi.org/10.1038/s41598-020-62235-0


https://doi.org/10.1038/s41598-020-62235-0

www.nature.com/scientificreports/

Oct4 and Sox2 in the parental cell line remain constant during these early stages of differentiation whereas Nanog
expression significantly decreases in this time window, in line with previous observations®. The evident changes
observed in cell morphology together with the downregulation of the naive pluripotency markers Nanog, K1f4
and Esrrb and the increase of the mRNA levels of primed state-associated markers Oct6, Dnmt3a and Otx2
(Supplementary Fig. S6) evidenced that ES cells leave behind the ground state of pluripotency.

We quantified the intensity distribution of the TFs-YPet at early stages of the differentiation process deter-
mining the coefficient of variation (CVz), which has been previously used to measure the overall distribution
of nuclear proteins®**, the mean number of bright foci per nucleus (N.;) and their intensity relative to that of
the nucleus (Ip/1,,qeys)- Figure 2d shows that CV .y N4 and I, increased as early as 12-24h after 2i/LIF
withdrawal reflecting the formation of foci enriched in Oct4. The redistribution of Sox2 at the onset of differen-
tiation was different to that observed for Oct4. Particularly, Fig. 2e shows an initial reduction in CVy,,, and Ig,,,
concomitant to an increase of N, within the first 12 h of differentiation suggesting that this TF redistributes
from a few and bright foci to a higher number of dimmer foci in this early stage. After this period, the values of
the parameters increased reflecting a further reorganization of Sox2 toward the formation of many foci. As a con-
trol, we repeated these analyses in independently generated clones of Oct4-YPet and Sox2-YPet and found that
the studied parameters followed similar behaviors to those described above (Supplementary Fig. S7). We should
mention that we detected some variations in the parameter values between clones that could be due to slightly
different measurements conditions. Nevertheless, these small differences do not affect the main conclusions.

We also characterized the changes occurring in the large-scale organization of chromatin within this time
window of the differentiation protocol. Figure 2¢ shows that the overall organization of chromatin changed
towards a more heterogeneous and speckled distribution. The number of bright domains and their relative inten-
sity increased while CVy,p exhibited a tendency to increase within the first 24 h of differentiation (Fig. 2f), reveal-
ing an extensive chromatin remodeling in this time window. After this period, the parameters did not present
major changes suggesting the absence of large-scale chromatin reorganization sensed through H2B-mCherry
fluorescence.

The comparison of Fig. 2d-f shows that the distribution of TFs changed even after those parameters charac-
terizing H2B-mCherry distribution remained constant. This observation suggests that TFs redistribution during
early differentiation involves other mechanisms besides the chromatin reorganization previously discussed.

Taken together, these results suggest that Oct4 and Sox2 reorganize within the nuclear space at the onset of
differentiation despite their concentrations do not change significantly during these early stages.

Dynamical distribution of TFs in the nucleus at the onset of differentiation. We previously men-
tioned that the dynamical distribution of TFs among different compartments within the nuclear space might
impact on transcription. Therefore, we used single-point fluorescence correlation spectroscopy to analyze the
dynamics of Oct4 and Sox2 in the nucleus of undifferentiated ES cells and in cells cultured during 48h in the
absence of 2i/LIF (“early-differentiated cells”).

Figure 3a,b show the mean, normalized autocorrelation functions (ACF) obtained for Oct4-YPet and
Sox2-YPet in undifferentiated and early-differentiated ES cells. The ACF curves could be interpreted with a model
that includes the diffusion of the proteins and their interactions with chromatin targets in two distinct temporal
windows!>183, The fitting of the model to the experimental data provides relevant information on how TFs dis-
tribute within the nuclear space. The data shows that TFs molecules are engaged in long- and short-lived interac-
tions with characteristic times of ~150 and ~10 ms, respectively (Fig. 3¢,d).

FCS analyses also revealed differences in the dynamics of the TFs in the nucleoplasm of undifferentiated or
early-differentiated cells. Figure 3c,d show that Oct4 detached from long-lived chromatin targets after 48 h of
LIF/2i withdrawal. Additionally, the lifetime of short- and long-lived interactions with chromatin decreased also
indicating impaired interactions in early-differentiated cells. On the other hand, Sox2 presented subtler changes
in its dynamics. Particularly, the relative amounts of this TF engaged in short-lived and long-lived interactions did
not change significantly, neither the lifetime of long-lived interactions. However, we did detect a slight increase in
the lifetime of short-lived Sox2-chromatin interactions that probably includes transient, unspecific interactions
involved in the target-searching process as discussed below. FCS experiments performed in independently gener-
ated clones revealed similar behaviors of the TFs-YPet in response to differentiation cues (Supplementary Fig. S8)
supporting that the observations described above are inherent to the TFs and not related to specific properties of
the clones.

In the previous section, we showed that Oct4 and Sox2 presented distinct patterns of nuclear reorganization
within the first 12-24h of differentiation (Fig. 2). Therefore, we quantified the dynamics of these TFs in the
nucleoplasm at relevant time points included in this window. Supplementary Fig. S9a,c show that the dynamics of
Oct4 after 24 h of differentiation was similar to that observed for undifferentiated cells suggesting that the changes
in Oct4-chromatin interactions described above occur after longer differentiation times. Since we showed before
that the CV of Sox2 presented a minimum value after 12h from 2i/LIF withdrawal (Fig. 2c), we performed the
FCS experiments at this particular time point. Supplementary Fig. S9b,d show that the dynamics of Sox2 after 12h
of differentiation is similar to that observed for early-differentiated cells. Specifically, the only change revealed by
the FCS analyses was the slight increase in the lifetime of short-lived Sox2-chromatin interactions.

We also measured through FCS the dynamics of Oct4-YPet and Sox2-YPet at the high-intensity foci reported
in the previous section. Figure 3 and Supplementary Fig. S10 show that Oct4 and Sox2 are engaged in longer
interactions in these domains in comparison to those detected in the nucleoplasm. We should mention that the
correlation curves did not relax in ~40% (Oct4-YPet) and ~20% (Sox2-YPet) of the acquired data suggesting that
TFs at foci are probably involved in slower interactions beyond the time window assayed in the FCS experiments.

The FCS analyses revealed that the dynamics of Oct4 and Sox2 within foci did not present major changes
after 48 h of 2i/LIF withdrawal suggesting that differentiation cues did not modify the interactions of TFs at
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Figure 3. Fluorescence correlation spectroscopy reveals changes on Oct4 and Sox2 interactions with chromatin
at the onset of differentiation. Single-point FCS measurements were run in undifferentiated Oct4-YPet and
Sox2-YPet ES cells (light colors) or 48 h after LIF/2i withdrawal (early-differentiated, dark colors). (a,b)

Mean, normalized ACF obtained at the nucleoplasm (top panel) and foci (bottom panel). (c,d) The ACF data
were fitted with Eq. 1 to obtain the fractions of free, long-lived bound and short-lived bound TFs and the
characteristic times of long-lived and short-lived interactions of the TFs with chromatin. Experimental results
were expressed as mean £ SEM (FCS experiments in the nucleoplasm: ng,, o.s = 54 and 73 and ng,g, sore =
110 and 146 for the undifferentiated and early-differentiated conditions, respectively; FCS experiments at foci:
Nata 0cs = 15 and 19 and ng,y, 5o = 20 and 14 for the undifferentiated and early-differentiated conditions,
respectively). We only run a single experiment in each cell to minimize its photodamage. Asterisks (*) indicate
significant differences (p < 0.01) between undifferentiated and early-differentiated ES cells.

these nuclear domains. These results indicate that differentiation induces the formation of a higher number
of high-intensity TFs-enriched foci (Fig. 2) but does not modify the interaction landscape of the TFs in these
domains.

Discussion
The core pluripotency transcription factors play a fundamental role in the maintenance of stem cell pluripotency
and in the repression of their differentiation.

Early works linked cell fate with changes in the levels of transcription factors measured either in bulk assays
or in fixed cells or specimens. However, the development of new methods, some of them designed to observe
transcription-related molecules in living systems at a single-cell level, revealed new aspects of transcription reg-
ulation and improved our understanding of this important process. For example, we now know that even small
endogenous fluctuations in the levels of Oct4 and Sox2 influence cell fate commitment?.

The fascinating structure of the nucleus, comprising a variety of membrane-less open compartments with
specific biochemical and physical properties®’, determines a heterogeneous distribution of transcription-related
proteins such as TFs* and their tortuous diffusion within the nuclear space''. These properties ultimately define
the probability of TFs encounters with their chromatin targets and therefore, may impact on transcription'!.

In this context, we investigated the nuclear distribution and dynamics of the key pluripotency TFs Oct4 and
Sox2 at early stages of differentiation in which their levels remain constant.
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We generated stable ES cell lines that express either Oct4 or Sox2 fused to the fluorescent protein YPet in an
inducible manner. The morphology of the colonies and the profile of pluripotency markers of these cell lines were
similar to that of the parental ES cell line.

We found that Oct4 and Sox2 in undifferentiated cells distribute between the nucleoplasm and a few con-
centrated domains. These foci could act as reservoirs buffering the concentration of TFs in the nucleoplasm and
therefore dampening fluctuations that may affect pluripotency maintenance. Remarkably, ES cells must main-
tain fine-tuned levels of Oct4 and Sox2 within narrow limits to preserve pluripotency®. In this direction, it was
reported that Oct4 is included in liquid condensates containing the coactivator Mediator?!, a complex that is
located at super-enhancers in ES cells**. Moreover, Oct4 residues required for phase separation with Mediator are
also needed for gene induction?!, suggesting a link between these structures and TF function.

Very recently, it has been proposed that unspecific interactions with chromatin may also contribute to the
formation of biomolecular condensates in the nucleus®’. In line with this statement, we observed a colocalization
of TFs foci with dense chromatin regions and longer lifetimes of short-lived TF-chromatin interactions at foci
compared to the nucleoplasm. These observations suggest that unspecific TF-chromatin interactions may be
involved in foci formation.

We also showed that, during the initial 12-24h of differentiation induced by 2i/LIF withdrawal, chromatin
reorganizes forming heterochromatinic, H2B-concentrated domains as observed in previous reports at longer dif-
ferentiation periods®*-32. This reorganization could also be related to the epigenetic reprogramming that occurs at
the exit of the naive state (reviewed in*') and probably influences the transcriptional output in line with evidence
showing that the genome of ES cells is hyperactive and differentiation involves a large-scale silencing*.

Additionally, we found that Oct4 and Sox2 also reorganize in the nuclear space during early-differentiation.
In the case of Oct4, TF molecules concentrate into a larger number of brighter foci. On the other hand, Sox2
forms dimmer foci within the first 12 h of differentiation and redistributes into a higher number of foci afterwards.
Notably, the nuclear concentration of both Oct4 and Sox2 do not change in the assayed temporal window, i.e.
48h, indicating that differentiation cues induce a different, fast reorganization of Oct4 and Sox2 in the nuclear
space before their downregulation.

We also characterized how Oct4 and Sox2 organization changes at the onset of differentiation by analyzing
their dynamics through FCS. This exquisite technique measures the dynamics of molecules with minimal pho-
todamage and at the level of single cells. Additionally, the method has the advantage of requiring relatively low
levels of fluorescent proteins minimally modifying the cell homeostasis. We have recently used this powerful
tool to explore how certain epigenetic modifications in ES cells modulate Oct4 and Nanog interactions with
chromatin’®.

Here, we found that the dynamics of Oct4 and Sox2 followed a model including the diffusion of TFs and
their engagement in fast (~10ms) and slow (~150 ms) interactions with chromatin targets in agreement with
our previous work'®. These interactions probably involves unspecific binding, short-distance sliding on DNA,
hopping'+****-%> and long-lived and more specific binding®. The faster interactions determine how the TFs move
within the complex nuclear space and thus, how they find the specific targets*”.

FCS detected variations in Oct4 and Sox2 interactions with chromatin targets during the initial stages of dif-
ferentiation. While Oct4 interactions with chromatin weaken after 48 of 2i/LIF withdrawal, Sox2 only showed a
slight increase in the lifetime of short-lived interactions after differentiation. FCS analyses also revealed that Oct4
and Sox2 interactions at foci did not change during early differentiation indicating that this process triggers the
formation of a higher number of foci but with similar properties in terms of TF binding.

Relevantly, Oct4 and Sox2 dynamical distributions did not respond similarly to differentiation cues. Further
evidences support differences in the molecular mechanisms involved in their function. For example, Hogan
et al.'* observed that chromatin reorganization during early differentiation includes pairing of Oct4 but not Sox2
gene loci; this process is associated to an accumulation of the epigenetic mark H3K9me2 at Oct4 enhancer leading
to the repression of this TE. Additionally, Strebinger et al.?® recently reported that the accessibility of enhancers
associated to differentiation-promoting genes in ES cells increases in cells with high levels of Oct4 and do not
correlate with Sox2 levels. Moreover, the transition between naive and primed pluripotency involves a genome
wide Oct4 relocalization triggered by the prime-state associated TF Otx2%.

We speculate that Oct4 and Sox2 dynamical changes found at early stages of differentiation are directly linked
to modulation of the expression of specific genes. In this direction, we observed that some Oct4 and Sox2 targets
associated to pluripotency maintenance such as Nanog, Klf4 and Esrrb®® are downregulated whereas differentia-
tion-associated markers like Dnmt3a, Oct6 and Otx2 are upregulated within this time window. Transcription of
this last TF is regulated by Oct4; once induced, Otx2 together with Oct4 regulate the expression of multiple genes
leading to the initiation of differentiation®'.

The exit from naive pluripotency precedes the upregulation of lineage-associated genes and recapitulates early
stages of embryo development®. Therefore, the dynamical changes of Oct4 and Sox2 observed in our work are
probably related to the transition from the naive to the formative pluripotency state. In this direction, we specu-
late that similar changes would also occur at early time windows of other differentiation protocols.

We should emphasize that the relation between TFs organization and gene regulation is very complex and
far from understood. As mentioned above, a growing number of evidence supports that the nucleus behaves as
a multi-phase compartment with a dynamic partition of nuclear biomolecules between distinct liquid phases'®.
As a consequence, nuclear compartmentalization may buffer the concentration of biomolecules in the nucleop-
lasm®*=>4, also increasing or reducing the concentrations of specific biomolecules in liquid domains, thus regu-
lating the kinetics and specificity of the biochemical reactions occurring within these condensates!®>*%. These
previous works show that changes in the distribution of a given TF probably affect a whole network of interactions
involving TFs, chromatin and other transcription-related biomolecules. Therefore, further research in the field is
required to understand how changes in the spatial distribution of TFs impact on gene expression.
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Figure 4. Cartoon of Oct4 dynamics in nuclei of undifferentiated or early-differentiated cells. To simplify the
scheme, we represented a bead-on-string structure of chromatin and did not illustrate in the cartoon differences
in Oct4-chromatin interactions lifetimes. Oct4 diffusing molecules engage in short-lived and long-lived
interactions with chromatin in the nucleoplasm (I) or at chromatin-dense foci (II). Short-lived interactions last
longer in these structures. 2i/LIF withdrawal triggers the formation of a higher number of foci (central panel). In
the nucleoplasm of early-differentiated cells, the short- and long-lived lifetimes of Oct4-chromatin interactions
decrease while the proportion of freely diffusing Oct4 molecules increases (III). In contrast, the dynamics of the
TF does not change at foci (IV).

Figure 4 compiles some of the observations performed in this work; we only represent the dynamics of Oct4
to simplify the scheme.

In the undifferentiated state, Oct4 molecules diffuse within the nucleus and may interact with a variety of
chromatin targets (I); additionally, TFs may cluster in foci (II) that colocalize with compacted chromatin; the
interactions of TFs at foci last longer than those observed at the nucleoplasm.

During the initial stages of differentiation, Oct4 interact weaker with chromatin targets in the nucleoplasm
(IIT) probably due to the modifications in the chromatin organization. Additionally, new Oct4 foci form during
differentiation. Whereas the chromatin interaction landscape of Oct4 at each focus does not change (IV), the new
foci sequester a higher amount of TF molecules. As a consequence, the number of Oct4 molecules available for
interactions with specific chromatin targets diminishes probably modulating the transcriptional output.

Taken together, our results reveal that early differentiation cues trigger a dynamical reorganization of Oct4
and Sox2 within the nuclear space before their downregulation. Considering that the dynamical distribution of
TFs between nuclear reservoirs define how these molecules find their specific targets on chromatin, their redistri-
bution at early differentiation stages could impact on gene expression.

Methods

Cell culture and differentiation. The parental, mouse ES cell line (W4) was provided by the Rockefeller
University Core Facility. ES cells were maintained on 0.1% gelatin-coated dishes, passaged every 3 days using
trypsin (Gibco), and grown at 37°C in a 5% CO, (v/v) incubator. Cells were cultured in DMEM (Gibco) supple-
mented with 15% ES-cell qualified fetal bovine serum (Gibco), 100 mM MEM nonessential amino acids (Gibco),
2mM l-alanyl-L-glutamine (Gibco), 0.5 mM 2-mercaptoethanol, 100 U/mL penicillin (Gibco), 100 mg/mL strep-
tomycin (Gibco), 1000 u/ml leukemia inhibitory factor (LIF), 1 pM PD0325901 (Tocris) and 3 .M CHIR99021
(Tocris), hereafter named propagation medium. HEK 293 T cells (ATCC) were cultured in DMEM supplemented
with 10% fetal bovine serum (Internegocios S.A.), 100 U/mL penicillin (Gibco), 100 mg/mL streptomycin
(Gibco). To induce non-directed differentiation, ES cells were cultured in the absence of LIF and 2i during the
periods of time indicated in the text.

Lentiviral transduction and generation of stable cell lines. Lentiviral vector production was car-
ried out by PEI (Poliscience Inc.) transfection of HEK 293 T cells with the envelope plasmid psPAX2 (Addgene
#12260) and packaging pMD2.G plasmid (Addgene #12259), together with the lentiviral vectors of interest
(pLV-PGK-rtTA3G-IRES-bsd, pLVTRE3G-YPet-Sox2, pLV TRE3G-YPet-Oct4)*, kindly provided by Dr. David
Suter (Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland). Lentiviral
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particles-containing supernatants were collected 48 and 72 h after transfection, filtered through a 0.45 pm syringe
filter and supplemented with 7 pug/ml polybrene (Sigma). Target parental ES cells were seeded at ~100,000 cells
per well of a 6-well plate and incubated for 24 h. Then, cells were transduced twice every 24 h with 1 ml of each
fresh lentiviral supernatants collected as described above. After each round, cells were spinfected for 45 min at
750 xg. Finally, cells were incubated for 24 h and the medium was replaced with propagation medium. Selection of
transduced cells with blasticidin antibiotic started 48 h after transduction at a concentration of 8 jig/ml and main-
tained for 15 days, with a medium change every other day. To enrich the population of cells with those containing
the YPet Dox-inducible transgene, cells were sorted by flow cytometry in a FACS Aria II flow cytometer (BD
Biosciences), collected, disaggregated to single cells and plated at a density low enough to grow as isolated colo-
nies. Clone isolation was performed manually with a needle, picking the colonies and replating them separately in
a 24-well plate. After amplification of each clone, validation was performed by cell cycle analysis, immunostaining
and RT-qPCR. Finally, two clones were selected and gave rise to the corresponding ES cell lines denominated
Oct4-YPet and Sox2-YPet. After performing the dose and time response curves described in the results section,
doxycycline was used at a final concentration of 5ug/ml for 48 h to perform all the experiments.

Cell transfection. For transient expression of H2B-Cherry and HP1a-EGFP, cells were plated dur-
ing 24 h onto coverslips coated with PDL and laminin as described above. Transfection was carried out using
Lipofectamine 2000 (Thermo Fisher) and 1.6 ug of plasmid DNA in Opti-MEM medium (Thermo Fisher). The
transfection medium was replaced after 24 h with fresh culture medium. Microscopy observations were per-
formed 48 h after transfection.

Cell cycle analysis. DNA content was analyzed as previously described®. Briefly, single cell suspensions
were fixed in 70% ethanol, rehydrated in PBS and stained with 25 pig/ml Propidium Iodide (Sigma). After 30 min
incubation, samples were analyzed in a FACS Aria II flow cytometer (BD Biosciences). Data was compiled using
FlowJo software.

Immunostaining. For immunofluorescence experiments, cells were grown on coverslips coated with Geltrex
(Thermo Fisher) and cultured for at least 48 h. Cells were fixed with 4% paraformaldehyde, permeabilized with
0.1% Triton X-100 PBS-Tween 20 (PBST) and blocked with 10% donkey serum (Sigma) in PBST. Primary anti-
bodies for Nanog (Peptrotech), Oct4 (Santa Cruz), Sox2 (Santa Cruz) and SSEA-1 (Santa Cruz) in block solu-
tion were added to the samples, incubated at 4 °C overnight and then washed 3 times with PBST for 10 min.
Secondary antibodies (Invitrogen) and DAPI in block solution were added and incubated at room temperature
for 1 h. Samples were washed as described before and mounted on slides with Mowiol. The antibodies used are
listed in Supplementary Table S1.

Quantitative Real-Time PCR (RT-qPCR). RT-qPCR was performed and analyzed as previously
described®, with minor modifications. Briefly, total RNA was extracted with QuickZol (Kalium Technologies)
following manufacturer’s instructions and reverse transcribed using RevertAid Reverse Transcriptase (Thermo
Fisher). Quantitative Real time PCR amplification of cDNA was carried out using FastStart SYBR Green Master
(Roche) in a LineGene 9600 engine (BioER). Sequences for all primers used in qPCR analysis are listed in
Supplementary Table S2. At least 2 biological replicates were performed in all the experiments, with 2 technical
replicates for each condition. Gene expression was normalized to the geometrical mean of Gapdh and Pgkl
housekeeping values.

Cells preparation for imaging experiments. For microscopy measurements, 18-mm round coverslips
were placed into the wells of a 12-multiwell plate, incubated for 1h with a 100 p.g/ml Poly-D-Lysine (PDL) (Sigma)
and 2 h with a solution 20 pg/ml laminin (Thermo Fisher) at 37°C in a 5% CO, incubator. Next, 70,000 cells were
added in each well and incubated with culture medium. Doxycycline was added 48 h before observation.

Fluorescence microscopy. Inmunofluorescence images were acquired in a widefield Olympus IX71 micro-
scope (Olympus) equipped with an EXi Aqua Bio-Imaging Microscopy Camera (Qimaging).

Confocal experiments were run in a FV1000 Olympus microscope (Olympus). YPet and GFP fusion proteins
were visualized using a multi-line Ar laser tuned at 488 nm as excitation source, whereas a 543 nm He-Ne laser
was used for mCherry fusion proteins (average powers at the sample ~1 uW). The laser light was reflected with
dichroic mirrors 405/408 or DM405/488/543/635 for single-color and dual-color experiments, respectively and
focused through an Olympus UPLSAPO 60X oil immersion objective (NA = 1.35) into the sample. Fluorescence
was collected in the range of 500-600 nm (single-color experiments) or split into two channels set to collect
between 500-530 nm and 600-700 nm (dual-color experiments).

Fluorescence correlation spectroscopy. Single-point FCS measurements were performed in the FV1000
microscope described above, set in the pseudo photon-counting mode. The laser was focused at a position in a
cell nucleus selected by the user and the intensity was collected at 50000 Hz during ~3 min. We only run a single
experiment in each cell to minimize its photodamage.

ACEF data were calculated using SimFCS program (LFD, Irvine, CA, USA) and were fitted with Eq. (1) that
considers the diffusion of the TFs and their binding to two populations of fixed sites':
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where N is the mean number of fluorescent molecules in the confocal volume, T, is the characteristic diffusion
time, w is the ratio between axial and radial waists of the observation volume, and fp, is the freely diffusing popula-
tion fraction. f;, and fi,,, are the population fractions bound to short-lived and long-lived targets, and Ty, and
Tiong ar€ their residence times, respectively. The reciprocal of the residence time corresponds to the dissociation
constant kg

Image analyses. The coefficient of variation (CV) was calculated for each nucleus image as the ratio between
the standard deviation (SD) of the nucleus intensity and the mean intensity of the nucleus. Nucleoli were not
considered in these calculations since H2B-mCherry and TFs-YPet are excluded from these nuclear structures.

Foci were identified in images of nuclei binarized considering an intensity threshold equal to the mean inten-
sity + 2.SD. The number, size and mean intensity of these foci were then calculated using the Image] plugin
“Analyze Particles”. We only considered those structures with sizes >optical resolution.

Estimation of concentration of YPet-TFs relative to the endogenous proteins. The proportion
of Oct4-YPet relative to endogenous Oct4 was estimated quantifying the intensity of the corresponding bands in
Western blot membranes using the Image] Gel Analyzer plugin. We should mention that this approach only pro-
vides an estimation of the relative protein levels since the affinity of the antibody for the fusion and endogenous
proteins could be different.

The concentration of Sox2-YPet was estimated using point-FCS* and compared to the endogenous levels
reported in the literature. Briefly, the mean concentration of fluorescent molecules was calculated as V/(G,V.ons)
where G, is the value of G extrapolated to T—0, Vioue = T 72 Wy, 2 W,/ /8 is the observation volume®” and ~ is a
geometric factor equal to 0.35 for a confocal setup.

Statistical analysis. Experimental results were expressed as means + SEM of at least three biological repli-
cates. Statistical significance between groups was analyzed using Lineal Mixed Models (LMM) followed by com-
parisons between means using the Tukey test, when required. Differences were regarded as significant at p <0.01.
Residuals fitted normal distribution and homogeneity of variance. Otherwise, transformation of data was applied
in some cases to meet both assumptions.

Comparison between the parameters presented in Supplementary Fig. S9 was performed using
randomly-selected subsets of each parameter at the nucleoplasm to generate data sets with similar sizes to that
collected at foci. Statistical tests showed identical results with all the subsets.

Statistical analysis was performed using either Infostat® or the gls package of RStudio.
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