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A B S T R A C T

Nitro-fatty acids (NO2-FA) undergo reversible Michael adduction reactions with cysteine and histidine residues leading to the post-translational modification (PTM)
of proteins. This electrophilic character of NO2-FA is strictly related to their biological roles. The NO2-FA-induced PTM of signaling proteins can lead to modifications
in protein structure, function, and subcellular localization. The nitro lipid-protein adducts trigger a series of downstream signaling events that culminates with anti-
inflammatory, anti-hypertensive, and cytoprotective effects mediated by NO2-FA. These lipoxidation adducts have been detected and characterized both in model
systems and in biological samples by using mass spectrometry (MS)-based approaches. These MS approaches allow to unequivocally identify the adduct together with
the targeted residue of modification. The identification of the modified proteins allows inferring on the possible impact of the NO2-FA-induced modification. This
review will focus on MS-based approaches as valuable tools to identify NO2-FA-protein adducts and to unveil the biological effect of this lipoxidation adducts.

1. Introduction

During the last decade, nitrated lipid gained the interest of the
scientific community, as new endogenous signaling molecules with
important regulatory role in health and disease. Research on this is
aimed at understanding the reactivity of reactive nitrogen species (RNS)
with lipids, to unravel their occurrence in vivo and their biological
roles. Among nitrated and nitroxidized lipids identified so far, the nitro-
fatty acids (NO2-FA) are best-known products of RNS. These products
have been widely detected in several tissues [1–5] and biofluids [6–12],
and are nowadays a hot topic in nitro lipidomics. NO2-FA are con-
sidered important bioactive molecules and have been associated with
anti-inflammatory [6,13–24], anti-hypertensive [25–32], and anti-
thrombotic properties [31,33] and cytoprotective effects [2,34–37].
More recently, other nitrated and nitroxidized lipids [1,6–8,13,38] and
also nitro derivatives of phospholipids (PL) [39,40] and triglycerides
(TAG) [41] have been detected in biological samples and were asso-
ciated with protective and beneficial effects, but they are scarcely stu-
died. Also, esterified forms of NO2-FA have been found as they can be
generated either by direct nitration of the esterified fatty acyl moiety or
by the incorporation of NO2-FA [41].

NO2-FA are also known as nitroalkenes derivatives of fatty acids
since it includes a nitro group linked to the double bond (alkene group)
of the unsaturated fatty acyl chain, and the nitro-alkene moiety makes

these derivatives highly reactive with electrophilic properties. These
endogenous electrophilic lipids are capable to covalently link to pro-
teins, via Michael addition [42], leading to the formation of lipoxida-
tion adducts. This type of post-translational modification (PTM) of
proteins can modulate protein function, which underlies some of the
biological roles attributed to the NO2-FA (Fig. 1). Some of these PTMs
are shown to elicit a protective effect, which may provide clues for new
therapeutic strategies and new drugs.

Detection of NO2-FA and especially their lipoxidation adducts are
still a challenge that is mostly addressed by MS approaches. MS-based
approaches have been extensively applied in the study of NO2-FA-
protein adducts [4,7,34,42–44], providing detailed structural informa-
tion of these adducts both in vitro and in vivo. LC-MS and MS/MS-based
proteomics approaches have been performed to characterize the NO2-
FA protein adducts and the sites of adduction [34,42,45–48]. Very re-
cently peptide adducts were also reported for NO2-FA esterified in
phospholipids using biomimetic in vitro studies and MS approaches
[49].

In this review we will discuss the formation and type of nitrated FA
found in biological systems, their structure and reactivity with proteins
and characterization by a MS-based proteomic and lipidomic approach
that allowed to disclose possible biological roles associate with nitrated
lipids-protein adducts.
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2. Endogenous nitro-fatty acids

2.1. Chemistry and analysis

NO2-FA are endogenous chemical entities generated by the attack of
nitric oxide (NO)-derived reactive species, collectively called reactive
nitrogen species (RNS), with unsaturated fatty acids. Nitrogen dioxide
(•NO2), nitronium cation (NO2

+), and peroxynitrite/peroxynitrous acid,
whose decomposition yields •NO2 and hydroxyl radical (•OH), were
reported as RNS that most frequently initiate nitration or nitroxidation
reactions in biomolecules, including lipids. The prevalence and the
yield of one process of these processes over the others are dependent on
the oxygen levels, concentration of ROS versus RNS, the presence of
secondary target molecules (scavengers, thiols, and transition metals),
pH, and the partition between hydrophilic and hydrophobic milieu in
cellular compartments [50]. The mechanism of FA nitration and ni-
troxidation in biological systems is not yet wholly undisclosed, and
there are some alternative routes to explain the generation of NO2-FA
(Fig. 2). The free radical-induced nitration of FA mediated by •NO2 is
one of the most prominent reaction in vivo as a source of NO2-FA [51].
The endogenous formation of NO2-FA during free radical-mediated
nitration reactions occurs in several biological processes such as di-
gestion [52], metabolic stress, and inflammatory conditions [53]. Thus
NO2-FA were already identified in human red blood cells [8,9], plasma
[6,8–10,12], urine [6,7], and tissues [1–5] at concentrations ranging
from picomolar [12] to micromolar [6]. Dietary sources of nitrite can
also leads to the generation of NO2-FA via acid-catalyzed nitration re-
actions [52,54–56]. Recently, NO2-FA were also reported in plants,
fresh olives, and in extra virgin olive oil [56,57], which are considered
external sources of NO2-FA and can contribute to rising the endogenous
levels of NO2-FA [58].

The most common NO2-FA identified in vivo were the nitrated
forms of the nitro-oleic acid (NO2-OA), nitro-linoleic acid (NO2-LA),
and nitro-conjugated linoleic acid (NO2-cLA) [6,8,9]. However, the
reaction of RNS with fatty acids can lead to the generation of several
nitroalkene derivatives of other fatty acids, such as the nitro-palmitoleic
acid (NO2-POA), nitro linolenic acid (NO2-LNA), nitro-arachidonic acid
(NO2-AA), nitro eicosapentaenoic acid (NO2-EPA), and nitro-doc-
osahexaenoic acid (NO2-Dha) [6,8,38,51]. Different stereo or positional
isomers of NO2-FA were detected in vitro and in biological samples
[6,8,38], as represented in Figs. 3–5 and Table 1.

Nevertheless, the recovery of NO2-FA from biological samples, to-
gether with their detection and accurate quantification is a challenge

due to their low concentration, stability issues, metabolism (β-oxidation
and saturation/desaturation reactions) [59], reactivity with proteins
[59] and esterification [39–41], and different distribution among tis-
sues and biofluids [6,12]. In line with these limitations, there has been
an effort for the development of specific, standardized and reproducible
methodologies of sample preparation and sensitive analytical ap-
proaches. The advent of more sensitive and sophisticated instruments,
allied with the possibility of high-throughput analysis prompted by MS-
based approaches, combined or not with liquid chromatography (LC-
MS), has been the selected tool for the identification, structural char-
acterization and quantification of free NO2-FA. Indeed, the detection of
these lipids is an indication to disclose the bioactive properties of these
nitrated derivatives. The progress in the field of MS-based approaches
enabled the discovery of NO2-FA and contributed to the knowledge of
NO2-FA biological roles giving information on the structure-function
relationships [60]. The development of improved sample preparation
techniques, chromatographic separations, high-resolution instruments
with great sensitivity, and innovative tools raised the possibility of
detection, structural characterization and quantification of nitro lipids
in human samples and animal models both under physiological and
pathological conditions [1,3,4,8,59,61,62], and also in plants [56] as
summarized in Table 1. The identification of NO2-FA by MS is based on
the detection of specific mass shifts compared to non-modified fatty
acid (FA+45 Da). Using MS-based approaches, NO2-FA are pre-
ferentially analyzed in negative-ion mode as [M-H]− ions [3,63].
However, positive-ion mode ionization can also occur, and NO2-FA can
also be identified as [M+H]+ [26], [M+Li]+ [51], [M+NH4]+

[9,41], and [M+Na]+ ions [9]. Tandem mass spectra acquired both in
positive- and negative-ion mode provides information that allows the
structural characterization of NO2-FA [8,38,51,63,64]. The fragmen-
tation pattern of NO2-FA under tandem MS (MS/MS) conditions in-
cludes the typical neutral losses of 47 Da (HNO2) and product ions
formed by cleavage of the hydrocarbon chain in the vicinity of the NO2

group that allow assigning this modified FA. The differentiation of
isomers can be addresses by the identification of reporter fragment ions
that are formed by cyclization, followed by heterolytic carbon chain
fragmentation, which allows pinpointing the correct position of the
NO2 group [2,63]. These product ions have been used as diagnostic ions
broadly employed for targeted analysis and quantitation of specific
NO2-FA using reversed phase LC-MS/MS approaches, in biomimetic
systems and in cells, tissues and biofluids
[3,6,8–10,12,17,38,59,65,66]. Structural information gathered by
using MS studies can be further confirmed by infrared and nuclear

Fig. 1. Schematic representation of nitrated lipids pathways: from their generation to their biological effect.
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magnetic resonance analysis for the confirmation of the functional
groups and the final structure [6,9,10,30,31,51].

The generation of NO2-FA can be considered as the first step of
nitration reactions. These species can be precursors of other nitrated
and nitroxidized species because NO2-FA can undergo additional re-
action with ROS and RNS to be further nitrated, leading to the forma-
tion of nitroso, dinitroso, nitronitroso, di and trinitro species, or oxi-
dized generating the assorted nitroxidized species as nitrohydroxy,
nitrohydroperoxy, nitro-epoxy and nitro-keto (Table 1)
[3,6,8,26,54,64]. All of these derivatives were already identified by
(LC)-MS and characterized by (LC)-MS/MS [1,6,9,38]. In fact, the great
sensitivity of MS-based approaches allowed to identify both nitro and
nitrohydroxy derivatives of palmitoleic, oleic, linoleic, linolenic, ara-
chidonic and eicosapentaenoic acids in human plasma and urine [6].
However by far the NO2-FA are the most studied mostly because, in
opposition to other nitrated and nitroxidized FA, they are electrophilic
molecules with great capability to react with protein with the formation
of lipoxidation adducts.

2.2. Biological roles of nitro-fatty acids as new metabolic mediators,
signaling molecules, and new therapeutic drugs candidates

NO2-FA have raised the interest of the scientific community in last
years, mainly because of their biological roles as key mediators in
physiological and pathophysiological processes, as demonstrated in a
variety of preclinical animal models of disease and in plants
[2,5,13,15,20,28,32,34,45,56]. They were assigned as biologically re-
levant and putative signaling molecules in cardiovascular disease
[28,33], myocardial ischemia/reperfusion and ischemia pre-
conditioning [1,2,24], nephropathy [24], renal ischemia/reperfusion

[24], diabetes and metabolic syndrome [14], pulmonary inflammation
[15,67] and chronic inflammatory disease [65]. NO2-FA reach en-
dogenous levels that allow them to mediate pivotal signaling actions as
cytoprotective and pro-survival players [2,34–37], and based on their
pleiotropic actions, NO2-FA has emerged as potential therapeutic agents
with high potential for therapeutic use (Table 2). In fact, NO2-FA al-
ready undergo clinical trials [68]. The 10-NO2-OA (CXA-10) demon-
strated promising pharmacokinetic and pharmacodynamics character-
istics during preclinical experiments [61,68,69]. CXA-10 is currently in
phase II clinical trials for the treatment of chronic inflammatory and
metabolic-related diseases, namely focal segmental glomerulosclerosis
and pulmonary arterial hypertension, since it demonstrated beneficial
effects when administrated via intravenous injections or through in-
gestion [61,68,69].

The biological actions of NO2-FA are mediated via a) decay reac-
tions and transduction of nitric oxide (•NO) signaling actions [29,70],
since NO2FA can be considered NO donor; b) via receptor-dependent
and c) via electrophilic adduction reactions to proteins [42], with for-
mation of lipoxidation adducts. All these processes mediate important
and specific signaling roles. These signaling actions are summarized in
Table 2. Nitric oxide release by NO2-FA has been associated with po-
tential antioxidant properties through inhibition of lipid peroxidation
process [71]. Additionally, the release of •NO by both NO2-FA and ni-
trohydroxy FA derivatives has also been related with vasorelaxation
properties of these nitrated lipid [26,29–31,51]. The nitro derivatives of
arachidonic acid, NO2-AA and nitrohydroxy-AA, were also reported to
be able to release •NO and thus to induce cGMP-dependent vasor-
elaxation in rat aortic ring in an endothelium-independent manner
[26,31,51]. NO2-LA, NO2-cLA and nitrohydroxy-LA promoted vessel
relaxation via cGMP-dependent and endothelial-independent manner in

Fig. 2. Representative mechanisms of nitro-fatty acid
(NO2-FA) formation. Radical-induced nitration of un-
saturated fatty acids by nitrogen dioxide (•NO2) yields a β-
nitroalkyl radical that can further react with other •NO2

generating the nitronitrite intermediates. Further loss of
nitrous acid (HNO2) leads to the generation of the ni-
troalkene derivatives also called NO2-FA. Electrophilic
substitution at the double bond mediated by nitronium
cation (NO2

+) also yields NO2-FA.
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pre-constricted rat aortic rings [29,30]. Nevertheless, the •NO release by
nitro lipids remains a controversial issue, and at some level, considered
of minor relevance at endogenous levels [28,29,51,70,72]. Actually,
•NO signaling actions mediated by NO2-FA mainly occurs via cGMP-
independent mechanisms. NO2-FA modulates endothelial (eNOS) and
inducible nitric oxide synthase (iNOS) gene expression and activity and
consequently the eNOS- and iNOS-mediated •NO generation and reac-
tions. Also, NO2-FA modulates a broad array of signaling pathways that
culminates with the downstream activation or inactivation of •NO sig-
naling [67,73,74].

The covalent adduction to key proteins propelled by the electro-
philic character of NO2-FA seems to be the most prominent mechanism
by which these nitro lipids spread their modulatory and protective
actions. The identification and characterization of these NO2-FA-pro-
tein adducts in distinct biological conditions have been achieved by
reversed phase LC-MS-based proteomics approaches
[28,42,56,59,75,76]. This topic will be discussed in more detail in the
next section.

As endogenous molecules, NO2-FA undergo a series of metabolic,
trafficking and clearance pathways that influences the regulation of
activity, half-life and levels of free NO2-FA. Protein adduction and es-
terification in complex lipids [70,77,78] are considered as reservoirs of
NO2-FA, allowing to regulate their endogenous levels [70,77,78]. NO2-
FA–protein adducts are reversible in biological systems [59,73,79] and
NO2-FA esterified forms can be hydrolyzed and mobilized by esterases
and lipases, allowing NO2-FA to return to free active forms [70,80].
NO2-FA can be metabolized via β-oxidation that mediates the formation
of shorter and more polar electrophilic species [59] that retains the
electrophilic power, but also to inactive nitroalkane species [7,59]. In
fact, in humans and rodents, the bio-elimination pathways of 10-NO2-
OA involves the generation of a series of shorter metabolites that were
detected in urine using C18-HPLC-ESI-MS and MS/MS using both LTQ
Velos Orbitrap and API 5000 triple quadrupole instruments [61].

However, the electrophilic functionality of NO2-FA is irreversibly in-
activated after reduction and conversion to the correspondent ni-
troalkane derivative by the nitroalkene saturase prostaglandin re-
ductase-1 [81]. Both saturation and desaturation of the double bond of
NO2-FA are related with the generation of non-electrophilic NO2-FA
[59], which are nitro derivatives without signaling abilities. Adduction
to peptides or proteins seems to have other proposes, such as the case of
conjugation with GSH, which increases the urinary excretion rate of
NO2-FA excreted in urine [82]. Incorporation of NO2-FA into lipopro-
teins is another way for NO2-FA to enter in circulation and to be sys-
temically distributed among tissues. The modulation of all of these di-
verse pathways will impact the potential reactivity, the efficacy of
signaling actions and behavior of these nitration products.

The signaling actions of NO2-FA are also mediated through the
modulation of the structure and regulation of the expression and ac-
tivity of anti- and pro-inflammatory proteins, heat shock proteins and
phase II antioxidant response proteins. The capability of NO2-FA to
react with specific peptides and proteins determines the role of this
nitrated lipids in redox regulation with consequence in cell signaling, as
will be described in the following section.

3. Nitro-fatty acids and protein lipoxidation adducts

3.1. Main target and biological significance of PTM by nitro-fatty acids

NO2-FA are electrophilic compounds, able to react via reversible
Michael addition with nucleophiles within key proteins, leading to the
formation of lipid-protein adducts (lipoxidation) in a process generally
denominated nitroalkylation [83,84]. The target nucleophiles in pep-
tides and proteins include the deprotonated thiolate group of cysteine
and the nucleophilic amino group of the imidazole moiety of histidine
or the amino groups of lysine and arginine [83–85]. The high electro-
negative olefinic NO2 group facilitate the addition to the double bond of

Fig. 3. Proposed structures for nitro-oleic (NO2-OA) and nitro-linoleic acids (NO2-LA), with assignment of their different positional isomers, which were previously
detected in in vitro studies and/or biological samples.
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Fig. 4. Proposed structures for nitro arachidonic acid (NO2-AA), with assignment of its different positional isomers, which were previously detected in in vitro studies
and/or biological samples.

Fig. 5. Proposed structures for nitro-docosahexaenoic acid (NO2-DHA), with assignment of its different positional isomers, which were previously detected in in vitro
studies and/or biological samples.
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Table 1
Nitro-fatty acids identified in biological samples and in vitro mimetic model systems.

In vitro mimetic model systems

NO2-FA Isomer Experimental model Method Ref.

Nitro-oleic acid (NO2-OA)
NO2-OA 9-NO2-OA Gastric juice artificial + NO2

− C18-HPLC-ESI-MS and MS/MS in a API 4000
triple quadrupole and LTQ Orbitrap Velos

[56]
10-NO2-OA

Pancreatic lipase-digested EVOO
NO2-OA MPO + H2O2 + NO2

− C18-HPLC-ESI-MS and MS/MS in a hybrid triple
quadrupole-linear ion trap (4000 Q-Trap)

[6]
ONOO−

NO2
− in acidic conditions

NO2-OA 9-NO2-OA ●NO2 C18-HPLC-ESI-MS and MS/MS in API 2000 triple
quadrupole

[80]
10-NO2-OA

Nitro-linoleic acid (NO2-LA)
NO2-LA 9-NO2-LA Gastric juice artificial + NO2

− C18-HPLC-ESI-MS and MS/MS in an API 4000
triple quadrupole and LTQ Orbitrap Velos

[56]
10-NO2-LA
12-NO2-LA Pancreatic lipase-digested EVOO
13-NO2-LA

NO2-LA NO2
− in acidic conditions C18-HPLC-ESI-MS and MS/MS in a Quattro triple

quadrupole
[10]

Nitro-conjugated linoleic acid (NO2-cLA)
NO2-cLA 8-NO2-cLA Gastric juice artificial + NO2

− C18-HPLC-ESI-MS and MS/MS in an API 4000
triple quadrupole and LTQ Orbitrap Velos

[56]
9-NO2-cLA
11-NO2-cLA Pancreatic lipase-digested EVOO
12-NO2-cLA

NO2-cLA 9-NO2-cLA MPO + H2O2 + NO2
− C18-HPLC-ESI-MS and MS/MS in an API 5000

triple quadrupole, API Q-Trap 4000, and Velos
Orbitrap

[3]
ONOO−

12-NO2-cLA ●NO2

NO2-cLA NO2-cLA Photocontrollable peroxynitrite donor 2,3,5,6-tetramethyl-4-
(methylnitrosoamino)phenol (P-NAP)

ESI-MS and MS/MS in a hybrid triple
quadrupole-linear ion trap (4000 Q-Trap)

[38]
Multiple nitro, nitroso, and
nitroxidized derivatives

Cholesteryl-nitro linoleic acid (Chol-NO2-LA)
Chol-NO2-LA NO2

− in acidic conditions C18-HPLLC-ESI/MS/MS in a Quattro II triple
quadrupole

[9]

Chol-NO2-LA NO2
− in acidic conditions ESI–MS and MS/MS in a 2000 Q-Trap [66]

C18-HPLC-ESI–MS and MS/MS in a 2000 Q-Trap
Nitro-arachidonic acid (NO2-AA)
NO2-AA ●NO2 C18-HPLC-ESI-MS and MS/MS in an Esquire ion

trap
[26]

NO2-AA 9-NO2-AA NO2
− in acidic conditions C18-HPLC-ESI-MS and MS/MS in a hybrid

quadrupole-linear ion trap
[51]

12-NO2-AA
14-NO2-AA
15-NO2-AA

Biological samples
Nitro-palmitoleic acid (NO2-POA)
NO2-POA Human plasma and urine C18-HPLC-ESI-MS and MS/MS in a hybrid triple

Q-linear ion trap (4000 Q-Trap)
[6]

Nitrohydroxy-palmitoleic acid (NO2OH-POA)
NO2OH-POA Human plasma and urine C18-HPLC-ESI-MS and MS/MS in a hybrid triple

Q-linear ion trap (4000 Q-Trap)
[6]

Nitro-oleic acid (NO2-OA)
NO2-OA Human red cells, plasma and urine C18-HPLC-ESI-MS and MS/MS in a hybrid triple

Q-linear ion trap (4000 Q-Trap)
[6]

NO2-OA 9-NO2-OA Myocardial heart tissue from a murine model of focal myocardial
ischemia/reperfusion

C18-HPLC-ESI MS/MS [1]
10-NO2-OA

NO2-OA NO2-OA and β-oxidation
metabolites

NO2-OA acute intravenous treatment of mice with LPS-induced
inflammation

C18-HPLC-ESI-MS/MS in an API 5000 triple
quadrupole

[107]

NO2-OA NO2-OA and its metabolic
derivatives

Human and rat urine after intravenous administration of NO2-OA C18-HPLC-ESI-MS and MS/MS in a LTQ Velos
Orbitrap and API 5000 triple quadrupole

[61]

NO2-OA NO2-OA and its metabolic
derivatives

Mitochondrial extracts from rat hearts after ischemia-reperfusion BME trans-nitroalkylation + C18-HPLC-ESI-MS
and MS/MS in a 4000 Q trap hybrid triple
quadrupole-linear ion trap

[62]

Dinitro-OA Rat cardiomyocytes treated with peroxynitrite donor 3- C18-HPLC-ESI-MS and MS/MS in a hybrid triple
quadrupole-linear ion trap (4000 Q-Trap)

[38]
morpholinosydnonimine (SIN-1)

NO2-OA NO2-OA and its Saturation,
Desaturation

Plasma from NO2-OA-treated mice C18-HPLC-ESI MS/MS coupled to an API 4000
hybrid triple quadrupole or API 5000 triple
quadrupole

[59]

β-oxidation metabolic
derivatives

NO2-OA NO2-OA saturation
derivatives

NO2-OA-treated BAEC cells C18-HPLC-ESI MS/MS coupled to an API 4000
hybrid triple quadrupole or API 5000 triple
quadrupole

[59]

NO2-OA NO2-OA and its derivatives Liver lipid extracts from NO2-OA-treated mice C18-HPLC-ESI MS/MS coupled to an API 4000
hybrid triple quadrupole or API 5000 triple
quadrupole

[59]

Nitrohydroxy-oleic acid (NO2OH-OA)
NO2OH-OA Human red cells, plasma and urine C18-HPLC-ESI-MS and MS/MS in a hybrid triple

Q-linear ion trap (4000 Q-Trap)
[6]

(continued on next page)
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Table 1 (continued)

In vitro mimetic model systems

NO2-FA Isomer Experimental model Method Ref.

Nitro-linoleic acid (NO2-LA)
NO2-LA Myocardial heart tissue from a murine model of focal myocardial

ischemia/reperfusion
C18-HPLC-ESI MS and MS/MS [1]

NO2-LA Human plasma and urine C18-HPLC-ESI-MS and MS/MS in a hybrid triple
Q-linear ion trap (4000 Q-Trap)

[6]

NO2-LA Human blood plasma C18-HPLC-ESI-MS and MS/MS in a Quattro triple
quadrupole

[10]

NO2-LA 9-NO2-LA Human red cell membranes and plasma C18-HPLC-ESI-MS and MS/MS in a hybrid triple
Q-linear ion trap

[8]
12-NO2-LA

NO2-LA NO2-LA and its metabolic
derivatives

Mitochondrial extracts from rat hearts after ischemia-reperfusion BME trans-nitroalkylation + C18-HPLC-ESI-MS
and MS/MS in a 4000 Q trap hybrid triple
quadrupole-linear ion trap

[62]

Nitrohydroxy-linoleic acid (NO2OH-LA)
NO2OH-LA Myocardial heart tissue from a murine model of focal myocardial

ischemia/reperfusion
C18-HPLC-ESI MS and MS/MS [1]

NO2OH-LA Human plasma and urine C18-HPLC-ESI-MS and MS/MS in a hybrid triple
Q-linear ion trap (4000 Q-Trap)

[6]

Nitrokto-linoleic acid (NO2-oxo-LA)
NO2-oxo-LA Myocardial heart tissue from a murine model of focal myocardial

ischemia/reperfusion
C18-HPLC-ESI MS/MS [1]

Nitro-conjugated linoleic acid (NO2-cLA)
NO2-cLA Plasma and vaginal lavages after cLA inoculation in the vaginal

lumen from mice infected intravaginally with HSV-2
C18-HPLC-MS/MS in a 6500+ Q-trap or a API
5000

[16]

Nitro-linolenic acid (NO2OH-LNA)
NO2-LNA Human plasma and urine C18-HPLC-ESI-MS and MS/MS in a hybrid triple

Q-linear ion trap (4000 Q-Trap)
[6]

Nitrohydroxy-linolenic acid (NO2OH-LNA)
NO2OH-LNA Human plasma and urine C18-HPLC-ESI-MS and MS/MS in a hybrid triple

Q-linear ion trap (4000 Q-Trap)
[6]

Nitro-arachidonic acid (NO2-AA)
NO2-AA Human plasma and urine C18-HPLC-ESI-MS and MS/MS into a hybrid

triple Q-linear ion trap (4000 Q-Trap)
[6]

NO2-AA Rat cardiomyocytes treated with peroxynitrite donor 3- C18-HPLC-ESI-MS and MS/MS in a hybrid triple
quadrupole-linear ion trap (4000 Q-Trap)

[38]
morpholinosydnonimine (SIN-1)

Nitrohydroxy-arachidonic acid (NO2OH-AA)
NO2OH-AA Human plasma and urine C18-HPLC-ESI-MS and MS/MS in a hybrid triple

Q-linear ion trap (4000 Q-Trap)
[6]

Nitro-Eicosapentaenoic acid (NO2-EPA)
NO2-EPA Human plasma and urine C18-HPLC-ESI-MS and MS/MS in a hybrid triple

Q-linear ion trap (4000 Q-Trap)
[6]

Nitrohydroxy- Eicosapentaenoic acid (NO2OH-EPA)
NO2OH-EPA Human plasma and urine C18-HPLC-ESI-MS and MS/MS in a hybrid triple

Q-linear ion trap (4000 Q-Trap)
[6]

Nitro-Docosahexaenoic acid (NO2-DHA)
NO2-DHA and

dinitro-DHA
Rat cardiomyocytes treated with peroxynitrite donor 3- C18-HPLC-ESI-MS and MS/MS in a hybrid triple

quadrupole-linear ion trap (4000 Q-Trap)
[38]

morpholinosydnonimine (SIN-1)
Nitrohydroxy-Docosahexaenoic acid (NO2-DHA)
NO2OH-DHA Rat cardiomyocytes treated with peroxynitrite donor 3- C18-HPLC-ESI-MS and MS/MS in a hybrid triple

quadrupole-linear ion trap (4000 Q-Trap)
[38]

morpholinosydnonimine (SIN-1)
Nitrohydroxy-Docosapentaenoic acid (NO2OH-DPA)
NO2OH-DPA Rat cardiomyocytes treated with peroxynitrite donor 3- C18-HPLC-ESI-MS and MS/MS in a hybrid triple

quadrupole-linear ion trap (4000 Q-Trap)
[38]

Morpholinosydnonimine (SIN-1)
Nitro-conjugated linoleic acid (NO2-cLA)
NO2-cLA 9-NO2-cLA Pancreatic lipase-digested EVOO C18-HPLC-ESI-MS and MS/MS in an API 4000

triple quadrupole and LTQ Orbitrap Velos
[56]

12-NO2-cLA
NO2-cLA 9-NO2-cLA Urine of healthy humans C18-HPLC-ESI-MS and MS/MS in a LTQ Velos

Orbitrap and AB 5000 or API4000 Q-trap triple
quadrupole

[7]
12-NO2-cLA
β-oxidation-metabolic
derivatives of NO2-cLA

NO2-cLA 9-NO2-cLA Rodents urine, plasma, and tissues (stomach, small intestine,
colon, liver) after supplementation with cLA + NO2

− and gastric
acidification

C18-HPLC-ESI-MS and MS/MS in an API 5000
triple quadrupole, API Q-Trap 4000, and Velos
Orbitrap

[3]

Rodents liver and cardiac mitochondria incubated with NO2
− in

acidic conditions
12-NO2-cLA

Rodents cardiac tissue under ischemia-reperfusion
Raw 264.7 macrophages stimulated with LPS/IFNγ
Healthy human plasma

NO2-cLA 9-NO2-cLA RAW264.7 macrophages stimulated with LPS/IFNγ and M1, M2
and M0 polarized bone marrow-derived macrophages (BMDM)
treated with cLA

C18-HPLC-ESI-MS and MS/MS in an API 5000 or
a Q-Trap 6500+ and LTQ Velos Orbitrap

[13]
12-NO2-cLA
Reduction and β-oxidation-
metabolic derivatives Mice Peritoneal exudates after zymosan-A induced peritonitis

and cLA supplementation

(continued on next page)
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the unsaturated hydrocarbon chain of NO2-FA. This addition generates
an important positive density of charge in the methylenic β-carbon
adjacent to the nitration site. The oxygens of the NO2 group withdraw
electrons and the double bond is rearranged over the C–N bond, gen-
erating a carbocation. This conjugation makes the β-carbon adjacent to
the NO2 group electron poor and with potential reactivity. The NO2-FA-
protein covalent adducts generated during the nitroalkylation process
are reversible, which seems to be related with the possibility of redox
regulation [59,73,79] and thus can be associated with the apparent lack
of toxicity of these modified lipids. All of the aforementioned char-
acteristics make NO2-FA as promising pharmacological compounds. In
fact, pre-clinical and human trials has demonstrated the NO2-FA fa-
vorable pharmacokinetics and safety.

The formation of NO2-FA adducts with proteins is considered a key
PTM of proteins. This modification of functionally-relevant proteins can
modulate the patterns of gene expression programs, transcription fac-
tors function, enzyme function and activity, metabolic and in-
flammatory responses, and cell signaling networks [50,59,73,84]. This
lead to a series of downstream signaling events that are intrinsically
related to the biological signaling roles of NO2-FA
[2,6,13–37,61,74,75,86–90] (Table 2). The activation of several of
these pathways are considered essential for restoring the homeostasis
and the redox balance and makes NO2-FA promising pharmacological
compounds [91].

There are several proteins reported to be targets of NO2-FA elec-
trophilic reactivity, for example, the p65 subunit of NF-κB [1,23,92],
heme oxygenase-1 (HO-1) [17,19,22,67,89,93], mitogen-activated
protein kinase (MAPK) phosphatase 1 (MPK-1) [92], Kelch-like ECH-
associated protein 1 (Keap 1) [17,22,46,88], metalloproteinases (MMP-
7 and MMP-9) [75], glyceraldehyde-3-phosphate dehydrogenase
(GAPDH) [42,94], protein disulfide isomerase (PDI) [95], and transient
receptor potential (TRP) channels [96–99] (Table 3). NO2-FA can also
conduct their biological signaling roles by a receptor-dependent sig-
naling action and peroxisome proliferator-activated receptor gamma
(PPARγ) is one of the main targets, which is a significant route for the
anti-inflammatory effect associated with NO2-FA derivatives
[6,23,47,65,93,100–102].

The nitro lipoxidation PTM of the proteins shown in the Table 3
have been correlated with specific biological effects. For example, ni-
troalkylation of the p65 subunit of NF-κB [23], induction of HO-1 ex-
pression [93], PPARγ modulation [100], inhibition of the correct as-
sembly of the active NADPH oxidase (NOX2) [74], and inhibition of
both reductase and chaperone activities of PDI and possible prevention
of NOX2 activation [95] have been associated with the anti-in-
flammatory properties of NO2-FA. Another important anti-in-
flammatory action of NO2-FA is attributed to their capability to induce
PTM of 5-Lipoxygenase (5-LOX) limiting the inflammation induced by
the 5-LOX-dependent leukotriene synthesis. This point deserves to be
further explored as a potential therapeutic/pharmacological strategy
due to the physiological relevance of 5-LOX, namely in inflammation
[45]. Induction of HO-1 and activation of Nrf2 have been correlated
with protection against oxidative stress and antioxidant actions of NO2-
FA [93]. Activation of PPARγ by NO2-FA has also been associated with
glucose uptake and anti-hyperglycemic effects [100]. Inhibition of the

Table 1 (continued)

In vitro mimetic model systems

NO2-FA Isomer Experimental model Method Ref.

NO2-cLA NO2-cLA and β-oxidation-
metabolic derivatives

Urine and plasma healthy humans after ingestion of nitrite, nitrate
and cLA

C18-HPLC-ESI-MS and MS/MS in a 5000 triple
quadrupole

[58]

Cholesteryl-nitro linoleic acid (Chol-NO2-LA)
Chol-NO2-LA Human blood plasma and lipoproteins from normolipidemic/

healthy subjects
C18-HPLLC-ESI/MS/MS in a Quattro II triple
quadrupole

[9]

Chol-NO2-LA J774.1 macrophages timulated with LPS/IFNγ C18-HPLC-ESI–MS and MS/MS in a 2000 Q-Trap [66]

Table 2
Modulation of target signaling pathways by NO2-FA and related biological
properties.

Anti-inflammatory

- NF-kB ↓ [1,13,15,21,23,46,60,66,86,90,108]
- TL4R signaling ↓ [107]
- PG H synthase ↓ [86,109]
- 5-LOX ↓ [45]
- STAT1 ↓ [87,92]
- Cytokine production ↓[1,5,7,13,20,21,23,24,66,86,110–112]
- MPO ↓ [24]
- Leukocyte recruitment, adhesion and infiltration ↓ [13,23,24,87,108,112]
- iNOS ↓ [13,24,36,51,60,66,86,112]
- COX-2 ↓ [112]
- PGE2 ↓ [112]
- Leukocytes number and activity ↓ [5,13,18,108]
- TNF-α ↓ [23]
- Xanthine oxidoreductase (XOR) ↓ [73]
- MKP-1 ↑ [92]
- PPARγ ↑ [6,15,21,65,100]
- TRPA-1 ↑ [98]
- CD36 expression ↑ [100]
- Heme oxygenase 1 (HO-1) ↑ [17,19,22,23,60,66,67,89,93]
- STING ↓ [16]
- PDI ↓ [95]
- NADPH oxidase (NOX 2) ↓ [24,74,113]

Vasorelaxation
- Nitric oxide ↑ [29–31,51]
- eNOS ↑ [114]
- Ang II-induced vasoconstriction ↓ [28]

Antioxidant
- Lipid peroxidation ↓ [71,86]
- Nrf2 ↑ [13,15,22,46,60,88]
- HO-1 ↑ [17,19,22,60,66,89]
- Reduction of protein nitration and oxidation [87]
- Heat shock response (HSP) proteins [22]
- XOR ↓ [73]
- NOX 2 ↓ [24,74,113]
- O2●-, ONOO- and NO production ↓ [36,48,86,108,111,113]

Anti-hypertensive
- AT1R ↓ [28]
- sEH ↓ [32]
- Smooth muscle cell proliferation ↓ [111]
- Prostaglandin F2↓ [111]
- Differentiation of myofibroblast through Smad2 ↓ [113]

Anti-hyperglycemic
- PPARγ ↑ [6,28,100]
- Glucose uptake ↑ [110]
- Insulin sensitivity ↑ [6,28,100]

Anti-thrombotic
- Platelets activation and clotting ↓ [18,31,33]
- Platelet production of thromboxane↓ [109]
- Thrombin-induced aggregation ↓ [33]
- PGHS ↓ [109,115,116]

Cytoprotective
- ANT1 ↑ [2,34]
- UCP-2 ↑ [2]
- Mitochondrial dysfunction ↓ [36,37]
- Mitochondrial respiratory complex ↑ [48]
- Metabolic shift ↑ [48]

Anti-tumorogenic
- Tumor cell proliferation, migration and invasion↓ [90]
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catalytic activity of sHE was associated with anti-hypertensive prop-
erties of NO2-FA [32]. Finally, neuroprotective effects associated with
the decrease of protein aggregation were related with PTMs of α-sy-
nuclein by NO2-OA [35].

3.2. Identification of protein-nitro-fatty acids adducts: tools and challenges

Identification of protein nitroalkylation by NO2-FA has been dis-
closed by using different experimental approaches, as crystallographic
analysis [100,101], western immunoblot-based assay [2,23,32,34,87],
spectrophotometry [7,43,44,94] and MS-based approaches
[4,7,34,42–44]. However, spectrophotometry and immunoassays do
not give detailed structural information and crystallography requires
pure proteins, being difficult to be used in the analysis of complex
biological samples.

Mass spectrometry, namely using matrix assisted laser desorption/
ionization (MALDI) or electrospray (ESI) MS-based proteomics ap-
proaches, often coupled to reverse phase (RP) liquid chromatography
(LC–MS), are the most suitable methods for detection and character-
ization of adducts formed between NO2-FA and proteins. In vitro gen-
eration of NO2-FA-protein adducts, in biomimetic systems, between
standards of NO2-FA and candidate peptides or proteins has been used
as strategy for the initial identification by (LC)-MS and further char-
acterization of these adducts by MS/MS. Data obtained using these
biomimetic approaches using controlled reaction conditions are more
straightforward and relatively easy to analyze. This, in turn, allows to
obtain knowledge on the reactivity of each individual NO2-FA and the
typical fragmentation pathways under MS/MS needed to identify these
adducts. The information gathered by tandem mass experiments con-
cerning the typical fragmentation pathways and reporter ions can be
used to identify these lipoxidation products in complex biological
samples by using MS-based proteomics approaches and to develop MS
target analysis, namely multiple reaction monitoring (MRM) analysis.
This has contributed to achieve the ultimate goal that consists of the
identification of the NO2-FA-protein adducts in complex biological
samples as cells, tissues, biological fluids, which requires specific and
targeted approaches. Bottom-up proteomics approaches are usually
performed. Through these analytical approaches, it is possible to un-
equivocally identify the modified peptides after enzymatic digestion of
NO2-FA-protein adduct, usually using trypsin, followed by the analysis
of the tryptic peptides by reverse-phase (RP)-LC-MS and MS/MS. The
addition of the NO2-FA moiety increases the retention time of the
modified peptides [42], which are identified on the mass spectra as
singly, [M+H]+ ions, or multiple charged ions, [M+nH]n+, based on
the mass shift against the unmodified peptide. This gives information
on the nature of NO2-FA covalently attached to the protein. The ob-
served mass shift in the mass spectra for the Michael adducts will be
equal to the molecular weight of the NO2-FA. Thus, a mass shift of
+ 327 Da and + 325 Da corresponds to the addition of NO2-OA and
NO2-LA, respectively [42]. MS/MS data allows to confirm the nature of
the modification and provides information on the fragmentation pat-
tern of NO2-FA-peptide adducts. These data further allows to pinpoint
the location of the modification site and thus the targeted residue in the
peptide backbone [103,104]. Detailed information to identify the sites
of adduction is revealed by a mass shift of the typical b and y product
ions of the adducted peptide, when compared with the non-modified
one. The modified immonium ions are also useful to confirm the pre-
sence of a modified amino acid residue within the adducted peptide.

RP-LC-ESI-MS and MS/MS were used to detect lipoxidation adducts
formed between NO2-OA or NO2-LA and GAPDH and GSH in vivo in
healthy human red cells [42]. This methodology was also applied to
confirm the post-translational modifications of matrix metalloprotei-
nase by NO2-OA [75], and for the identification of reversible Michael
adducts of NO2-OA and thiols of proteins and GSH in liver and plasma
of NO2-OA-treated mice [59]. Significant levels of protein cysteine
adducts of NO2-OA were also observed in fresh olives, especially in theTa
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peel [56]. AT1-R adducts with NO2-OA were quantified by HPLC-MS/
MS using MRM scan mode in the negative-ion mode as BME adducts
(BME-NO2-OA adducts) after a nucleophilic exchange of NO2-OA from
AT1-R to BME. The presence of exchangeable NO2-OA demonstrated the
direct adduction of AT1-R by NO2-OA, and therefore that AT1-R is a
relevant cellular target for NO2-OA alkylation [28]. RP-LC-MRM scan in
the positive-ion mode ([M+H]+ ions) was applied for the character-
ization of NO2-LA-GSH adducts in vitro and further identification in
MCF7 cells treated with NO2-LA [76]. Nitroalkylation of albumin by
NO2-OA and NO2-LA have been found in the plasma of mice gavage
with these fatty acids [62]. Nitroalkylation of p65 subunit of nuclear
factor κB (NF-κB) was observed in vivo in myocardial tissue of a murine
model of ischemia-reperfusion with intravenous supplementation of OA
and LA [1]. One study also reported the direct analysis by MALDI-TOF-
TOF MS and MS/MS, in positive-ion mode, of adenine nucleotide
translocase 1 (ATN 1) adducts after NO2-LA infusion into intact per-
fused heats allowing to pinpoint that the nitroalkylation of ANT1 by
NO2-LA occurred on Cys57 [34]. Adduction of NO2-OA to PPAR-γ [47],

and to Keap1 [46] are also examples of biological detection and char-
acterization of NO2-OA-protein adducts by MS.

The Michael addition reactions between NO2-FA and proteins is
remarkably selective and depends on the nature and structural features
of the NO2-FA. The fatty acyl chain length and the position of the
electrophilic carbon, i.e., the position of the nitroalkene group, has a
pivotal effect on the reactivity of NO2-FA [102]. Therefore both factors
regulate the formation of NO2-FA-protein adducts and the biological
activity of the NO2-FA [22,42,65,73,100,101]. In spite of its four pos-
sible isomers (at C9, C10, C12 or C13), only the NO2-LA isomers bearing
the NO2 at C10 and C12 were reported to selectively bind to cysteine
285 (Cys285) in the ligand-binding domain and activate PPARγ [101].
The C10 isomer of NO2-OA is more reactive toward to Cys285 in the
ligand binding domain of PPARγ than the C9 isomer [47]. On the other
hand, Keap1 is easily activated by the C9 isomer via nitroalkylation of
Cys273 and Cys288 [22,46]. Xanthine oxidoreductase activity is pre-
ferentially inhibited by the C9 isomer of NO2-OA or a mixture of both
C9 and C10 isomers [73]. It has been reported that NO2-FA with shorter

Fig. 6. ESI-MS spectra of mono charged [M+H]+ (A) and double charged [M+ 2H]2+ ions (B) of NO2POPC-GSH adducts, acquired in Q-Exactive Orbitrap, with
identification of major fragmentation pathways. (Reprinted with permission from [49], copyright 2018 [John Wiley & Sons]).
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acyl chains interact stronger with Nrf2 and NF-kB [60].
Overall, the identification of NO2-FA-protein adducts is important,

because it may give information, as shown in several examples reported
earlier, on the potential protein targets whose modulation by NO2-FA
can have potential therapeutic interest.

4. Esterified nitro-fatty acids

4.1. Nitrated phospholipids and their lipoxidation adducts

In spite of their free forms, NO2-FA can be stabilized by esterifica-
tion in more complex lipids in hydrophobic compartments, as the bio-
logical membranes. Nitrated derivatives of phospholipids were identi-
fied in biomimetic model systems and also in vivo [39,40]. In mimetic
model studies, nitrated PLs were generated after in vitro incubation of
PL standards (phosphatidylcholines, PCs and phosphatidylethanola-
mines, PEs) and NO2BF4, and its characterization was performed using
C5-LC-MS and MS/MS in a Linear ion trap [39,40]. Nitrated PCs and
nitrated PEs were detected by HILIC-LC-MS and MS/MS-based lipi-
domic approaches in cardiac mitochondria from diabetic rats [39] and
cardiomyoblasts subjected to starvation [40]. Nitrated 1-palmitoyl-2-
oleyl-sn-glycero-3-phosphocholine (nitrated POPC) was reported to
have antioxidant properties as scavenging agent, mediated by its anti-
radical potential and ability to inhibit lipid peroxidation. Anti-in-
flammatory properties of nitrated POPC, related with its ability to in-
hibit iNOS expression in LPS-activated macrophages, were also re-
ported [105].

NO2-FA incorporation in PLs was also reported by using C18-HPLC-
ESI-MS and MS/MS in API 4000 Q-trap triple quadrupole in adipocytes
supplemented with NO2-SA, NO2-OA, NO2-cLA, and NO2-LA, before and
after acidic hydrolysis. The incorporation yield and profile was specific
for each supplemented NO2-FA and PL class, being PC the PL class with
highest levels of incorporation of NO2-FA [106].

Nitrated POPC was also found to have the capability to form adducts
with peptides. The identification of the covalent adducts of NO2POPC
with GSH was characterized by tandem MS in different instruments and
the typical fragmentation pathways were disclosed for the first time. In
this study, the NO2POPC-GSH adducts were generated under biomi-
metic conditions and characterized by direct infusion MS and MS/MS
using different instrumental platforms including LXQ linear ion trap, Q-
TOF 2, and Q-Exactive Hybrid Orbitrap. The observed fragmentation
pattern of NO2POPC-GSH adducts included product ions that confirmed
the presence of the phosphatidylcholine moiety (m/z 184.074 and
neutral loss of 183 Da), the nitro group (neutral loss of HNO2), and *y2,
*b2 and *C1 fragment ions of the modified peptide. All of these product
ions pinpointing that NO2POPC was linked to a cysteine residue of GSH
(Fig. 6) and can be used as reporter ions applied in the search of these
lipoxidation adducts in biological samples [49].

4.2. Nitrated triacylglycerides

Nitrated triacylglycerides (NO2-FA-TAG) have been reported in rat
plasma after oral administration of NO2-OA, together with β-oxidation
and dehydrogenation derivatives of NO2-FA-TAG in adipocytes sup-
plemented with NO2-OA. These studies were performed by C18-HPLC-
ESI-MS and MS/MS in API4000 Q-trap triple quadrupole and LTQ Velos
Orbitrap instruments [41]. Another study reported the differential es-
terification profile of NO2-FA and their metabolites in TAGs in adipose
tissue of rats fed with 10-NO2-OA. By using C18-HPLC-ESI-MS and MS/
MS in API 4000 Q-trap triple quadrupole, the NO2-FA were observed to
be preferentially incorporated in monoacyl- and diacylglycerides. This
was found to be in opposite to its reduced metabolites, which were
favorably incorporated in TAGs. These observations were corroborated
by the analysis of the lipid polar and neutral fractions from adipocytes
supplemented with NO2-SA (nitro-stearic acid), NO2-OA, NO2-cLA, and
NO2-LA, after acidic hydrolysis [106].

The occurrence of nitrated phospholipids and triacylglycerides can
be of high relevance at biological level. The NO2-FA-containing phos-
pholipids and triacylglycerides can act as a reservoir of NO2-FA.
Additionally, these esterified NO2-FA can be further mobilized by li-
pases in turn to exert their adaptive and anti-inflammatory signaling
actions. In the case of NO2-FA-containing phospholipids, the NO2-FA
moiety seems to be able to retain the electrophilic character, and thus
the ability to undergo reversible reactions via Michael addition with
key proteins. Also, these phospholipid-esterified NO2-FA can have an
impact as anti-inflammatory and cytoprotective species. The nitration
of esterified NO2-FA or its incorporation into more complex lipids, to-
gether with the occurrence of lipoxidation products of NO2-FA-con-
taining phospholipids, and perhaps NO2-FA-TAGs, can also contribute
to the systemic distribution and metabolism of NO2-FA.

5. Conclusion and future perspectives

NO2-FA own important physiological functions that are mediated
via formation of lipoxidation adducts and associated regulation of
protein function. Several signaling proteins, with key roles in anti-in-
flammatory, anti-hypertensive, anti-hyperglycemic, and cytoprotective
pathways, are targets of NO2-FA adduction. This points to potential for
new therapeutic strategies in important non-communicable diseases as
cardiovascular, renal, pulmonary, and metabolic diseases. Mass spec-
trometry is a promising analytical tool in the detection of NO2-FA-
protein adducts. Nevertheless, there is a need for new methodological
developments to improve the detection of these elusive lipoxidation
adducts, and to obtain more insights regarding the protein targets of
NO2-FA and its roles in biological signaling pathways.
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