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Abstract

The cornerstone of severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2)

detection is reverse‐transcription polymerase chain reaction (RT‐PCR) of viral RNA.

As a surrogate assay SARS‐CoV‐2 RNA detection does not necessarily imply

infectivity. Only virus isolation in permissive cell culture systems can indicate

infectivity. Here, we review the evidence on RT‐PCR performance in detecting in-

fectious SARS‐CoV‐2. We searched for any studies that used RT‐PCR and cell

culture to determine infectious SARS‐CoV‐2 in respiratory samples. We assessed (i)

diagnostic accuracy of RT‐PCR compared to cell culture as reference test, (ii) per-

formed meta‐analysis of positive predictive values (PPV) and (iii) determined the

virus isolation probabilities depending on cycle threshold (Ct) or log10 genome

copies/ml using logistic regression. We included 55 studies. There is substantial

statistical and clinical heterogeneity. Seven studies were included for diagnostic

accuracy. Sensitivity ranged from 90% to 99% and specificity from 29% to 92%. In

meta‐analysis, the PPVs varied across subgroups with different sampling times after

symptom onset, with 1% (95% confidence interval [CI], 0%–7%) in sampling beyond

10 days and 27% (CI, 19%–36%) to 46% (CI, 33%–60%) in subgroups that also
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included earlier samples. Estimates of virus isolation probability varied between 6%

(CI, 0%–100%) and 50% (CI, 0%–100%) at a Ct value of 30 and between 0% (CI, 0%–

22%) and 63% (CI, 0%–100%) at 5 log10 genome copies/ml. Evidence on RT‐PCR

performance in detecting infectious SARS‐CoV‐2 in respiratory samples was

limited. Major limitations were heterogeneity and poor reporting. RT‐PCR and cell

culture protocols need further standardisation.

K E YWORD S

cell culture, infectivity, real‐time polymerase chain reaction, SARS‐CoV‐2, systematic review

1 | INTRODUCTION

Since the outbreak of the coronavirus disease 2019 (COVID‐19)

pandemic the reverse‐transcription polymerase chain reaction (RT‐
PCR) has been the mainstay of the laboratory diagnostics of acute

severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2)

infection.1

The detection of SARS‐CoV‐2 RNA by real‐time RT‐PCR is based

on the amplification of specific gene targets.1 In each amplification

cycle, gene target regions are reversely transcribed until their fluo-

rescence signals become detectable above a threshold level, the cycle

threshold (Ct). The Ct value is inversely proportional to the amount of

amplifiedDNAgene targets in the samples.However, the conversion of

Ct values to genome copy number is not directly possible since for the

interpolation of viral load the generation of a standard curve through

amplification of a known concentration of a target is required.2

As a nucleic acid‐based detection method, RT‐PCR detects RNA

molecules derived from infectious and non‐infectious virus particles,

unpackaged RNA from infected cells and non‐replicating RNA

degradation products. Therefore, the duration of detectability of

SARS‐CoV‐2 RNA in respiratory samples may differ substantially

from the duration of virus isolation3 and can thereby delay hospital

discharge management or quarantine duration. Attempts have been

made to overcome this limitation by inferring a relationship between

Ct values and cell culture results to draw conclusions about infec-

tivity of COVID‐19‐patients.

Virus isolation in cell culture is considered as the best available

laboratory‐based method for assessing infectivity. The inoculation of

permissive cell lines with infectious samples may elicit cytopathic

effects. Confirmatory techniques such as RT‐PCR or immunofluo-

rescence allow differentiation between nonspecific cytotoxic effects

and virus‐induced cytopathic effects as well as molecular identifica-

tion of the causative virus.4

However, virus isolation by cell cultures is laborious and time

consuming, explaining why RT‐PCR‐negative samples are most

commonly not confirmed by independent cell culture in clinical

practice. Therefore, data on sensitivity and specificity may be limited

and other measurements must be used to evaluate the performance

of RT‐PCR compared to cell culture. Cell culture results based on RT‐
PCR‐positive samples allow the classification into true positive (TP)

and false positive (FP), based on which only the determination of the

positive predictive value (PPV) is possible.

We aimed to summarise available study data (i) to determine the

performance of RT‐PCR compared to cell culture in detecting infec-

tious respiratory samples by assessing its diagnostic accuracy, (ii) to

provide a meta‐analysis of PPV, and (iii) to estimate virus isolation

probability in relationship to Ct or log10 genome copies/ml.

2 | MATERIALS AND METHODS

2.1 | Design and registration

This study was conducted according to Preferred Reporting Items for

a Systematic Review and Meta‐analysis guidelines and was registered

in PROSPERO (International Prospective Register of Systematic Re-

views, CRD42021239149).

2.2 | Information sources and search strategy

The literature was searched by an experienced information specialist

(MIM) up to 19 April 2021 using three bibliographic databases:

Cochrane COVID‐19 Study Register, Web of Science, and COVID‐19

Open Access Project Living Evidence on COVID‐19. Details of the

search strategies are available as supplementary material S1. Refer-

ences of included studies were screened to identify additional re-

cords. No language restrictions were applied.

2.3 | Eligibility criteria

Studies that met the following criteria were included in this sys-

tematic review:

Types of studies: Any study design (diagnostic test accuracy (DTA)

studies, case series, cohort studies, cross‐sectional studies) was

eligible for inclusion, provided that the study performed simulta-

neous RT‐PCR and cell culture on respiratory samples to assess

infectivity. In‐vitro, in‐silico, medical intervention, animal studies and

studies with less than 5 participants were excluded. Peer‐reviewed

and preprint studies not otherwise published were included.

Participants: Participants of any gender, ethnicity, age with sus-

pected or known SARS‐CoV‐2 infection.

Index test: RT‐PCR
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Reference standard: Virus isolation with any permissive cell line

was regarded as reference test.

Target condition: Detection of infectious respiratory specimens.

Outcomes: Sensitivity and specificity, PPV, means of Ct values or

log10 genome copies/ml in cell culture positive and negative samples,

cell culture result and corresponding Ct value or log10 genome

copies/ml.

2.4 | Selection of studies

Search results were deduplicated in EndNoteTM X8 and imported

into the web‐based screening software Rayyan (www.rayyan.ai/).

Screening of titles and abstracts of retrieved records was per-

formed to assess eligibility, and relevant articles were read in full

text.

2.4.1 | Data extraction and quality evaluation

The following information from each included study was extracted:

first author name, study design, publication date, country, RT‐PCR

assay details, cell culture details, TP, FP, false negative (FN), and

true negative (TN) values, specimen types, symptom onset to test

time, gene target, means of Ct and log10 genome copies/ml and their

upper bound of virus isolation. Genome copies/ml were converted to

log10 genome copies/ml (S2 represents a full list of extracted data

items). In the case of multiple or overlapping publications, the study

with the most recent date or the largest data set was extracted.

Study quality was evaluated using the Quality Assessment of

Diagnostic Accuracy Studies tool (QUADAS‐2).5 The QUADAS 2 tool

was used for studies reporting sufficient data to create a 2� 2 table (to

derive diagnostic accuracy). As most of the studies did not intend to

assess diagnostic accuracy of RT‐PCR compared to cell culture as

reference standard amodifiedQUADAS2 toolwas created (S3 andS4).

At least two reviewers (AF, HM, KM) independently selected the

literature using Rayyan's blind‐mode, extracted data and evaluated

study quality.

Any disagreement was resolved by consultation with the third

investigator (HH). Where necessary we contacted study authors for

additional information.

2.5 | Data synthesis and statistical analysis

All statistical analyses were performed using the open‐source soft-

ware R (Version 4.1.0).6

2.5.1 | Diagnostic accuracy evaluation

We calculated the accuracy measurements using TP, FP, FN, and TN

values. Chi‐square test was performed to test for equality of

accuracy measurements. Heterogeneity was assessed visually by

forest plots and receiver operating characteristics (ROC) ellipses.

Plots were generated using the mada package (version 0.5.10).7

2.5.2 | Meta‐analysis of PPV

Studies providing the cell culture results amongst RT‐PCR positive

respiratory samples were extracted to analyse the PPVs. The R‐
package meta (version 4.18–2) was used.8 A random effects model

was applied to calculate the pooled PPV with their 95% confidence

interval (CI) (95%‐CI). We estimated heterogeneity using τ2 and

Higgins inconsistency I2 statistic and considered I2 above 50% as high

heterogeneity.9 Subgroup analysis based on sampling time post‐
symptom onset was performed to explain heterogeneity. Based on

the maximum duration of virus isolation in non‐severe cases, which

was reported as 9 days in the meta‐analysis by Cevik et al.,3 following

categories were used in sampling time subgroup analysis: early mixed

(presymptomatic, 0–10 days, >10 days), within 10 days, late mixed

(0–10 days, >10 days), beyond 10 days and not reported sampling

time post‐symptom‐onset.

2.5.3 | Virus isolation probability estimation

Studies with extractable Ct values or log10 genome copies/ml and

corresponding cell culture results were used to perform a logistic

regression to estimate the probability of a positive culture depending

on Ct value or log10 genome copies/ml. To allow visual comparability

of the plots, the extracted raw data from individual studies were

plotted in a common coordinate. Virus isolation probabilities were

estimated at Ct values and log10 genome copies/ml which have been

reported to be associated with nonviable virus (Ct value of 30 and 5

log10). For clarity reasons CI band of each study is provided sepa-

rately in the supplementary material (S13‐32).

3 | RESULTS

3.1 | Literature search and selection

The database search identified 8939 references and 2 additional

records from additional sources. After deduplication, 6219 records

remained, of which 6074 were excluded during title and abstract

screening (Figure 1). One hundred and fourty five full texts were

screened for eligibility and 55 studies were eligible, 53 peer‐
reviewed articles10–51,52–55,56–65 and 2 preprints.66,67

3.2 | Study characteristics

A summary of characteristics of included studies is provided in

Table 1 and detailed information in table S8 and S9. The studies
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analysed cover the period January 2020 to January 2021 of the

pandemic. The majority of the studies consisted of case series

(56.4%) and DTA studies (25.5%) with median sample size of 73.5

(IQR: 35–121.2). The objective of all but one of the DTA studies was

to assess accuracy of rapid antigen test compared to RT‐PCR and cell

culture. Most frequently non‐commercial RT‐PCR assays (54.5%)

were used. The type of specimens varied across studies, with naso-

pharyngeal swabs (29.1%) being the most frequently collected. Most

samples were collected in the late mixed time interval (43.6%). Vero

E6 cells (43.6%) were most commonly used for cell culture and RT‐
PCR (56.4%) was most commonly used as confirmation method of

the cytopathic effect, while passaging of cells and the definition of

cell culture positive result were poorly reported (72.3% not reported)

and the definitions varied. Ct and log10 genome copies/ml cut‐offs of

virus isolation were inconsistent across the studies, ranging from

20.210 to 37.311 for the upper limits of Ct values and from 2.3412 to

6.0137 for the lower limits of log10.

3.3 | Methodological quality

Most studies providing data for diagnostic accuracy assessment

showed high risk of bias (Summary table S5a, individual assessment

S6). This judgement was mainly based on lack of blinding when

conducting the ‘reference standard’14–20 and lack of inclusion of all

samples when performing cell culture14,17,20 or the studies did not

report whether there was a ‘sample processing delay’ before inocu-

lation of clinical specimen.15,16,18–20

Studies which were included for PPV assessment (Summary ta-

ble S5b, individual assessment S7) were most frequently assessed as

high risk of bias in the domains ‘patients selection’ (22 out of 48 were

scored high risk) and ‘flow and timing’ (32 out of 48 were scored high

risk). Most of the studies were observational, thus patient selection

wasnot randomand inclusion and exclusion criteriawere oftenunclear

or not defined at all. ‘Flow and timing’ item was most commonly

affected by the fact that not all patient samples underwent cell culture.

3.4 | Accuracy of RT‐PCR

Sensitivity ranged from 90% to 99% and specificity ranged from 29%

to 92%. Specificity varied across studies (Figure 2) and the chi‐square

test suggested heterogeneity for specificities p < 0.001, while

p = 0.794 was obtained for the test for equality of sensitivities.

Forest plots (Figure 2) demonstrate greater variability of specificities

compared to sensitivities and ROC ellipses (S11) showed a greater

coverage of prediction regions of specificity than of sensitivity. As

sample sizes of sensitivities were smaller than that of specificities

(S8), the variability of specificities most likely arises from heteroge-

neity and not random error.

F I GUR E 1 PRISMA flow diagram demonstrating the literature selection process
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TAB L E 1 Summary of characteristics of included studies

All studies

(n = 55)

n %

Study design

Case series 31 56.4

Diagnostic test accuracy study 14 25.5

Cross‐sectional 8 14.5

Cohort 2 3.6

Continent

Europe 26 47.3

North America 14 25.5

Asia 13 23.6

South America 1 1.8

Australia 1 1.8

Period of the conduct of included studies 01/20–01/

21

Age groups

Mixed 17 30.9

Adults 16 29.1

Children 1 1.8

NR 18 32.7

Symptom status

Mixed (symptomatic‐asymptomatic‐postsymptomatic) 22 40

Symptomatic 11 20

Postsymptomatic 3 5.5

Asymptomatic 1 1.8

NR 18 32.7

Sample size

Range 4‐3790

Median (IQR) 73.5 (35–

121.2)

Sampling time post symptom onset

Early mixed (presymptomatic, 0‐10 d, >10 d) 3 5.5

Within 10 d 6 10.9

Late mixed (0‐10 d, >10 d) 24 43.6

Beyond 10d 9 16.4

NR 13 23.6

Sample types

NPS 16 29.1

Other mixed 16 29.1

Mixed NPS, OPS 10 18

Nasal 3 5.5

Mixed NPS, OPS, Sputum 3 5.5

(Continues)

T A B L E 1 (Continued)

All studies

(n = 55)

n %

Saliva 2 3.6

OPS 2 3.6

Sputum 1 1.8

NR 2 3.6

Cell line used for cell culture

Vero E6 cells 24 43.6

Vero CCL‐81 cells 12 21.8

Vero E6‐TMPRSS2 cells 5 9

Vero cells 4 7.3

Vero C1008 cells 2 3.6

Vero clone 118 cells 2 3.6

Caco‐2 cells 2 3.6

Vero B4 cells 1 1.8

Mixed Vero E6 and ML‐2 cells 1 1.8

Vero‐TMPRSS2 cells 1 1.8

NR 1 1.8

Confirmation method of the cytopathic effect

RT‐PCR 31 56.4

Transmission electron microscope 1 1.8

(scanning) EM and RT‐PCR 2 3.6

IF (Anti‐N‐Ab) 4 7.3

IF (Anti‐S‐Ab) 1 1.8

Plaque assay and IF (Anti‐N‐Ab 1 1.8

RT‐PCR or IF (Anti‐S‐Ab) 1 1.8

RT‐PCR or IF (Anti‐N‐Ab) 1 1.8

RT‐PCR and IF (Anti‐N‐Ab) 1 1.8

RT‐PCR and plaque assay 1 1.8

Plaque assay 1 1.8

Reinfection in new Vero monolayers 1 1.8

NR 9 16.4

Passaging

Performed 13 23.6

Not performed 2 3.6

NR 40 72.3

Cell culture positive definition

Reported 13 23.6

Not reported 42 74.4

RT‐PCR assay

In‐house 30 54.5

(Continues)
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Based on the paucity of studies for sensitivity (n = 5) and the

limitation of the included studies with heterogeneity of index tests,

reference standards, study population, no meta‐analysis of accuracy

measurements could be performed.

3.5 | Meta‐analysis of positive predictive values

A total of 9489 SARS‐CoV‐2 RT‐PCR‐positive respiratory samples

were included.

Subgroup analyses were performed based on sampling time post‐
symptom onset (Figure 3). There was significant between‐study

heterogeneity (I2 = 94%, τ2 = 2.1; p < 0.01).

The PPV was 45% (CI, 26%–65%, six studies) in the subgroup

with sampling time post symptom onset of 0–10 days and 1% (CI,

0%–7%, nine studies) in the subgroup with symptom time beyond

10 days.

The estimated PPVs were 46% (CI, 33%–60%, three studies) for

the subgroup of early mixed sampling time (presymptomatic, 0–

10 days, >10 days), 27% (CI, 19%–36%, 24 studies) for the subgroup

of late mixed sampling time (0–10 days, >10 days) and 36% (95% CI,

23%–52%, 13 studies) for the subgroup without reported sampling

times. Due to poor reporting further subgroup analysis based on

variables which we anticipated as potential sources of variation, such

as symptom status, patients‘ age range, specimen type, cell line used

for virus isolation could not be performed.

The sensitivity analysis excluding studies at high risk of bias

included 10 studies with unclear risk of bias and provided results

comparable to those obtained from all studies (S12).

3.6 | Virus isolation probability in dependence on
cycle threshold or log10 genome copies/ml

We included 13 studies for estimation of virus isolation probability

depending on cycle threshold (N = 9) or log10 genome copies/ml

(n = 4) with sampling size ranging from 3365 to 379058 for studies

T A B L E 1 (Continued)

All studies

(n = 55)

n %

Commercial 14 25.4

Mixed 9 16.4

NR 2 3.6

Target genes reported for viral load quantification

N (1‐3, 1, 2) 21 38.1

E 12 21.8

ORF1ab 2 3.6

RdRP 2 3.6

S 2 3.6

E, RdRP, N 2 3.6

ORF1ab 2 3.6

E pp1ab 1 1.8

S, Nsp2 1 1.8

N, S, ORF1ab 1 1.8

ORF1ab, N 1 1.8

E, Nsp12, N 1 1.8

E, S 1 1.8

ORF1ab, N, E, RdRP 1 1.8

E, N 1 1.8

NR 4 7.3

Abbreviations: anti‐N‐Ab, anti‐nucleoprotein antibody; Anti‐S‐Ab, anti‐
spike antibody; d, days; E, envelope protein gene; IF,

immunofluorescence; N, nucleocapsid protein gene; NR, not reported;

NPS, nasopharyngeal swab; Nsp2/12, nonstructural proteins 2/12 gene;

OPS, oropharyngeal swab; ORF1ab, open reading frame 1ab gene;

pp1ab, polyprotein 1ab; RdRP, RNA‐dependant RNA‐Polymerase gene;

RT‐PCR, reverse transcription polymerase chain reaction; S, spike

protein gene; SD, standard deviation; TMPRSS2, transmembrane

protease; serine 2‐expressing Vero cells.

F I GUR E 2 Forest plot of sensitivity and specificity estimates of reverse‐transcription polymerase chain reaction (RT‐PCR) for detection of
infectious specimen compared to cell culture as reference standard. The squares and horizontal lines represent the point estimate and 95%
confidence interval (CI) for each included study
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providing Ct values and cell culture outcomes and from 1228 to 69046

for log10 genome copies/ml data. Five studies reported Ct values

based on multiple gene targets with corresponding cell culture out-

comes. Among studies reporting Ct values four studies reported

performance of RT‐PCR based on standard curve.12,13,37,64

Virus isolation probability estimation across the studies at Ct

value of 30 and at 5 log10 genome copies/ml ranged for Ct from 6%

(CI, 0%–100%)13 to 50% (CI, 0%–100%)12 and for log10 genome

copies/ml from 0% (CI, 0%–22%)45 to 63% (CI, 0%–100%)12

(Figure 4a,b).

F I GUR E 3 Forest plot shows random
effect meta‐analysis of positive predictive

values|positive predictive value (PPV) for virus
isolation in total reverse‐transcription
polymerase chain reaction (RT‐PCR) positive

respiratory samples, subgrouped by sampling
time post symptom onset. 5 Subgroups based
on sampling time: (1). Early mixed sampling
(presymptomatic, 0–10 days, >10 days), (2).

Within 10 days, (3). Late mixed (0–10 days,
>10 days), (4). Beyond 10 days, (5). Sampling
time not reported. TP – true positive, FP –

false positive, Total = TP + FP
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F I GUR E 4 Overview of virus isolation probability curves assessed by logistic regression. Virus culture outcomes are plotted against Ct

values (N = 9) (a) or log10 genome copies/ml (n = 5) (b) in a common coordinate to allow visual comparability of the curves. Estimation of virus
isolation probability is represented by lines for each study. Colouration of the lines represents specific study, dashed or dotted lines have been
used if studies provided Ct values for several target genes. For clearity reasons the 95% confidence intervals of the estimates are depicted for

each study in supplementary material (S13‐32). (a) Overview of virus isolation probability versus cycle threshold. The dotted vertical line
represents Ct of 30 and corresponding virus isolation probability estimates are depicted in the legend. (b) Overview of virus isolation
probability versus log10 genome copies/ml. The dotted vertical line represents 5 log10 genome copies/ml and corresponding virus isolation

probability estimates are depicted in the legend
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At low virus isolation probability of 10% Ct values varied from

29.137 to 35.912 and from 2.612 to 7.146 log10 genome copies/ml

(supplementary material S33, 34).

As demonstrated by the 95% CI bands (S13‐32) of the proba-

bility estimates the data has a high degree of uncertainty.

4 | DISCUSSION

This systematic review assessed diagnostic accuracy of RT‐PCR assays

compared to cell culture detection, synthesised data on the relation-

ship of Ct or log10 genome copies/ml and virus isolation probability and

collated data on PPV. The sensitivity to detect infectious virus was

generally sufficient,while specificity varied across studies andPPVwas

variable across subgroups of sampling time after symptom onset. Ct

cut‐off values indicating infectivity are currently not determinable

with high reliability. However, the findings need to be interpreted in

light of heterogeneity and quality limitations of available studies that

were most commonly ad hoc initiated and performed under the

unfavourable conditions of the ongoing SARS‐CoV‐2 pandemic.

The indispensable role of RT‐PCR in the COVID‐19 pandemic is

undisputed; moreover, the evaluation of its performance compared

to cell culture could provide important insights regarding the dif-

ferentiation between infectious and non‐infectious samples. For

pandemic management, both a highly specific and sensitive test is

needed, as false negative results might lead to untoward transmission

and false positive test results to unnecessary isolation and

quarantining.

The sensitivity was generally adequate, with no false negative

results obtained in any of the studies; the lowest estimate of 90%

was due to the continuity correction and small sample size.17 This

emphasises the importance of RT‐PCR to rule out infectivity, pro-

vided that samples were collected and handled properly, and no gene

dropout due to target gene mutations had occurred.68

The specificity of RT‐PCR to detect infectious samples varied

considerably amongst the studies. Optimization of specificity would

have been possible by ROC curve analysis, but only one study pro-

vided raw data that could be used to generate sensitivity and spec-

ificity values per Ct cut‐off point.16

The majority of the studies compared Ct or log10 genome copies/

ml and cell culture results only from RT‐PCR positive samples. For

this reason no valid ROC analysis based on sensitivity and specificity

was possible. We performed a logistic regression and estimated the

probability of virus isolation at a relatively high Ct value of 30, but

the estimates obtained precluded this Ct value as a cut‐off for

excluding infectivity.

In the meta‐analysis by Cevik et al. a maximum virus isolation

time of 9 days after symptom onset was shown for non‐severe

courses of the disease.3 To quantify PPV, we performed subgroup

analyses based on this sampling time after symptom onset.

Despite the large heterogeneity, the pooled PPV of 45% reflects

that a substantial proportion of RT‐PCR‐positive samples do not

result in detection of infectious virus within first 10 days of sampling.

The PPV of 1% in samples beyond 10 days supports the observation

of prolonged RNA excretion even when no virus can be isolated.3,69

The high degree of heterogeneity among the studies might be

due to different study designs, heterogenous populations studied at

different time points, use of different respiratory specimen, variable

permissiveness of cell lines and culture conditions and disparate RT‐
PCR standards.

Considering cell culture as a biological, that is living detection

system, we noted a wide range of methods used for the verification of

cytopathic effects upon microscopic inspection. Poor reporting on

storage conditions of samples before inoculation, the history of cell

passaging, application of centrifugal enhancement, as well as the

definition of cell culture positivity, was evident in most cases. If re-

ported the factors applied varied between many studies. Further

conditions that may influence the success of virus isolation include

additional biological or engineered features of the cell line, inocula-

tion volume, freeze‐thawing of the specimen, incubation environment

and the density of cell layers varied amongst the studies.4,70,71

Accordingly, there is a great need for consensus on stand-

ardisation of SARS‐CoV‐2 isolation by cell culture. To date, in the

absence of universally accepted standardized cell culture guidelines,

almost all included studies have followed their in‐house protocols. It

must be noted that cell culture positivity only implies detection of

viable virus within a body fluid of the patient representing a surro-

gate for the potential of virus transmission by an infected individual.

Given the most relevant route of air‐borne transmission of SARS‐
CoV‐2 infection, the extrapolation of virus isolation from swabs

taken form the oro‐ or nasopharyngeal surfaces into the efficiency of

virus transmission or even into a specific epidemiological context is

currently not yet possible.

Several factors that influence RT‐PCR limits of detection and Ct

values have been described, including pre‐analytic factors like sample

type and matrix, its collection, storage and preparation, and analytic

factors like reagents of RT‐PCR assay (primer sets, buffers, and en-

zymes, nucleic acid extraction efficiency, reference material of stan-

dard curve).72–74

As shown in Figure 4, a high degree of variability in the corre-

lation between Ct and virus isolation was observed between the

studies. While low Ct values could be indicative of infectivity, high Ct

values are difficult to interpret, as revealed by the variable virus

isolation probabilities at a Ct of 30. Inter‐ and intralaboratory vari-

ations of RT‐PCR in conjunction with non‐standardized cell culture

methodology might explain this variability. Due to pandemic‐related

supply shortages, a locally uniform RT‐PCR methodology was not

feasible everywhere. As a result, different test kits had to be used

within the same laboratory. In addition, an international quantitative

reference standard to improve interlaboratory agreement on viral

load quantification has not yet been established.75,76 Thus, no testing

strategy for de‐isolation based solely on longitudinal Ct monitoring

can be recommended at this time.

In addition to the difficulties inherent in detection methods, the

constant mutations with the formation of new variants during the

pandemic may pose another challenge for virus detection. Initial
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reports show lower virus recovery of Alpha compared to Delta var-

iants without concomitant differences in the Ct means of cell culture

positive and negative samples77 and target area related mutations

can cause gene drop out without altering virus recovery.68 Mutations

could therefore be considered as another factor of variability in the

accuracy effect estimates.

There are important limitations in our systematic review. The

included studies differ in terms of study design, sample size (ranging

from 4 to 3790) and patient characteristics (such as age, disease

severity, symptom status and sampling time) and methodology of RT‐
PCR as well as cell culture. Most published studies were case series

and not designed to determine diagnostic accuracy, thus performed

poorly in methodological quality assessment, as patient selection was

most commonly by convenience and patients eligibility criteria were

often unclear or not defined at all.

The heterogeneity across studies could not be fully explained in

the PPV meta‐analysis and it was not possible to account for disease

prevalence and potentially relevant subgroup analyses due to

underreporting. Bivariate analysis for the sensitivity and specificity

could not be performed because of the limited number of suitable

studies.

The fact that the pandemic is a highly dynamic, discontinuous

event and driven by virus variants with distinct virological properties

makes it clear that the work begun here should be continued. It will

be interesting to learn whether the two major virus detection

methods compared here undergo further standardisation of meth-

odology and if this allows more robust conclusions regarding their

correlations.

5 | CONCLUSIONS

This systematic review identified an evidence gap in well designed

diagnostic accuracy studies comparing RT‐PCR with cell culture as a

surrogate for infectivity of SARS‐CoV‐2 patients. Such studies would

provide essential information for clinical practice, where the differ-

entiation between infectious and not infectious patients is highly

important for clinical management.

Furthermore, we found a high degree of between study hetero-

geneity and a lack of standardisation especially of cell culture

methodology.

However, it was possible to make rough estimations on the

correlation between viral load measured by RT‐PCR and infectivity

based on these studies.

Taking into account that the studies were performed in different

waves of the ongoing SARS‐CoV‐2 pandemic, these shortcomings are

comprehensible, but have to be addressed in future research and

pandemic management planing.
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