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The pathomechanisms behind NSAID-exacerbated respiratory disease are complex

and still largely unknown. They are presumed to involve genetic predisposition and

environmental triggers that lead to dysregulation of fatty acid and lipidmetabolism, altered

cellular interactions involving transmetabolism, and continuous and chronic inflammation

in the respiratory track. Here, we go through the recent advances on the topic and sum

up the current understanding of the background of this illness that broadly effects the

patients’ lives.
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INTRODUCTION

AERD or aspirin/non-steroidal anti-inflammatory drug (NSAID)-exacerbated respiratory disease
is an adult-onset triad characterized by asthma, eosinophilic chronic rhinosinusitis with nasal
polyposis (CRSwNP), and respiratory reactions upon ingestion of COX-1 inhibitors such as
NSAIDs or aspirin (ASA). Both the upper and lower respiratory symptoms are typically difficult-
to-treat, and many patients suffer from frequent asthma exacerbations and require multiple
endoscopic sinus surgeries despite good medical treatment including local and oral corticosteroids.

The acute inflammatory symptoms that occur within 30–180min after ingestion of COX-1
inhibitors is a non-immunoglobulin (Ig)E-mediated hypersensitivity reaction that causes a release
of multiple mast cell mediators, such as tryptase, cysteinyl leukotrienes (CysLTs), and prostaglandin
D2 (PDG2) (1–3). The typical symptoms of reaction can include nasal congestion, rhinorrhea,
sneezing, coughing, wheezing, and drop in lung function, though pruritic rash and gastrointestinal
discomfort have also been noted.

Arachidonic Acid Metabolism
Arachidonic acid (AA) is a C20 polyunsaturated fatty acid derived from phospholipid hydrolysis
at the inner surface of the cell membrane by phospholipase PLA2. AA regulates phospholipase and
protein kinase signaling as a second messenger, and acts as a key inflammatory intermediate, being
a precursor for eicosanoids. Eicosanoids, which encompass prostaglandins (PGs), prostacyclins,
thromboxanes (TXs) and leukotrienes (LTs), are hormone-like compounds signaling via G-coupled
receptors and are involved in variety of biological processes, such as inflammation, platelet
aggregation, electrolyte balance, and smooth-muscle contraction (4). Leukotrienes are synthesized
via lipoxygenase (LOX)-dependent route, while PGs, prostacyclins and TXs are derived from the
cyclooxygenase (COX)-dependent pathway (Figure 1). AA can also be metabolized by cytochrome
P450 (CYP) enzyme, resulting in hydroxyeicosatetraneoic acids (HETEs) and epoxyeicosatrienoic
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FIGURE 1 | The main routes of arachidonic acid metabolism, focusing on lipoxygenase (LOX) pathway. Enzymes are in italics. HETE, hydroxyeicosatetraneoic acid;

LT, leukotrienes; PG, prostaglandins; TX, thromboxanes.

acids (EETs), important in cardiovascular biology (4). AA
metabolism is a complex entity, resulting in variety of lipid
mediators that can be anti-inflammatory, proinflammatory, or
both, depending on the target receptors.

Pathophysiologic Findings of Arachidonic
Acid Metabolism in AERD Patients
In AERD, AA metabolism is chronically imbalanced and both
the COX- and the LOX-pathways are dysregulated. There is
overproduction of CysLTs, increase in the expression of CysLT
receptors in respiratory mucosa and in the LTC4 synthase
enzyme, decrease in the lipoxin levels, decrease in prostaglandin
PGE2 and increase in PGD2 [reviewed in (5)]. 5-lipoxygenase
(5-LO) has gained a lot of attention because of the 30-year-
old finding that AERD patients have increased levels of the 5-
LO pathway end-product CysLTs, as measured by high levels
of the stable end-metabolite LTE4 in urine and nasal fluids (6).
Inhibiting the COX1 enzyme with NSAIDs further increases
these levels. LT antagonists, such as montelukast, inhibit the
actions of CysLTs by blocking their receptor CysLT1R, and have
been shown to improve AERD-patients’ asthma (7) and in some
patients also inhibit the lower airway symptoms induced by
NSAID ingestion (8).

ATAD—Changes in Clinical Features
Another treatment option for non-responsive CRSwNP disease
is aspirin treatment after desensitization (ATAD) (9). Successful
desensitization has been shown to suppress the levels of PGD2,
while the levels of CysLTs remain unaltered or even increase, and
the levels of blood eosinophils and basophils increase (2). PGD2

induces chemotaxis in Th2 cells, eosinophils, and basophils (10),
and the increased levels of circulating eosinophils might be
due to their decreased tissue recruitment (2). A prospective,
placebo-controlled, double-blind study comparing the effects
of ATAD between ASA-intolerant and ASA-tolerant patients
with asthma and CRSwNP (34 patients altogether) has shown

improvement in the nasal and bronchial symptoms in the ASA-
intolerant group (11). Clinical improvements were shown in
SNOT-20 and Asthma Control Questionnaire scores, peak nasal
inspiratory flows and as reduced doses of inhaled corticosteroids.
In this study, the levels of LTE4 or PGD2 metabolites showed
no changes after ATAD (11). It has been estimated, that over
80% of patients would benefit from ATAD (12) as it can reduce
the need for surgeries, oral corticosteroids, and emergency room
visits (13).

The downside of ATAD are the side effects: gastric pain
or bleeding, bruising, tinnitus, urticaria or worsening of the
respiratory symptoms, leading to discontinuation in 15% of cases
(13, 14). Side effects may even prevent the desensitization, and
acutely intolerable side effects during the aspirin desensitization
procedure have been associated with elevated levels of PGD2

(2). A recent real-life study in the Finnish population reported
ATAD-discontinuation rates of nearly 30%, in spite of lower ASA
dose than the average described in literature (15). Another study
from Finland reported similar results with a discontinuation rate
of 22% (16), suggesting that there might be ethnic or genetic
variability in ASA tolerance.

15-LO
Another enzyme that metabolizes AA is 15-lipoxygenase
(15-LO), encoded by ALOX-15 and expressed in airway
epithelial cells, eosinophils and mast cells (17). It converts
AA to 15-HETE, lipoxins and eoxins. 15-HETE can
act as an independent anti-inflammatory mediator, or
it can be converted to lipoxins by 5-LO, or to 15-oxo-
eicosatetraeonic (15-oxo-ETE) by hydroxyprostaglandin
dehydrogenase (HPGD) (18). However, epithelial cells lack
HPGD and instead the enzyme is found in tissue mast
cells in close proximity to the epithelial cells. The cells
work transmetabolically, passing on the 15-HETE from the
epithelial cell to the mast cell, which in turn produces 15-
oxo-ETE (19). The role of 15-oxo-ETE in AERD progression
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is not known but it may contribute to the dysregulation of
AA metabolism.

Increased levels of 15-HETE have been associated with
pulmonary eosinophilia in asthmatics (20). Eoxins are
proinflammatory metabolites capable of causing severe asthma
and allergic reactions. They are produced by eosinophils and
mast cells within the nasal polyp tissue (21). 15-LO activity was
found to be increased in eosinophils isolated from asthmatics
with either severe disease or AERD, and the levels of eoxins
were specifically increased in asthmatics with AERD (22).
ALOX-15 is also upregulated in the epithelium in other type 2
inflammatory mucosal diseases such as eosinophilic esophagitis
(23). Microarray experiments in human peripheral monocytes
showed that the expression of 15-LO is strongly induced by
interleukins (IL)-4 and IL-13, and real-time PCR indicated
that IL-4 induced more than 100-fold upregulation of 15-LO
expression (24).

Recently, a genome-wide association study (GWAS) of
patients with CRSwNP across several cohorts showed that
a missense variant of ALOX-15, causing a p.Thr560Met
alteration and leading to near total loss of 15-LO enzymatic
activity was associated with a reduction in the risk of
CRSwNP (25). This was the first GWAS, and so far, the
only one, to report a significant association with nasal
polyps. Results from mouse models support this finding,
as a mouse model deficient in 12/15-LO, an ortholog for
human 15-LO, has been shown to have reduced airway
inflammation and remodeling in allergen provocation
tests (26).

Furthermore, a single-cell RNA sequencing analysis
from nasal polyp tissue revealed dysregulated arachidonic
metabolism in the 15-LO pathway in patients with AERD
(19). When the polyp tissue isolated from CRSwNP patients
was compared to that of AERD patients, ALOX-15 expression
was significantly elevated in patients with AERD, particularly
within apical epithelial cells (19). Patients with CRSwNP and
asthma had higher enhancement of whole-tissue ALOX-15
expression compared to CRSwNP non-asthmatics. The same
correlation was not observed in patients with non-polyp
CRS. Patients with higher ALOX-15 expression suffered
from a worse CRSwNP disease with higher number of
sinus operations and worse inflammation in the sinus
CT scans (19). The expression level of ALOX-15 mRNA
was significantly higher in eosinophilic polyps and could
distinguish between eosinophilic and non-eosinophilic nasal
polyps (27). The expression of 15-LO was seen in both the
epithelial cells and eosinophils in nasal polyp tissue detected by
immunohistochemical staining (27). Dupilumab, a biological
drug for treating asthma, atopic dermatitis and CRSwNP,
suppresses IL-4 and IL-13 signaling, on which the expression
of ALOX-15 is strictly dependent (28). Dupilumab has been
shown to be particularly therapeutically effective in AERD
patients (29).

Local Immunoglobulin Levels in AERD
Nasal Polyps
Activation of B cells and local antibody production may play a
key role in nasal polyp severity and AERD pathogenesis (30).

FIGURE 2 | Cells and their major interactions in AERD. CysLTs released by mast cells, eosinophils, and platelets cause epithelial release of IL-33 and TSLP. These

innate cytokines in turn activate mast cells, eosinophils, and ILC2s. The cytokines released by ILC2s, the pathways of which are now targeted by several monoclonal

antibodies, stimulate plasma cells to produce IgE and IgG4, and promote, recruit and activate eosinophils. Eosinophils and ICL2s are also activated by PGD2.

Platelets metabolize arachidonic acid (AA) into PGD2, and, in collaboration with neutrophils, CysLTs. The inflammatory response is driven by multiple factors.
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The airway mucosa can function as a tertiary lymphoid organ
where antibody production and class switching are facilitated
as high levels of active B cells, plasma cells and plasmablasts
have been identified locally (31, 32). IgE is a link between
antibodies and inflammatory disease as it activates and can
primemast cells, basophils and other Fc-receptor bearing effector
cells in nasal tissue (30). Other local antibodies may also
promote inflammation. IgA enhances eosinophil survival (33)
and IgG can activate local complement cascades leading to
destruction of the epithelial barrier (34). One theory is that
the presence of autoantibodies contribute to the destruction of
this barrier, but no single antigen has consistently been linked
to AERD.

Recently Buchheit et al. showed that the local antibody
profile of patients with AERD differs from that of other
CRSwNP patients, non-polyp CRS, and controls (35). In AERD,
higher amounts of all subclasses of immunoglobulins were
found, but especially of IgG4 and IgE. Local IgE levels did
not correlate with serum IgE levels, indicating the presence
of local antibody production within the tissues (35). Also,
IGHG4 encoding the constant region of IgG4 is overexpressed
locally in AERD patients, strengthening the theory of local
antibody production (35). Further, local IgE levels are associated
with a worse disease and fast regrowth of polyposis whereas
IgG4 associates with lifetime disease duration of AERD (35).
It is speculated that IgG4 might prevent polyp regrowth,
possibly causing a fibrotic disease in the sinuses (36, 37)
but IgG4 might also be a step in the class switching
into local IgE as IL10 encoding IL10 cytokine that drives
immunoglobulin production toward IgG4 has been shown
in RNA-sequencing analysis of nasal polyp cells of AERD
patients (35).

IgE antibody production has also been proposed to be driven
by superantigens derived from bacteria such as Staphylococcus
aureus, as enterotoxin-specific antibodies that may play a role
in the inflammation cascade have been identified (38). A role
for IL-5 has also been suspected in this eosinophilic disease, as
IL-5 is an eosinophil activator that stimulates IgA production,
produced by Th2 cells and mast cells. In AERD patients,
antibody-expressing cells expressed IL5AR encoding for the IL-
5 alfa receptor (35). This finding supports a possible additional
pathway toward the presence of increased antibody levels in
nasal polyps.

The positive effect of the IgE-binding monoclonal antibody
omalizumab on CRSwNP showed in randomized, placebo-
controlled studies POLYP1 and POLYP2 further strengthens
the evidence of IgE playing part in the pathomechanism
of AERD (39). In these identical studies that included 265
patients, 27% had AERD. After 24 weeks of treatment with
omalizumab, polyp score decreased by 2 points or more
in 31% of the patients in the active treatment group.
Significant improvement compared to placebo was shown in
all primary and secondary end points, i.e., nasal congestion
score, SNOT-22, olfactory test UPSIT, and total nasal symptom
score (39).

Cells Involved in AERD and Their
Interactions
AERD is characterized by an imbalance in eicosanoid levels,
especially CysLTs, PGD2 and PGE2. Interactions between the cells
that produce eicosanoids and the cells that respond to them play
a key role in the AERD pathomechanism. Mast cells, eosinophils,
epithelial cells, platelets, and innate lymphoid cell type 2 (ILC2)
cells are thought to be the major players involved in these actions
(Figure 2).

Eosinophils, abundant in nasal polyps, bronchial mucosa, and
peripheral blood, produce PGD2 and are attracted to PGD2 by
chemotaxis (40). Choi et al. found that eosinophils interact with
epithelial cells through surfactant protein D, and may mediate
smooth muscle remodeling, a clinical feature of AERD (41).
Eosinophils are activated by many effectors including PGD2, IL-
5, IL-3, IL-33 and thymic stromal lymphopoietin (TSLP). Upon
activation, they release CysLTs and other mediators that promote
type 2 inflammatory reactions and tissue damage (42).

Mast cells and their activation through CysLT is central in
AERD-related inflammation and aspirin-induced reactions. Mast
cells can be activated through IgE cross-linking or via the innate
alarmin IL-33. Recently, Pan et al. demonstrated that in mouse
models, COX-1 activity is required for IL-33-dependent mast
cell release of AA (43), a mechanism that may explain aspirin
desensitization. IL-33 and the innate alarmin TSLP induce
mast cells’ production of PGD2 (3) and potentiate each other’s
actions. PGD2 promotes bronchospasm and inflammatory cell
recruitment, which is typical in AERD but mast cells also
release inflammatory mediators such as histamine and tryptase,
and CysLTs.

CysLTs released by mast cells and eosinophils regulate the
release of IL-33 and TSLP from the basal epithelial cell layer of
the airways. In addition to activating mast cells, TSLP and IL-
33 also activate eosinophils and ILC2 cells. These cells are a rare
subset of lymphocytes and upon stimulation, release cytokines
such as IL-4, IL-5, IL-13, and IL-9. The three first mentioned
may stimulate plasma cells to produce IgE and IgG4. IL-5 also
promotes recruitment, survival and activation of eosinophils and
IL-9 may increase the amount of mast cells recruited to the
tissue (40). Several prostaglandins also regulate ILC2 function.
PGD2 activates ILC2s and induces chemotaxis and cytokine
production, whereas PGE2 and PGI2 have inhibitory actions (40).
During aspirin desensitization, ILC2s in nasal fluid increased in
correlation with symptom scores and with increases in PGD2

metabolites in urine, indicating a potential connection between
PGD2 release, ILC2 recruitment, and symptom severity during
aspirin-induced reactions in AERD (44).

Platelets and neutrophils also work transmetabolically in
AERD (45). Activated platelets in AERD express high surface
levels of P-selectin (46) which acts as an adhesion molecule
(47). Platelets adhere to neutrophils, cells that generate LTA4.
Neutrophils, however, lack LTC4 synthase, which is needed to
metabolize LTA4 further into LTC4 (45). The adherent platelets
express LTC4 synthase, and the neutrophil-platelet aggregates can
then function together to allow for CysLT overproduction.
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Lipid Dysregulation in AERD
Because the fatty acid metabolism is dysregulated in AERD,
dietary modifications that could balance the distortion and
decrease the symptoms have been investigated. The dietary intake
of AA and its precursor, linoleic acid, correlates to the amount of
AA in inflammatory cells, while supplementation with omega-3-
rich fatty acids has been shown to decrease the bodies’ production
of inflammatory leukotrienes (48). A 2-week diet high in omega-3
and low in omega-6 fatty acids significantly decreased the urinary
end-metabolites of LTE4 and PGD2, as well as the clinical end-
points of upper respiratory symptom control (SNOT-22 score)
and asthma control (ACQ score) (49). Low-salicylate diet has
been evaluated in a trial of 30 patients, showing benefits for both
subjective and objective clinical end-points (50). However, the
effects of non-acetylated salicylates on AERD end-metabolites
have not been investigated and the mechanism by which dietary
salicylates would affect the respiratory symptoms is not clear.

A totally new finding of macrophage memory and their
epigenetic reprogramming in AERD was recently reported
by Haimerl et al. (51), assessed by RNA sequencing,
metabolomics flux assays and LC-MS/MS. Together with
reported dysregulation in sphingolipid metabolism (52), they
report increased release of acylcarnitine metabolites, indicating
a broader dysregulation in fatty acid metabolism in AERD.
Haimerl et al. also reported that although the expression profile
of macrophages showed upregulation of proinflammatory genes,
it also showed reduction on host-protective molecules. They
speculated that a dysfunctional macrophage activation state may
contribute to defect in pathogen clearance and higher risk of
exacerbations in AERD patients (51).

DISCUSSION

AERD is characterized by chronic inflammation with an
imbalance in eicosanoids, high levels of inflammatory mediators
such as CysLTs and PGD2, and mast cell, platelet, and ILC2
activation. Upon activation, ILC2s release interleukins that can
be blocked with new monoclonal antibodies that are used in
the treatment of severe asthma and CRSwNP (39, 53, 54). The
inflammation type in asthma and CRSwNP is mostly type 2,
but significant heterogeneity in the inflammatory background
in AERD patients has been reported (55). The more we learn
about the pathomechanisms of these inflammatory diseases,
and especially about the subset AERD, the more we can
personalize treatment.

In the future, systems biology methods could give us
more insight on the cellular level changes in this disease.
Already now, the pathways behind CRS and asthma have
been investigated with different omics approaches (genomics,
transcriptomics, proteomics and metabolomics) [reviewed in
(56, 57)]. The findings have made biomarker analysis and point-
of-care technology development realistic, thus allowing more
precise and quicker diagnoses and personalized treatment to be
available in the future clinical practice.
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