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Nonalcoholic fatty liver disease (NAFLD), a common clinical
disorder, is increasing largely due to increasing consumption
of diets high in fructose and fat (1–3). Indeed, NAFLD has
been reported to be present in up to 30% of the U.S. pop-
ulation (3), closely mirroring the prevalence of obesity. Its
presence carries an increased risk for type 2 diabetes, end-
stage liver disease, and cardiovascular disease (2). Obesity
and type 2 diabetes are characterized by chronic low-grade
inflammation in which maladaptive immune responses con-
tribute to the development of resistance to the metabolic
actions of insulin, thus generating a proinflammatory milieu
that leads to steatosis and fibrosis of the liver (4).

A critical event in the pathophysiology of tissue inflam-
mation is the shift in the polarization status of macrophages
from an anti-inflammatory (M2) to a proinflammatory
(M1) phenotype of macrophages (5,6). M1 polarization of
hepatic Kupffer cells (KCs) plays an important role in the
genesis of hepatic steatosis and insulin resistance in re-
sponse to chronic overnutrition (6). M1 polarization results
in increased expression of proinflammatory mediators, such
as CD11c, tumor necrosis factor a, interleukin (IL)-6, and
inducible nitric oxide synthase (7). Conversely, the anti-
inflammatory M2 phenotype secretes preferentially CD206,
arginase1, and IL-10 (8). The role of macrophage M1/M2
polarization status in conditions of insulin resistance
has been explored using myeloid-specific knockout and
high-fat–feeding paradigms. Several chemokines impact
macrophage polarization and subsequent activity. C-C motif
chemokine receptor (CCR)2 and its corresponding ligand,
monocyte chemoattractant protein 1, are involved in adi-
pose tissue macrophage infiltration, insulin resistance, and
hepatic steatosis (9,10). In a rodent model of insulin re-
sistance, deletion of CCR5 is protective against the devel-
opment of hepatic steatosis via decreased M1 macrophage
polarization (11). In addition, hepatocyte-derived Th2 cyto-
kines trigger peroxisome proliferator–activated receptor d,
which in turn mediates M2 polarization (12). Nevertheless,

the mechanisms that regulate M1/M2 macrophage polari-
zation are still not completely understood.

Normally insulin signaling though the metabolic phos-
phatidylinositol-3 kinase/protein kinase B cascade results in
increased activation and phosphorylation of endothelial nitric
oxide synthase (eNOS) with consequent elevation in bio-
available nitric oxide (NO) (13). In turn, NO activates solu-
ble guanylate cyclase with consequent activation of the cyclic
guanosine monophosphate (cGMP) protein kinase (14),
which phosphorylates vasodilator-simulated phosphopro-
tein (VASP) (15). VASP belongs to the enabled (Ena)/VASP
family of proteins involved in cytoskeleton assembly and
organization (16). In vascular smooth muscle cells, VASP
activation modulates proliferation and growth (17). Pre-
viously, it has been reported that a high-fat diet results in
reductions in liver NO, in parallel with diminished VASP
activation, enhanced M1 macrophage polarization, and in-
creased hepatic triglyceride content (15). Both the global
deletion of eNOS or VASP recapitulate these findings with-
out need for a high-fat–diet challenge, thus highlighting the
role of diminished NO and VASP activation in the patho-
genesis of fatty liver (15). The changes in hepatic triglyceride
content were further explained by VASP-driven activation of
AMP-activated protein kinase and consequent enhanced
fatty acid oxidation (18). However, in the setting of insulin
resistance and chronic low-grade inflammation, such as
obesity, type 2 diabetes, and NAFLD, there is decreased
activation of eNOS and reduced bioavailable NO.

In this issue of Diabetes, Lee et al. (19) use a model of
insulin resistance induced by a high-fat diet to further
explore the impact of the novel NO/VASP pathway on
macrophage polarization. Transgenic mice overexpressing
eNOS were protected from hepatic steatosis, insulin re-
sistance, and inflammation. These changes occurred in
concert with increased M2 KC polarization. The authors
also investigated the effect of a lack of hematopoietic
VASP using sublethally irradiated mice fed a low-fat diet.
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Mice reconstituted with VASP-negative bone marrow exhibited
hepatic insulin resistance and M1 KC polarization. In vitro
studies using cultured bovine aortic endothelial cells and
bone marrow–derived macrophages (BMDMs) were also un-
dertaken. The ability of bovine aortic endothelial cells to
produce NO was diminished by small interfering RNA. In
conditions of NO depletion, BMDMs stimulated with lipo-
polysaccharide (LPS) and interferon-g (IFN-g) demon-
strated increased M1 polarization. On the contrary, when
NO production was normal, the expression of M2 macro-
phage polarization markers was increased in response to
IL-4. When macrophages were stimulated with an NO do-
nor, the expression of M1 markers was decreased in the
presence of LPS/IFN-g, and M2 polarization was enhanced
when stimulated with IL-4. Furthermore, the impact of the
NO/VASP pathway on M1/M2 polarization status was ex-
plored. Lack of VASP in BMDMs resulted in decreased
expression of M2 markers, reduced fatty acid oxidation,
and decreased activation of the IL-4 downstream sig-
naling protein phospho-STAT6. Increased expression of
VASP decreased M1 polarization in a macrophage line pre-
treated with LPS/IFN-g.

Lee et al. (19) logically conclude that M1/M2 macro-
phage polarization status is modulated by eNOS via
downstream signaling involving VASP. M1 KC polariza-
tion and subsequent production of proinflammatory
mediators are tonically inhibited by NO/VASP signaling
and thus are protective against high-fat diet–induced in-
sulin resistance and hepatic inflammation. Thus, NO/VASP
signaling favors the anti-inflammatory M2 KC phenotype
and is required to prevent inflammation and insulin resis-
tance in the liver (Fig. 1).

These novel findings could potentially translate into
therapeutic interventions. Medications that promote NO
signaling, such as the cGMP-specific phosphodiesterase-5
sildenafil, have been shown to improve glucose homeo-
stasis and systemic, as well as skeletal muscle, insulin
sensitivity in mice fed a high-fat diet (20). One important
caveat of this study is that the authors do not address the
role of high-fructose feeding. As the high-fructose, high-fat

diet is ubiquitously consumed in modern societies and has
been consistently linked to NAFLD (1), further studies are
warranted. As described, M1/M2 polarization status is
controlled by several factors other than eNOS, and the
absolute importance of the NO/VASP pathway relative to
other potent inflammation mediators, such as nuclear
factor-kB and peroxisome proliferator–activated receptor
g, among many others, remains to be fully uncovered.
Additionally, eNOS is implicated in several biologic pro-
cesses in numerous tissues, including oxidative stress,
vascular reactivity, and platelet aggregation. Thus, modu-
lation of NO availability is likely to have pleiotropic
effects that still require further characterization and could
impact the potential of this strategy for treatment and/or
prevention of NAFLD.
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