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Abstract 

Background:  Postoperative major adverse cardiovascular events (MACEs) account for more than one-third of periop-
erative deaths. Geriatric patients are more vulnerable to postoperative MACEs than younger patients. Identifying high-
risk patients in advance can help with clinical decision making and improve prognosis. This study aimed to develop a 
machine learning model for the preoperative prediction of postoperative MACEs in geriatric patients.

Methods:  We collected patients’ clinical data and laboratory tests prospectively. All patients over 65 years who 
underwent surgeries in West China Hospital of Sichuan University from June 25, 2019 to June 29, 2020 were included. 
Models based on extreme gradient boosting (XGB), gradient boosting machine, random forest, support vector 
machine, and Elastic Net logistic regression were trained. The models’ performance was compared according to area 
under the precision-recall curve (AUPRC), area under the receiver operating characteristic curve (AUROC) and Brier 
score. To minimize the influence of clinical intervention, we trained the model based on undersampling set. Variables 
with little contribution were excluded to simplify the model for ensuring the ease of use in clinical settings.

Results:  We enrolled 5705 geriatric patients into the final dataset. Of those patients, 171 (3.0%) developed postoper-
ative MACEs within 30 days after surgery. The XGB model outperformed other machine learning models with AUPRC 
of 0.404(95% confidence interval [CI]: 0.219–0.589), AUROC of 0.870(95%CI: 0.786–0.938) and Brier score of 0.024(95% 
CI: 0.016–0.032). Model trained on undersampling set showed improved performance with AUPRC of 0.511(95% CI: 
0.344–0.667, p < 0.001), AUROC of 0.912(95% CI: 0.847–0.962, p < 0.001) and Brier score of 0.020 (95% CI: 0.013–0.028, 
p < 0.001). After removing variables with little contribution, the undersampling model showed comparable predictive 
accuracy with AUPRC of 0.507(95% CI: 0.338–0.669, p = 0.36), AUROC of 0.896(95%CI: 0.826–0.953, p < 0.001) and Brier 
score of 0.020(95% CI: 0.013–0.028, p = 0.20).

Conclusions:  In this prospective study, we developed machine learning models for preoperative prediction of 
postoperative MACEs in geriatric patients. The XGB model showed the best performance. Undersampling method 
achieved further improvement of model performance.
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Background
More than 300 million surgeries are performed world-
wide annually [1]. About one-third of elective surgeries 
are performed on adults aged over 65 years [2]. Although 
surgery has the potential advantages of improving quality 
of life and prolonging the patient’s lifespan, perioperative 
complications may offset the benefits [3].

Postoperative major adverse cardiovascular events 
(MACEs) account for more than one-third of periop-
erative deaths [4, 5]. Geriatric patients are more likely 
to develop postoperative MACEs because of age-related 
threats such as comorbidity, polypharmacy, and frailty 
[6].

Early identification of high-risk patients would allow 
for advance interventions and facilitate prevention of 
postoperative MACEs. The Revised Cardiac Risk Index 
(RCRI) and the Gupta Myocardial Infarction or Cardiac 
Arrest (MICA) are the most widely used tools for evalu-
ating the probability of postoperative MACEs. Consid-
ering that these tools were developed several years ago, 
they have some limitations.

First, RCRI and MICA both tend to underestimate the 
risk of postoperative MACEs [7], especially in the high-
risk group [8]. Compared with the general population, 
geriatric patients have a much higher risk of MACEs 
[9]. RCRI and MICA show moderate performance when 
applied to the geriatric population, often underestimating 
the real cardiac risk [9]. Second, RCRI and MICA were 
both developed based on logistic regression. Constraints 
in the logistic regression confined these models to a small 
group of variables, which may overlook potentially valid 
predictors [10].

Comprehensive clinical information coupled with lab-
oratory tests generate a large amount of data. Machine 
learning is an optimal choice for analyzing complex data-
sets [11]. Recent studies using machine learning methods 
to predict the risk of postoperative MACEs have often 
focused on specific types of surgery [12, 13], which lim-
its the applicability of such models to a wider range of 
surgeries. Moreover, none of those tools were developed 
specifically for geriatric patients.

In this study, we aimed to use prospectively collected 
data to develop a machine learning model for preop-
erative prediction of postoperative MACEs in geriatric 
patients. We hypothesized that this machine learning 
model could improve the prediction of postoperative 
MACEs in geriatric patients.

Methods
Data source
For this study, we created a longitudinal cohort and 
collected data prospectively at West China Hospital of 
Sichuan University, a 4000-bed tertiary academic hos-
pital in China. The protocol of this study was approved 
by Committee of Ethics from West China Hospi-
tal of Sichuan University (2019–473) with waiver of 
informed consent, and registered at www.​chictr.​org.​cn 
(15/08/2019, ChiCTR1900025160). We designed our 
own preoperative interview sheet to capture related 
information. Trained residents used this sheet to inter-
view patients and collect data on the day before sur-
gery. The attending physician and resident re-checked 
the collected information before surgery. If any omis-
sion or error existed, the clinician made the addition or 
correction. Preoperative laboratory tests were automat-
ically retrieved from the Laboratory Information Sys-
tem. Preoperative data involved patients’ demographic 
information, preoperative vital signs, comorbidities, 
laboratory tests, and surgical details. Supplementary 
table S1 shows the 121 variables included in our study. 
Instead of simply categorizing comorbidities according 
to the presence or absence of each disease, we classi-
fied some diseases by severity. For example, hyperten-
sion was categorized according to blood pressure level. 
All laboratory tests were done within 7 days before sur-
gery. If a patient had more than one result for the same 
test, we chose the most recent result before surgery. 
We enrolled all patients aged over 65 years who under-
went surgeries from June 25, 2019 to June 29, 2020. 
Patients were excluded if they (1) had active symptoms 
of MACEs before surgery; (2) lost to follow-up.

Postoperative follow‑up
To ascertain the presence of postoperative MACEs, 
we conducted prospective follow-up with the patients. 
Research personnel followed up with patients at differ-
ent time points after surgery, including 24 h after sur-
gery, before hospital discharge, and the 30th day after 
surgery. If a patient developed postoperative MACEs, 
we continually stayed in contact with the patient until 
recovery or death. Throughout each patient’s hospital 
stay, research personnel conducted bedside follow-up 
visits; after hospital discharge, patients were contacted 
via phone call.

Trial registration:  The protocol of this study was registered at www.​chictr.​org.​cn (15/08/2019, ChiCTR1900025160)

Keywords:  Postoperative major adverse cardiovascular events, Risk assessment, Geriatric assessment, Machine 
learning, Electronic health records
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Outcome definition
The outcome was postoperative MACEs within 30  days 
after surgery. MACEs included myocardial ischemia, 
cardiac arrest, high-risk arrhythmia, heart failure, and 
stroke. Postoperative outcome data were collected from 
our electronic follow-up system.

Myocardial ischemia was defined by the presence of 
one of the following: (1) electrocardiogram showing signs 
of myocardial infarction (any one of the following): (a) 
ST segment elevation > 1  mm in two or more adjacent 
leads, (b) new left bundle branch, or (c) new Q-wave in 
two or more adjacent leads; or (2) new troponin elevation 
beyond 3 times the upper limit of the reference value in 
patients with suspected myocardial infarction.

Cardiac arrest was defined as “loss of cardiac impulse 
or the presence of an abnormal cardiac rhythm that leads 
to complete unconsciousness requiring basic or advanced 
life support.” This definition included malignant ventricu-
lar or supraventricular arrhythmias, pulseless electrical 
activity, and asystole.

High-risk arrhythmia referred to ventricular fibrilla-
tion. Heart failure was defined as the appearance of any 
one of the following: dyspnea, palpitation, or chest pres-
sure after exercise; pulmonary edema; physical examina-
tion showing bilateral rales; or chest radiograph showing 
butterfly sign. Stroke was defined as “cerebrovascular 
events caused by intracranial vascular rupture, thrombo-
sis, or embolism.”

Data preprocessing and model development
All variables were presented as continuous or categorical 
variables. Missing values were interpolated before mod-
eling. Continuous variables missing in more than 10% 
of cases and categorical variables were imputed by − 99, 
which regarded missing values as a separate group [14]. 
Continuous variables missing in fewer than 10% of cases 
were imputed using the k-nearest neighbor classification 
algorithm [15]. This nearest-neighbor based technique 
is a standard missing value imputation method, which 
predicts the missing values through selecting a group of 
patients with corresponding values in similar condition 
to the patient with missing values [15].

We randomly selected 80% of all observations for train-
ing, leaving 20% for testing. The classification methods 
on which models were based included extreme gradient 
boosting (XGB)[16], gradient boosting machine (GBM)
[17], random forest (RF) [18], support vector machine 
(SVM) and Elastic Net logistic regression[19]. Elastic Net 
logistic regression and SVM are based on distance meas-
urement, which indicates the need of standardization of 
features. We rescaled the value between 0 and 1 using 
Min–max normalization.

The number of patients without postoperative MACEs 
was much higher than the number of patients with 
postoperative MACEs, which leading to extreme class 
imbalance. This issue was overcome through setting dif-
ferent sample weights. In RF, SVM and Elastic Net logis-
tic regression, the hyperparameter “class_weight” was 
set to “balanced” to automatically increase the weight of 
positive sample. In GBM, the hyperparameter “sample_
weight” was used to decrease the weight of negative sam-
ple and increase the weight of positive sample. In XGB, 
the hyperparameter “scale_pos_weight” was set to 1 to 
adjust the imbalance of positive and negative samples.

In the medical field, logistic regression is extensively 
used to develop prediction models. In Elastic Net logistic 
regression, classifier was trained with both the L1 pen-
alty and L2 penalty, and the hyperparameter “C” was set 
to 0.2 for constraining the model to avoid overfitting. In 
SVM, L1 regularisation constant was used to cut down 
the number of features and avoid overfitting, and the 
hyperparameter “C” was set to 0.1.

RF, GBM and XGB all use decision tree as the base 
learner [17]. RF uses an ensemble of independent deci-
sion trees, and the most likely outcome was determined 
by a majority vote [18]. In GBM, decision trees are con-
structed sequentially, and each new tree is fit to the resid-
ual error after the previous step [17]. XGB is a scalable 
end-to-end tree boosting system [16].

Considering that the model is easy to overfit with too 
many estimators or too deep tree depth, we controlled 
the number of estimator and tree depth to avoid overfit-
ting. The RF classifier was trained with 80 estimators, and 
the maximum tree depth was constrained of 4. In GBM, 
learning rate was set at 0.01 to ensure the robustness of 
models. Classifier was trained using 100 estimators with 
a maximum tree depth of 2. XGB classifier was trained by 
80 estimators with a maximum tree depth of 3, and the 
learning rate was set at 0.1.

All model hyperparameters were chosen via grid search 
five-fold cross-validation on the training set. Machine 
learning models were developed in Python 3.7.2 using 
the scikit-learn library.

Confidence interval (CI) was generated using block 
bootstrapping of the predictions in the test set. The test 
set was randomly sampled for 1000 times, and generated 
1000 bootstrap samples. Performance metrics were cal-
culated for each bootstrap sample, and then these met-
rics were sorted. The 95% CI was determined by the 25th 
and 975th values in the sorted list of metrics.

Model comparison
To evaluate and compare different models, each model 
was applied to the test set to predict postoperative 
MACEs, and we drew a receiver operating characteristic 
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curve (ROC) and a precision-recall curve (PRC) for each 
model. Area under the ROC (AUROC) is widely used 
to estimate the performance of binary classifiers. How-
ever, AUROC can generate misleading conclusions about 
model performance in condition of imbalanced data [11]. 
Area under the PRC (AUPRC) gives no credit for predict-
ing true negatives. Compared with AUROC, it provides 
a more accurate interpretation of the model’s actual per-
formance for classifier on imbalanced dataset [20]. In this 
study, we chose AUPRC as the main evaluation metric for 
model comparison.

Brier score is used to assess model calibration, which 
evaluate how close the risk estimated by the model is 
close to the observed probability. Lower Brier score value 
indicates better model performance. We calculated Brier 
score to evaluate the calibration of models.

Wilcoxon signed rank test was used to compare the 
value of AUROC, AUPRC and Brier score. The differ-
ences between values were considered to be statistically 
significant at the level of p < 0.05.

Undersampling method
The current updated version of RCRI, issued by the 
Canadian Cardiovascular Society, was used to incorpo-
rate the B-type natriuretic peptide (BNP) measurement 
[21]. Compared with the original RCRI, this new ver-
sion more accurately predicts the risk of postoperative 
MACEs [7]. We developed a rule based on the updated 
RCRI to evaluate patients’ risk of postoperative MACEs. 
Table  1 shows the details of this method. Anesthetists 
categorized patients into different risk bands during pre-
operative interviews. The clinicians paid more attention 
to patients in the high risk group, and conducted advance 
interventions to improve the patients’ physical condi-
tion. As a result, patients in the high risk group may have 
had better outcomes conversely. This phenomenon could 
influence the process of model development. We applied 
undersampling method to minimize this influence. We 
excluded patients in the high risk group who had no 
postoperative MACEs because their outcomes may have 
been influenced by clinical interventions. Then, we devel-
oped predictive model based on the undersampling set.

The original test set included patients whose outcomes 
may have been influenced by clinical interventions, and 
this could impact the models’ performance. Thus, we 
excluded patients in the high risk group who had no 
postoperative MACEs from the original test set to form 
an undersampling test set for comparing the models’ 
performance.

We visualized variable importance to better understand 
the predictors’ influence on the model with the best per-
formance. In order to simplify the model to ensure the 
ease of use in clinical settings, we excluded variables 

with little contribution to the best model. We compared 
performances of original model and reduced model to 
ensure the retainment of predictive ability.

Results
Patient characteristics
Of 5808 geriatric patients with surgery from June 25, 2019 
to June 29, 2020, 103 patients were excluded, of whom 46 
had active symptoms of MACEs before surgery, and 57 
lost to follow-up. 5705 geriatric patients were enrolled in 
the final dataset. Supplementary table S2 shows details of 
patient characteristics. In total, 171(3.0%) patients devel-
oped postoperative MACEs within 30 days after surgery.

Model comparison
Figure  1 shows the ROCs and PRCs, respectively, of 
the models developed via different methods. All mod-
els achieved high AUROC values ranging from 0.856 
(95%CI: 0.769–0.929) to 0.888 (95% CI: 0.804–0.951) 
(Table 2). The XGB model exhibited the greatest AUPRC 
(0.404[95% CI: 0.219–0.589]) and the lowest Brier score 
(0.024 [95% CI: 0.016–0.032]).

Comparison between models developed on original set 
and undersampling set
The outcomes of patients in the high risk group may have 
been influenced by clinical interventions. We applied 
undersampling method to minimize this influence (see 
the Methods above). 380 patients in the high risk group 
had no postoperative MACEs, and they were excluded 
from the original dataset. Supplementary table S3 shows 
details of patient characteristics in the undersampling 
dataset. Considering AUPRC and Brier score, the XGB 
model showed the best performance in the previous 

Table 1  Preoperative assessment rule of postoperative MACEs

In our hospital, anesthetists used this rule to estimate patient’s risk of 
postoperative MACEs during preoperative interview. Patients were divided 
into different risk bands according to following judgement criterion: Low risk: 
total point = 0; intermediate risk: 0 < total point < 3; high risk: total point ≥ 3. 
Abbreviations: MACEs Major adverse cardiovascular events, BNP B-type 
natriuretic peptide
a Major vascular surgery, cardiac surgery

Risk factor point

History of ischaemic heart disease 1

History of congestive heart failure 1

History of cerebrovascular disease 1

Preoperative serum creatinine ≥ 177μMol/L 1

High risk surgerya 1

Insulin dependent diabetes mellitus 1

300 ng/L < BNP ≤ 6000 ng/L 1

6000 ng/L < BNP 2



Page 5 of 10Peng et al. BMC Anesthesiology          (2022) 22:284 	

comparison between models based on different methods. 
Thus, we used XGB to develop model based on under-
sampling set. To compare the performance between the 
original model and the undersampling model, we applied 
the models to the undersampling test set, obtaining pre-
dictions of postoperative MACEs.

Compared with the model trained on the original set, 
the model trained on the undersampling set showed 
significantly higher values of AUROC(0.912[95% CI: 
0.847–0.962] in undersampling model, 0.870[95% 
CI: 0.786–0.938] in original model, p < 0.001) and 
AUPRC(0.511[95% CI: 0.344–0.667] in undersampling 
model, 0.404[95% CI: 0.219–0.589] in original model, 
p < 0.001) (Table 3). For comparison of model calibration, 
the undersampling model had significantly lower Brier 
score(0.020 [ 95% CI: 0.013–0.028] in undersampling 
model, 0.024[95% CI: 0.016–0.032] in original model, 
p < 0.001).

Variable removal and feature importance
In order to simplify the model, we excluded 35 insignifi-
cant variables in XGB model, and these variables were 
also not important from clinical perspective. Compared 

with the undersampling model, the reduced undersam-
pling model did not compromise the accuracy of risk 
prediction (AUPRC of 0.507[95% CI: 0.338–0.669] in the 
reduced undersampling model, AUPRC of 0.511[95% 
CI: 0.344–0.667] in the undersampling model, p = 0.36) 
(Table  4). For calibration, these models had the same 
Brier scores (0.020[95% CI: 0.013–0.028] for both, 
p = 0.20). Retaining all variables would increase the 
model complexity without meaningfully improvement of 
predictive ability, so we chose the reduced undersampling 
model to develop our calculating system. Supplementary 

Fig. 1  Performance characteristic curves of candidate models. (a) Receiver operating curves of each candidate model. (b) Precision-recall curves 
of each candidate model. This figure shows performance characteristic curves of candidate models trained by extreme gradient boosting, gradient 
boosting machine, random forest, support vector machine, and Elastic Net logistic regression

Table 2  Performance metrics of candidate models

Performance metrics of models trained by extreme Gradient Boosting, Gradient Boosting Machine, random forest, support vector machine, and Elastic Net logistic 
regression. Abbreviations: AUROC Area under the receiver operating characteristic curve, CI Confidence interval, AUPRC Area under the precision-recall curve

Model AUROC(95% CI) AUPRC(95% CI) Brier score(95% CI)

Extreme Gradient Boosting 0.870(0.786–0.938) 0.404(0.219–0.589) 0.024(0.016–0.032)

Gradient Boosting Machine 0.862(0.781–0.928) 0.287(0.133–0.431) 0.030(0.024–0.037)

Random forest 0.888(0.804–0.951) 0.305(0.151–0.481) 0.065(0.060–0.072)

Support vector machine 0.856(0.769–0.929) 0.247(0.111–0.414) 0.024(0.016–0.032)

Elastic Net logistic regression 0.857(0.775–0.925) 0.298(0.139–0.482) 0.105(0.079–0.139)

Table 3  Performance of the original model compared with the 
undersampling model

Abbreviations: AUROC Area under the receiver operating characteristic curve, CI 
Confidence interval, AUPRC Area under the precision-recall curve

Performance 
metric

Original model Undersampling 
model

p value

AUROC(95% CI) 0.870(0.786–0.938) 0.912(0.847–0.962)  < 0.001

AUPRC(95% CI) 0.404(0.219–0.589) 0.511(0.344–0.667)  < 0.001

Brier score 0.024(0.016–0.032) 0.020(0.013–0.028)  < 0.001
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table S4 shows the 84 variables included in the reduced 
undersampling model.

Top ten important variables in the reduced undersam-
pling XGB model included New York Heart Association 
classification, BNP, troponin-T, operation site, myoglo-
bin, anion gap, high density lipoprotein, low density lipo-
protein, serum cystatin C level and cholesterol. (Fig. 2).

Discussion
We conducted a prospective cohort study to develop 
machine learning models for preoperative predic-
tion of postoperative MACEs in geriatric patients. The 
XGB model showed the best performance among these 
machine learning models. To minimize the influence 
of clinical intervention on patients’ outcomes, we used 
undersampling method according to the results of previ-
ous preoperative risk assessments. The model trained on 
the undersampling set showed improved performance. 
We excluded insignificant variables to ensure the ease 
of use in clinical settings, and the model retained equal 
predictive ability after removing insignificant variables. 
For convenient utilization in clinical practice, the model 

could be integrated into electronic medical records 
systems to ensure automatic data reading without the 
requirement of manual data input. Identifying patients 
with a high risk of postoperative MACEs prior to sur-
gery can facilitate preoperative informed consent, peri-
operative management, and improvement of patients’ 
prognoses.

In other studies, the data of older and younger patients 
have often been pooled together. Considering that geri-
atric patients have age-related physiological specificities, 
ignoring age categories can cause inaccurate parameter 
estimation and may decrease the model’s discrimina-
tion ability in geriatric patients [9]. Current assessment 
tools developed on pooled data often underestimate the 
real cardiac risk in geriatric patients [9]. In this study, we 
specifically focused on the geriatric population to capture 
their particular characteristics.

Fritz and colleagues pointed out that clinicians were 
able to identify some abnormalities in patients and 
enacted interventions to improve their physiological 
conditions. Thus, patients with severe conditions may 
have better outcomes conversely to the expected result. 
This phenomenon could influence the process of model 
development [22]. To our knowledge, no previous study 
has determined any method to solve this problem. In our 
hospital, the anesthetists used the scale developed based 
on the updated RCRI to assess patients’ risk of postop-
erative MACEs during preoperative interviews. The cli-
nicians paid more attention to patients in the high risk 
group and intervened in advance to improve their physi-
cal condition. To minimize this influence on patients’ 
outcomes, we applied undersampling method accord-
ing to the results of preoperative risk assessments. The 

Table 4  Performance of the undersampling model compared 
with the reduced undersampling model

Abbreviations: AUROC Area under the receiver operating characteristic curve, CI 
Confidence interval, AUPRC Area under the precision-recall curve

Performance 
metric

Undersampling 
model

Reduced 
Undersampling 
model

p value

AUROC(95% CI) 0.912(0.847–0.962) 0.896(0.826–0.953)  < 0.001

AUPRC(95% CI) 0.511(0.344–0.667) 0.507(0.338–0.669) 0.36

Brier score 0.020(0.013–0.028) 0.020(0.013–0.028) 0.20

Fig. 2  Importance matrix plot of the reduced undersampling XGB model. This figure shows the top ten important variables in reduced 
undersampling XGB model. Abbreviations: XGB: Extreme Gradient Boosting; NYHA: New York Heart Association
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model trained on the undersampling training set showed 
higher predictive accuracy than model trained on the 
original dataset. The undersampling method successfully 
improved the model’s predictive ability.

Logistic regression imposes a linear and additive rela-
tionship between the predictors and the outcome, and 
this assumption might be incorrect considering the 
complex process underlying the development of post-
operative MACEs [23]. In addition, multiple correlated 
features introduce noise in the process of model devel-
opment using logistic regression, which may reduce 
predictive accuracy [24]. The nonlinear, nonparametric 
machine learning methods are capable of finding higher-
dimensional interactions between features and develop-
ing predictive models with great accuracy [25, 26]. In our 
study, the high AUPRC and AUROC values achieved by 
machine learning methods are not commonly observed 
in other clinical predictive models [27, 28]. Additionally, 
machine learning techniques can be applied to imbal-
anced data and facilitate automation within electronic 
medical records systems [29].

In the present study, the XGB model showed the best 
performance. Previous studies which used different 
machine learning approaches to predict postoperative 
adverse events also achieved the best model performance 
through XGB [30, 31]. This evidence suggests that XGB 
might be more suitable than other machine learning 
methods for establishing predictive models of postopera-
tive adverse events.

In this study, we predetermined risk factors and col-
lected data prospectively. Most studies that develop pre-
dictive models are based on retrospective data [12, 13]. 
The factors incorporated in these models are restricted 
by data availability [32]. Certain predictors with poten-
tial prognostic implications may not be incorporated in 
retrospective study because of unavailability or incom-
pleteness, and this limitation could be overcome through 
prospective study design [9].

Instead of simply dichotomizing comorbidities accord-
ing to the presence or absence of each disease, we clas-
sified some diseases according to severity, which might 
improve the models’ predictive accuracy [33]. Laboratory 
tests objectively reflect patients’ present physiological 
condition and disease severity, so they have the poten-
tial advantages of predicting adverse events and guid-
ing clinical decisions [34]. We included many laboratory 
tests in this study and regarded them as continuous vari-
ables instead of categorizing them according to thresh-
olds. Categorization is biologically implausible because 
it would be unreasonable for a patient’s risk to change 
suddenly to either side of a threshold [35]. Preselecting 
cut points for continuous variables can cause information 
loss and decrease predictive accuracy [36].

Missing values are unavoidable in clinical practice. In 
our study, continues variables missing in fewer than 10% 
of cases were routinely collected during preoperative 
period, and the missing was likely to be random. These 
missing values were imputed using the k-nearest neigh-
bor classification algorithm, which estimated missing 
values according to corresponding values of patients 
with similar condition. Some laboratory tests are known 
to be clinically associated with MACEs, but they are not 
routinely arranged to patients, like BNP and troponin-T. 
Clinicians often arrange these tests only for patients who 
are judged to be at high risk of postoperative MACEs, 
thus these variables often have high missing rates. In this 
study, we regarded missing values as a separate group 
for variables missing in more than 10% of cases instead 
of interpolating estimated values, which indicated that 
our model could classify patients without these meas-
urements to a separate group. In this way, the model 
could learn the characteristics of patients who were 
deemed high risk for postoperative MACEs by clinicians. 
Improper imputation algorithms could influence the pre-
diction performance [24]. We believe that our imputation 
algorithm is better than an arbitrary choice like mean 
imputation.

Some researchers regard machine learning as a “black 
box” and doubt its utility in clinical medicine [37]. We 
visualized the important variables in the optimal model 
to show some interpretability. Variables with great con-
tribution to our model are also known to be associated 
with the development of MACEs from clinical perspec-
tive (such as BNP and troponin-T). In other hospitals, 
data are often collected and stored in different systems, 
and researchers need to integrate and harmonize data 
before using them to develop models [32]. We estab-
lished a structured database of preoperative evaluation 
and postoperative follow-up in our hospital to ensure 
data integrity. Therefore, we can achieve continued data 
supply for further training and validation to improve the 
algorithm.

Our prediction model intends to serve as a supplement 
tool for perioperative cardiovascular risk management 
in geriatric patients. The model could be used to identify 
geriatric patients at high risk of postoperative MACEs, 
thus to guide anticipatory strategies, such as intraopera-
tive invasive monitoring to ensure proper perfusion pres-
sure and organ flow, and establishment of postoperative 
medical care plan, like intensive postoperative vital sign 
monitoring, arrangement of troponin or BNP measure-
ment, and performance of postoperative electrocardio-
gram [38]. In addition, previous study demonstrated that 
probabilistic information is more accurately perceived 
by patients if presented as numbers, rather than words 
[39]. Our model could calculate individual probability 
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of developing postoperative MACEs, thus to facilitate 
explicit communication with patients about the cardio-
vascular risk of surgery. Further research is necessary to 
quantify the benefit of this model in guiding interven-
tions, reducing the incidence of postoperative MACEs, 
and improving patients’ outcomes.

Our study had several limitations. First, we used data 
from a single institution to develop and internally vali-
date the predictive model. Future studies are needed to 
verify the generalizability of our model to other institu-
tions. Second, this study covered all operation types. 
Subgroup analysis based on specific surgery type was 
not conducted because of the small number of patients 
in each group. The heterogeneity of different surgeries 
might represent a limitation of the model’s predictive 
ability in some subspecialties. However, the importance 
of our work lies in developing a predictive model avail-
able for widespread use instead of only for a specific 
type of surgery. Third, the low proportion of emergency 
cases and frail patients in our dataset limited the statis-
tical power to identify emergency surgery and frailty as 
risk factors for postoperative MACEs. Frailty is a major 
factor in geriatric surgical outcomes [40], and emergency 
surgery is associated with postoperative pulmonary com-
plications and acute kidney injury [41, 42]. But our model 
did not identify these variables as important predictors. 
We used the FRAIL Scale [43] to assess frailty in geri-
atric patients. The FRAIL Scale is appropriate for rapid 
bedside screening during preoperative interview, but it 
may not as accurate as other more complex scales, like 
the Robinson Frailty Score and Edmonton Frail Scale 
[44]. We may need to use other more accurate scales to 
assess frailty in further study. Considering the patient 
characteristics in our dataset, our prediction model may 
be more appropriate for geriatric patients with elective 
surgeries. Further studies are needed to explore whether 
emergency surgery and frailty are important risk factors 
for postoperative MACEs.

Conclusions
In this prospective study, we used different machine 
learning methods to develop predictive models for 
preoperative prediction of postoperative MACEs in 
geriatric patients. The XGB model showed the best per-
formance among these machine learning models. We 
applied undersampling method to minimize the influ-
ence of clinical intervention on patients’ outcomes, and 
this improved model performance. Our model could be 
integrated into electronic medical records systems and 
load related information automatically to calculate indi-
vidualized predicted probabilities. Early identification of 
patients with high risk of postoperative MACEs could 

facilitate preoperative informed consent, early interven-
tion, and allocation of medical resources.

Abbreviations
MACEs: Major adverse cardiovascular events; RCRI: The revised cardiac risk 
index; MICA: The gupta myocardial infarction or cardiac arrest; XGB: Extreme 
gradient boosting; GBM: Gradient boosting machine; SVM: Support vector 
machine; CI: Confidence interval; ROC: Receiver operating characteristic 
curve; PRC: Precision-recall curve; AUROC: Area under the receiver operating 
characteristic curve; AUPRC: Area under the precision-recall curve; BNP: B-type 
natriuretic peptide.

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s12871-​022-​01827-x.

Additional file 1: Supplementary Table S1. Variables included in model 
development. Supplementary Table S2. Patient characteristics in the 
original set. Supplementary Table S3. Patient characteristics in the 
undersampling set. Supplementary Table S4. Variables included in the 
reduced undersampling model. 

Acknowledgements
We thank Richard Lipkin, PhD, from Liwen Bianji, Edanz Group China (www.​
liwen​bianji.​cn/​ac), for editing the English text of a draft of this manuscript.

Authors’ contributions
(I)Study conception/design: All authors; (II)Data acquisition: XRP, TZ, TW, FJW; 
(III)Data analysis and model construction: XRP, XCH, TW, FJW; (IV)Supervised 
the statistical analysis: KL; (V)Interpreting results: All authors; (VI)Initial drafting 
of manuscript: XRP; (VII)Critical revision of manuscript: All authors. All authors 
read and approved the final manuscript.

Funding
This work was supported by the National Key R&D Program of China [grant 
number 2018YFC2001800] to XCH and TZ; National Clinical Research Center 
for Geriatrics, West China Hospital of Sichuan University [grant number 
Z2018A02] to TZ; 1·3·5 project for disciplines of excellence, West China 
Hospital, Sichuan University [grant number ZYJC18010] to TZ; CAMS Innova-
tion Fund for Medical Sciences[grant number 2019-I2M-5–011] to TZ; and 
Sichuan Provincial Science and Technology Key R&D Projects[grant number 
2019YFG0491] to TZ. The funding resources had no involvement in study 
design, data collection, data analysis, data interpretation and report written.

Availability of data and materials
The datasets used and analysed during the current study are available from 
the corresponding author on reasonable request.

Declarations

Ethics approval and consent to participate
The protocol of this study was approved by Committee of Ethics from West 
China Hospital of Sichuan University (2019–473), and registered at www.​chictr.​
org.​cn (15/08/2019, ChiCTR1900025160). Waiver of informed consent was 
granted by Committee of Ethics from West China Hospital of Sichuan Univer-
sity. All methods were carried out in accordance with declarations of helsinki.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Department of Anesthesiology, National Clinical Research Center for Geriatrics, 
West China Hospital, Sichuan University, PO Box 610041, Chengdu, China. 

https://doi.org/10.1186/s12871-022-01827-x
https://doi.org/10.1186/s12871-022-01827-x
http://www.liwenbianji.cn/ac
http://www.liwenbianji.cn/ac
http://www.chictr.org.cn
http://www.chictr.org.cn


Page 9 of 10Peng et al. BMC Anesthesiology          (2022) 22:284 	

2 The Research Units of West China (2018RU012) Chinese Academy of Medical 
Sciences, West China Hospital, Sichuan University, Chengdu, China. 3 Center 
of Statistical Research, School of Statistics, Southwestern University of Finance 
and Economics, Chengdu, China. 4 Joint Lab of Data Science and Business  
Intelligence, School of Statistics, Southwestern University of Finance and  
Economics, PO Box 611130, Chengdu, China. 

Received: 10 March 2022   Accepted: 26 August 2022

References
	1.	 Nepogodiev D, Martin J, Biccard B, Makupe A, Bhangu A, Nepogodiev D, 

et al. Global burden of postoperative death. The Lancet. 2019;393:401.
	2.	 Kahli Z, Shelley RM, Richard S, Jeffrey B, Sandhya LD, Mitchell TH. Preop-

erative cognitive impairment as a predictor of postoperative outcomes in 
a collaborative care model. JAGS. 2018;66:584–9.

	3.	 Devereaux PJ, Sessler DI. Cardiac complications in patients undergoing 
major noncardiac surgery. N Engl J Med. 2015;373(23):2258–69.

	4.	 Group TVeInSpceVW. Myocardial Injury after Noncardiac Surgery. Anes-
thesiology. 2014;120:564–78.

	5.	 Rodseth RN, Biccard BM, Le Manach Y, Sessler DI, Lurati Buse GA, Thabane 
L, et al. The prognostic value of pre-operative and post-operative B-type 
natriuretic peptides in patients undergoing noncardiac surgery: B-type 
natriuretic peptide and N-terminal fragment of pro-B-type natriuretic 
peptide: a systematic review and individual patient data meta-analysis. J 
Am Coll Cardiol. 2014;63(2):170–80.

	6.	 Chow WB, Rosenthal RA, Merkow RP, Ko CY, NF E. Optimal preoperative 
assessment of the geriatric surgical patient: a best practices guideline 
from the american college of surgeons national surgical quality improve-
ment program and the american geriatrics society. J Am Coll Surg. 
2012;215:453–66.

	7.	 Fronczek J, Polok K, Devereaux PJ, Gorka J, Archbold RA, Biccard B, et al. 
External validation of the revised cardiac risk index and national surgical 
quality improvement program myocardial infarction and cardiac arrest 
calculator in noncardiac vascular surgery. Br J Anaesth. 2019;123(4):421–9.

	8.	 Juo YY, Mantha A, Ebrahimi R, Ziaeian B, Benharash P. Incidence of myo-
cardial infarction after high-risk vascular operations in adults. JAMA Surg. 
2017;152(11):E1-8.

	9.	 Alrezk R, Jackson N, Al Rezk M, Elashoff R, Weintraub N, Elashoff D, et al. 
Derivation and validation of a geriatric-sensitive perioperative cardiac risk 
index. J Am Heart Assoc. 2017;6(11):1–10.

	10.	 Wijeysundera DN, Pearse RM, Shulman MA, Abbott TEF, Torres E, 
Ambosta A, et al. Assessment of functional capacity before major non-
cardiac surgery: an international, prospective cohort study. The Lancet. 
2018;391:2631–40.

	11.	 Chiew CJ, Liu N, Wong TH, Sim YE, Abdullah HR. Utilizing machine learn-
ing methods for preoperative prediction of postsurgical mortality and 
intensive care unit admission. Ann Surg. 2020;272(6):1133–9.

	12.	 Merath K, Hyer JM, Mehta R, Farooq A, Bagante F, Sahara K, et al. Use of 
machine learning for prediction of patient risk of postoperative complica-
tions after liver, pancreatic, and colorectal surgery. J Gastrointest Surg. 
2020;24(8):1843–51.

	13.	 Kim JS, Arvind V, Oermann EK, Kaji D, Ranson W, Ukogu C, et al. Pre-
dicting surgical complications in patients undergoing elective adult 
spinal deformity procedures using machine learning. Spine Deform. 
2018;6(6):762–70.

	14.	 Xue B, Li D, Lu C, King CR, Wildes T, Avidan MS, et al. Use of machine learn-
ing to develop and evaluate models using preoperative and intraopera-
tive data to identify risks of postoperative complications. JAMA Netw 
Open. 2021;4(3): e212240.

	15.	 Olga T, Michael C, Gavin S, Pat B, Trevor H, Robert T, et al. Miss-
ing value estimation methods for DNA microarrays. Bioinformatics. 
2001;17(6):520–5.

	16.	 Tianqi C, Carlos G. XGBoost: A Scalable Tree Boosting System. Proceed-
ings of the 22nd ACM SIGKDD international conference on knowledge 
discovery and data mining. San Francisco, CA 2016. p. 785–94.

	17.	 Schapire RE. The boosting approach to machine learning: An overview. 
Nonlinear estimation and classifcation. 2003:149–71.

	18.	 Breiman L. Random forests. Mach Learn. 2001;45:5–32.

	19.	 Zou H, Hastie T. Regularization and variable selection via the elastic net. J 
R Stat Soc Ser B Stat Methodol. 2005;67:301–20.

	20.	 Saito T, Rehmsmeier M. The precision-recall plot is more informative than 
the ROC plot when evaluating binary classifiers on imbalanced datasets. 
PLoS ONE. 2015;10(3):1–21.

	21.	 Duceppe E, Parlow J, MacDonald P, Lyons K, McMullen M, Srinathan S, 
et al. Canadian cardiovascular society guidelines on perioperative cardiac 
risk assessment and management for patients who undergo noncardiac 
surgery. Can J Cardiol. 2017;33(1):17–32.

	22.	 Fritz BA, Cui Z, Zhang M, He Y, Chen Y, Kronzer A, et al. Deep-learning 
model for predicting 30-day postoperative mortality. Br J Anaesth. 
2019;123(5):688–95.

	23.	 Pirracchio R, Petersen ML, Carone M, Rigon MR, Chevret S, van der Laan 
MJ. Mortality prediction in intensive care units with the Super ICU Learner 
Algorithm (SICULA): a population-based study. Lancet Respir Med. 
2015;3(1):42–52.

	24.	 Hill BL, Brown R, Gabel E, Rakocz N, Lee C, Cannesson M, et al. An auto-
mated machine learning-based model predicts postoperative mortality 
using readily-extractable preoperative electronic health record data. Br J 
Anaesth. 2019;123(6):877–86.

	25.	 Mortazavi BJ, Desai N, Zhang J, Coppi A, Warner F, Krumholz HM, et al. 
Prediction of adverse events in patients undergoing major cardiovascular 
procedures. IEEE J Biomed Health Inform. 2017;21(6):1719–29.

	26.	 Misic VV, Gabel E, Hofer I, Rajaram K, Mahajan A. Machine learning predic-
tion of postoperative emergency department hospital readmission. 
Anesthesiology. 2020;132(5):968–80.

	27.	 Gupta PK, Gupta H, Sundaram A, Kaushik M, Fang X, Miller WJ, et al. 
Development and validation of a risk calculator for prediction of cardiac 
risk after surgery. Circulation. 2011;124(4):381–7.

	28.	 Lee TH, Marcantonio ER, Mangione CM, Thomas EJ, Polanczyk CA, 
Cook EF, et al. Derivation and prospective validation of a simple index 
for prediction of cardiac risk of major noncardiac surgery. Circulation. 
1999;100(10):1043–9.

	29.	 Taylor RA, Pare JR, Venkatesh AK, Mowafi H, Melnick ER, Fleischman 
W, et al. Prediction of in-hospital mortality in emergency department 
patients with sepsis: a local big data-driven. Machine Learning Approach 
Acad Emerg Med. 2016;23(3):269–78.

	30.	 Lee HC, Yoon HK, Nam K, Cho YJ, Kim TK, Kim WH, et al. Derivation and 
validation of machine learning approaches to predict acute kidney injury 
after cardiac surgery. J Clin Med. 2018;7(10):322.

	31.	 Mortazavi BJ, Bucholz EM, Desai NR, Huang C, Curtis JP, Masoudi FA, et al. 
Comparison of machine learning methods with national cardiovascular 
data registry models for prediction of risk of bleeding after percutaneous 
coronary intervention. JAMA Netw Open. 2019;2(7): e196835.

	32.	 Meyer A, Zverinski D, Pfahringer B, Kempfert J, Kuehne T, Sündermann SH, 
et al. Machine learning for real-time prediction of complications in critical 
care: a retrospective study. Lancet Respir Med. 2018;6(12):905–14.

	33.	 Melgaard L, Gorst-Rasmussen A, Lane DA, Rasmussen LH, Larsen TB, Lip 
GY. Evaluating discrimination of risk prediction models: the c statistic. 
JAMA. 2015;314(10):1030–8.

	34.	 Patrick R, Yannick LM, Bruno R, Tim TH. Statistical evaluation of a bio-
marker. Anesthesiology. 2010;112:1023–40.

	35.	 Soussi S, Collins GS, Juni P, Mebazaa A, Gayat E, Le Manach Y. Evaluation of 
biomarkers in critical care and perioperative medicine: a clinician’s over-
view of traditional statistical methods and machine learning algorithms. 
Anesthesiology. 2021;134(1):15–25.

	36.	 Jenniskens K, Naaktgeboren CA, Reitsma JB, Hooft L, Moons KGM, van 
Smeden M. Forcing dichotomous disease classification from reference 
standards leads to bias in diagnostic accuracy estimates: A simulation 
study. J Clin Epidemiol. 2019;111:1–10.

	37.	 Cabitza F, Rasoini R, Gensini GF. Unintended consequences of machine 
learning in medicine. JAMA. 2017;318(6):517–8.

	38.	 Kristensen SD, Knuuti J, Saraste A, Anker S, Botker HE, De Hert S, et al. 
2014 ESC/ESA Guidelines on non-cardiac surgery: cardiovascular assess-
ment and management: the joint task force on non-cardiac surgery: 
cardiovascular assessment and management of the European society of 
cardiology (esc) and the European society of Anaesthesiology (ESA). Eur J 
Anaesthesiol. 2014;31(10):517–73.

	39.	 LJ T, HM D, A B, P B, P C. A systematic review on communicating with 
patients about evidence. J Eval Clin Pract. 2006;12:13–23.



Page 10 of 10Peng et al. BMC Anesthesiology          (2022) 22:284 

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

	40.	 Nishijima TF, Esaki T, Morita M, Toh Y. Preoperative frailty assessment with 
the robinson frailty score, edmonton frail scale, and G8 and adverse 
postoperative outcomes in older surgical patients with cancer. Eur J Surg 
Oncol. 2021;47(4):896–901.

	41.	 Gumbert SD, Kork F, Jackson ML, Vanga N, Ghebremichael SJ, 
Wang CY, et al. Perioperative acute kidney injury. Anesthesiology. 
2020;132(1):180–204.

	42.	 Canet J, Gallart L, Gomar C, Paluzie G, Vallès J, Castillo J, et al. Prediction of 
Postoperative Pulmonary Complications in a Population-based Surgical 
Cohort. Anesthesiology. 2010;113(6):1338–50.

	43.	 Gabor AvK, Yves MR, John EM, Bruno V. Frailty: toward a clinical definition. 
J Am Med Dir Assoc. 2008;9(2):71-2.

	44.	 McIsaac DI, MacDonald DB, Aucoin SD. Frailty for Perioperative Clinicians: 
A Narrative Review. Anesth Analg. 2020;130(6):1450–60.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.


	Machine learning prediction of postoperative major adverse cardiovascular events in geriatric patients: a prospective cohort study
	Abstract 
	Background: 
	Methods: 
	Results: 
	Conclusions: 
	Trial registration: 

	Background
	Methods
	Data source
	Postoperative follow-up
	Outcome definition
	Data preprocessing and model development
	Model comparison
	Undersampling method

	Results
	Patient characteristics
	Model comparison
	Comparison between models developed on original set and undersampling set
	Variable removal and feature importance

	Discussion
	Conclusions
	Acknowledgements
	References


